<<

Annales Academiæ Scientiarum Fennicæ Mathematica Volumen 24, 1999, 225–229

THE BINOMIAL THEOREM FOR HYPERCOMPLEX

Sirkka-Liisa Eriksson-Bique University of Joensuu, Department of P.O. Box 111, FIN-80101 Joensuu, Finland; Sirkka-Liisa.Eriksson-Bique@joensuu.fi

Abstract. The theory of complex variables is based on considerations of zm .Imbed- n+1 ding R in the Clifford algebra Cn , Leutwiler in Complex Variables 17 (1992) has generalized n+1 m Cauchy–Riemann equations to R with x as one of the main solutions. But since Cn is not commutative, the powers xm are difficult to handle. For example differentiation formulas are complicated. We present the binomial theorem in Rn+1 which simplifies the calculation rules concerning xm .

1. Introduction Several attempts have been made to generalize one-variable complex analysis to higher . The starting point is to consider the Euclidean space Rn as a subspace of some algebra over the reals. Naturally, one would like the possibility of division in this algebra. The Frobenius theorem states that an associative algebraic over the reals is always isomorphic to either R, the field of complex numbers C, or the division algebra of real H. Hamilton discovered quaternions in 1866. The algebra of quaternions is not commutative and therefore the usual binomial theorem fails there. We present a binomial theorem n+1 in H and even in a more general subspace R of the Clifford algebra Cn . The (universal) Clifford algebra is the over the reals gen- erated by the elements e1,...,en satisfying the condition eiej + ej ei = −2δij for n any i, j =1,...,n. The vector space of Cn is 2 .Whenn =1,we obtain the complex system. When n = 2, we obtain the set of quater- nions. Clifford algebras provide a rich framework for generalizing many results from one-variable complex analysis ([2], [4], [10], [9]). Clifford numbers of the form

x = x0 + x1e1 + ···+ xnen are called vectors or paravectors. We identify this set of vectors with Rn+1 .Itis known that ··· 2 − − 2 − 2 2 (1.1) (x1e1 + + xnen) = x x0 = (x1 + ...+ xn)

1991 Mathematics Subject Classification: Primary 30G35; Secondary 11E88, 30G30. This research is supported by the Academy of Finland. 226 Sirkka-Liisa Eriksson-Bique for any vector x ∈ Cn . For this reason vectors are also called hypercomplex numbers. The theory of complex variables is based on considerations of zm . Leutwiler has in [5], [6], [7] and [8] generalized the Cauchy–Riemann equations to Cn with m x as one of the main solutions. But since Cn is not commutative, the powers xm are difficult to handle. For example, differentiation formulas are complicated. Our binomial theorem in Rn+1 simplifies the calculation rules for xm .

2. The binomial theorem Ahlfors has verified in [1] that m (z + w)m = zk · wm−k + ρ (z,w), k m k where · is the Jordan product and ρm a complicated remainder. Our binomial theorem resembles the general binomial theorem m ··· m k0 ··· ks (2.1) (a0 + + as) = a0 as , k0,...,ks k0+k1+···+ks=m where the generalized binomial coefficients are m m! = . k0,...,ks k0! ···ks!

∈ n+1 In order to simplify our notations for a multi-index α =(α0,...,αn) N0 and x ∈ Rn+1 we set

α α0 ··· αn x = x0 xn , α!=α0! ···αn!, |α| = α + ···+ α , 0 n m m! = if |α| = m. α α0! ···αn!

We call a multi-index α =(α0,...,αn)evenifallα0,...,αn are even. A multi- index α =(α0,...,αn) is also identified with a vector α0 +α1e1 +···+αnen with αi ∈ N0 . Sometimes the notation e0 = 1 is convenient. Proposition 2.1. If x is a hypercomplex number, m xm = c(α)xα, α |α|=m The binomial theorem for hypercomplex numbers 227 where the coefficients c(α) with α =(α0,α1,...,αn) are given by   1 (m − α )  2 0  1 −  (α α0) −  2 − (m α0)/2 −  − ( 1) if α α0 even,  m α0  − α α0 c(α)= 1 − −  (m α0 1)  2  1 − −  (α α0 ei) − −  2 − (m α0 1)/2 − −  − ( 1) ei if α α0 αiei even,  m α0   α − α0 0 otherwise.

Proof. Let x = x0 + x1e1 + ···+ xnen .Sincex0 commutes with all ei ,we infer that m m − m α0 ··· m α0 x = x0 (x1e1 + + xnen) . α0 α0=0 Using (1.1) we obtain − s/2 2 ··· 2 s/2 ( 1) (x1 + + xn) if s even, (x e + ...+ x e )s = − (s−1)/2 2 ··· 2 (s−1)/2 ··· 1 1 n n ( 1) (x1 + + xn) (x1e1 + + xnen) if s odd. Hence, applying (2.1) we infer that 1 − − (m − α0) (x e + ···+ x e )m α0 =(−1)(m α0)/2 2 x2ν1 ···x2νn 1 1 n n ν 1 n |ν|=(m−α0)/2 when m − α0 is even, and − − − (x e + ···+ x e )m α0 =(−1)(m α0 1)/2(x e + ···+ x e )× 1 1 n n 1 1 n n 1 (m − α0 − 1) × 2 x2ν1 ···x2νn ν 1 n |ν|=(m−α0−1)/2 when m − α0 is odd. Since m m α = , α0 m − α0 α − α0 the result follows. For n = 2 the preceding theorem is presented in a slightly different form in [3, p. 233]. Using the preceding theorem it is easy to differentiate or integrate powers of x. 228 Sirkka-Liisa Eriksson-Bique

Corollary 2.2. Let x be a hypercomplex number. If m and s are natural numbers, we have ∂xm+s (m + s)! m = c(α + se )xα ∂xs m! α i i |α|=m for any i with 0 ≤ i ≤ n. m α m Note that if i =0,thenc(α + se0)=c(α)and |α|=m α c(α)x = x . m+s s m Hence the usual differentiation rule ∂x /∂x0 = (m + s)!/m! x holds with respect to x0 . Corollary 2.3. Let x be a hypercomplex number. If m is a and 0 ≤ i ≤ n, 1 m +1 xmdx = c(α − e )xα + g(x − x e ) i m +1 α i i i |α|=m+1

n+1 if c(β)=0 for βi ≤ 0 and g: R → Cn is a function.

If i =0,wehavec(α − e0)=c(α) for any α with α0 ≥ 1. Choosing the function g as m +1 g(x − x e )= xα, 0 0 α |α|=m+1,α0=0 m m+1 we naturally obtain x dx0 = x /(m +1).

Corollary 2.4. Let x = x0 + x1e1 + ···+ xnen be a hypercomplex number. If m is a natural number and α =(α0,...,αn) a multi-index with m = |α|,

∂mxm α = m!c(α). α0 ··· n ∂x0 ∂xn

The following binomial theorem for hypercomplex numbers is obtained.

Theorem 2.5. Let x and y be hypercomplex numbers. If m is a natural number, m (x + y)m = c(α + β)xαyβ, α, β |α|+|β|=m where the coefficients c( · ) are the same as in Proposition 2.1. The binomial theorem for hypercomplex numbers 229

Proof. Using Proposition 2.1 we infer m (2.2) (x + y)m = c(γ)(x + y)γ . γ |γ|=m

Set γ =(γ0,...,γn). Substituting

(x + y)γ =(x + y )γ0 ···(x + y )γn 0 0 n n γ γ γ = 0 1 ··· n xαyβ α0 α1 αn αi+βi=γi i=0,...,n γ ! ···γ !xαyβ = 0 n α0! ···αn!β0! ···βn! αi+βi=γi i=0,...,n in (2.2) we establish the assertion.

References

[1] Ahlfors, L.V.: The binomial theorem in the algebra A+ . - In: Constantin Carath´eodory: An International Tribute, World Scientific Publ. Co, 1991, 1–15. [2] Brackx, F., R. Delanghe, and F. Sommen: Clifford Analysis. - Pitman, Boston– London–Melbourne, 1982. [3] Eriksson-Bique, S.-L., and H. Leutwiler: On modified quaternionic analysis in R3 . - Arch. Math. 70, 1998, 228–234. [4] Gilbert, J., and M. Murray: Clifford algebras and Dirac operators in harmonic analysis. - Cambridge Stud. Adv. Math. 26, Cambridge, New York, 1991. [5] Leutwiler, H.: Modified Clifford analysis. - Complex Variables Theory Appl. 17, 1992, 153–171. [6] Leutwiler, H.: Modified quaternionic analysis in R3 . - Complex Variables Theory Appl. 20, 1992, 19–51. [7] Leutwiler, H.: More on modified quaternionic analysis in R3 . - Forum Math. 7, 1995, 279–305. [8] Leutwiler, H.: Rudiments to a function theory in R3 . - Expo. Math. 14, 1996, 97–123. [9] Ryan, J. (ed.): Clifford algebras in analysis and related topics. - CRC Press, Boca Raton– New York–London–Tokyo, 1996. [10] Sudbery, A.: Quaternionic analysis. - Math. Proc. Cambridge Philos. Soc. 85, 1979, 199– 225.

Received 29 August 1997