Covering Group Theory for Topological Groups
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory. -
Symplectic Group Actions and Covering Spaces
Symplectic group actions and covering spaces Montaldi, James and Ortega, Juan-Pablo 2009 MIMS EPrint: 2007.84 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 Symplectic Group Actions and Covering Spaces James Montaldi & Juan-Pablo Ortega January 2009 Abstract For symplectic group actions which are not Hamiltonian there are two ways to define reduction. Firstly using the cylinder-valued momentum map and secondly lifting the action to any Hamiltonian cover (such as the universal cover), and then performing symplectic reduction in the usual way. We show that provided the action is free and proper, and the Hamiltonian holonomy associated to the action is closed, the natural projection from the latter to the former is a symplectic cover. At the same time we give a classification of all Hamiltonian covers of a given symplectic group action. The main properties of the lifting of a group action to a cover are studied. Keywords: lifted group action, symplectic reduction, universal cover, Hamiltonian holonomy, momentum map MSC2000: 53D20, 37J15. Introduction There are many instances of symplectic group actions which are not Hamiltonian—ie, for which there is no momentum map. These can occur both in applications [13] as well as in fundamental studies of symplectic geometry [1, 2, 5]. In such cases it is possible to define a “cylinder valued momentum map” [3], and then perform symplectic reduction with respect to this map [16, 17]. -
An Overview of Topological Groups: Yesterday, Today, Tomorrow
axioms Editorial An Overview of Topological Groups: Yesterday, Today, Tomorrow Sidney A. Morris 1,2 1 Faculty of Science and Technology, Federation University Australia, Victoria 3353, Australia; [email protected]; Tel.: +61-41-7771178 2 Department of Mathematics and Statistics, La Trobe University, Bundoora, Victoria 3086, Australia Academic Editor: Humberto Bustince Received: 18 April 2016; Accepted: 20 April 2016; Published: 5 May 2016 It was in 1969 that I began my graduate studies on topological group theory and I often dived into one of the following five books. My favourite book “Abstract Harmonic Analysis” [1] by Ed Hewitt and Ken Ross contains both a proof of the Pontryagin-van Kampen Duality Theorem for locally compact abelian groups and the structure theory of locally compact abelian groups. Walter Rudin’s book “Fourier Analysis on Groups” [2] includes an elegant proof of the Pontryagin-van Kampen Duality Theorem. Much gentler than these is “Introduction to Topological Groups” [3] by Taqdir Husain which has an introduction to topological group theory, Haar measure, the Peter-Weyl Theorem and Duality Theory. Of course the book “Topological Groups” [4] by Lev Semyonovich Pontryagin himself was a tour de force for its time. P. S. Aleksandrov, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko described this book in glowing terms: “This book belongs to that rare category of mathematical works that can truly be called classical - books which retain their significance for decades and exert a formative influence on the scientific outlook of whole generations of mathematicians”. The final book I mention from my graduate studies days is “Topological Transformation Groups” [5] by Deane Montgomery and Leo Zippin which contains a solution of Hilbert’s fifth problem as well as a structure theory for locally compact non-abelian groups. -
Lie Group and Geometry on the Lie Group SL2(R)
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Lie group and Geometry on the Lie Group SL2(R) PROJECT REPORT – SEMESTER IV MOUSUMI MALICK 2-YEARS MSc(2011-2012) Guided by –Prof.DEBAPRIYA BISWAS Lie group and Geometry on the Lie Group SL2(R) CERTIFICATE This is to certify that the project entitled “Lie group and Geometry on the Lie group SL2(R)” being submitted by Mousumi Malick Roll no.-10MA40017, Department of Mathematics is a survey of some beautiful results in Lie groups and its geometry and this has been carried out under my supervision. Dr. Debapriya Biswas Department of Mathematics Date- Indian Institute of Technology Khargpur 1 Lie group and Geometry on the Lie Group SL2(R) ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Debapriya Biswas for her help and guidance in preparing this project. Thanks are also due to the other professor of this department for their constant encouragement. Date- place-IIT Kharagpur Mousumi Malick 2 Lie group and Geometry on the Lie Group SL2(R) CONTENTS 1.Introduction ................................................................................................... 4 2.Definition of general linear group: ............................................................... 5 3.Definition of a general Lie group:................................................................... 5 4.Definition of group action: ............................................................................. 5 5. Definition of orbit under a group action: ...................................................... 5 6.1.The general linear -
Rotation Matrix - Wikipedia, the Free Encyclopedia Page 1 of 22
Rotation matrix - Wikipedia, the free encyclopedia Page 1 of 22 Rotation matrix From Wikipedia, the free encyclopedia In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example the matrix rotates points in the xy -Cartesian plane counterclockwise through an angle θ about the origin of the Cartesian coordinate system. To perform the rotation, the position of each point must be represented by a column vector v, containing the coordinates of the point. A rotated vector is obtained by using the matrix multiplication Rv (see below for details). In two and three dimensions, rotation matrices are among the simplest algebraic descriptions of rotations, and are used extensively for computations in geometry, physics, and computer graphics. Though most applications involve rotations in two or three dimensions, rotation matrices can be defined for n-dimensional space. Rotation matrices are always square, with real entries. Algebraically, a rotation matrix in n-dimensions is a n × n special orthogonal matrix, i.e. an orthogonal matrix whose determinant is 1: . The set of all rotation matrices forms a group, known as the rotation group or the special orthogonal group. It is a subset of the orthogonal group, which includes reflections and consists of all orthogonal matrices with determinant 1 or -1, and of the special linear group, which includes all volume-preserving transformations and consists of matrices with determinant 1. Contents 1 Rotations in two dimensions 1.1 Non-standard orientation -
Arxiv:1709.02742V3
PIN GROUPS IN GENERAL RELATIVITY BAS JANSSENS Abstract. There are eight possible Pin groups that can be used to describe the transformation behaviour of fermions under parity and time reversal. We show that only two of these are compatible with general relativity, in the sense that the configuration space of fermions coupled to gravity transforms appropriately under the space-time diffeomorphism group. 1. Introduction For bosons, the space-time transformation behaviour is governed by the Lorentz group O(3, 1), which comprises four connected components. Rotations and boosts are contained in the connected component of unity, the proper orthochronous Lorentz group SO↑(3, 1). Parity (P ) and time reversal (T ) are encoded in the other three connected components of the Lorentz group, the translates of SO↑(3, 1) by P , T and PT . For fermions, the space-time transformation behaviour is governed by a double cover of O(3, 1). Rotations and boosts are described by the unique simply connected double cover of SO↑(3, 1), the spin group Spin↑(3, 1). However, in order to account for parity and time reversal, one needs to extend this cover from SO↑(3, 1) to the full Lorentz group O(3, 1). This extension is by no means unique. There are no less than eight distinct double covers of O(3, 1) that agree with Spin↑(3, 1) over SO↑(3, 1). They are the Pin groups abc Pin , characterised by the property that the elements ΛP and ΛT covering P and 2 2 2 T satisfy ΛP = −a, ΛT = b and (ΛP ΛT ) = −c, where a, b and c are either 1 or −1 (cf. -
Algebraic Topology
Algebraic Topology Len Evens Rob Thompson Northwestern University City University of New York Contents Chapter 1. Introduction 5 1. Introduction 5 2. Point Set Topology, Brief Review 7 Chapter 2. Homotopy and the Fundamental Group 11 1. Homotopy 11 2. The Fundamental Group 12 3. Homotopy Equivalence 18 4. Categories and Functors 20 5. The fundamental group of S1 22 6. Some Applications 25 Chapter 3. Quotient Spaces and Covering Spaces 33 1. The Quotient Topology 33 2. Covering Spaces 40 3. Action of the Fundamental Group on Covering Spaces 44 4. Existence of Coverings and the Covering Group 48 5. Covering Groups 56 Chapter 4. Group Theory and the Seifert{Van Kampen Theorem 59 1. Some Group Theory 59 2. The Seifert{Van Kampen Theorem 66 Chapter 5. Manifolds and Surfaces 73 1. Manifolds and Surfaces 73 2. Outline of the Proof of the Classification Theorem 80 3. Some Remarks about Higher Dimensional Manifolds 83 4. An Introduction to Knot Theory 84 Chapter 6. Singular Homology 91 1. Homology, Introduction 91 2. Singular Homology 94 3. Properties of Singular Homology 100 4. The Exact Homology Sequence{ the Jill Clayburgh Lemma 109 5. Excision and Applications 116 6. Proof of the Excision Axiom 120 3 4 CONTENTS 7. Relation between π1 and H1 126 8. The Mayer-Vietoris Sequence 128 9. Some Important Applications 131 Chapter 7. Simplicial Complexes 137 1. Simplicial Complexes 137 2. Abstract Simplicial Complexes 141 3. Homology of Simplicial Complexes 143 4. The Relation of Simplicial to Singular Homology 147 5. Some Algebra. The Tensor Product 152 6. -
1 the Spin Homomorphism SL2(C) → SO1,3(R) a Summary from Multiple Sources Written by Y
1 The spin homomorphism SL2(C) ! SO1;3(R) A summary from multiple sources written by Y. Feng and Katherine E. Stange Abstract We will discuss the spin homomorphism SL2(C) ! SO1;3(R) in three manners. Firstly we interpret SL2(C) as acting on the Minkowski 1;3 spacetime R ; secondly by viewing the quadratic form as a twisted 1 1 P × P ; and finally using Clifford groups. 1.1 Introduction The spin homomorphism SL2(C) ! SO1;3(R) is a homomorphism of classical matrix Lie groups. The lefthand group con- sists of 2 × 2 complex matrices with determinant 1. The righthand group consists of 4 × 4 real matrices with determinant 1 which preserve some fixed real quadratic form Q of signature (1; 3). This map is alternately called the spinor map and variations. The image of this map is the identity component + of SO1;3(R), denoted SO1;3(R). The kernel is {±Ig. Therefore, we obtain an isomorphism + PSL2(C) = SL2(C)= ± I ' SO1;3(R): This is one of a family of isomorphisms of Lie groups called exceptional iso- morphisms. In Section 1.3, we give the spin homomorphism explicitly, al- though these formulae are unenlightening by themselves. In Section 1.4 we describe O1;3(R) in greater detail as the group of Lorentz transformations. This document describes this homomorphism from three distinct per- spectives. The first is very concrete, and constructs, using the language of Minkowski space, Lorentz transformations and Hermitian matrices, an ex- 4 plicit action of SL2(C) on R preserving Q (Section 1.5). -
Special Unitary Group - Wikipedia
Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Special unitary group In mathematics, the special unitary group of degree n, denoted SU( n), is the Lie group of n×n unitary matrices with determinant 1. (More general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case.) The group operation is matrix multiplication. The special unitary group is a subgroup of the unitary group U( n), consisting of all n×n unitary matrices. As a compact classical group, U( n) is the group that preserves the standard inner product on Cn.[nb 1] It is itself a subgroup of the general linear group, SU( n) ⊂ U( n) ⊂ GL( n, C). The SU( n) groups find wide application in the Standard Model of particle physics, especially SU(2) in the electroweak interaction and SU(3) in quantum chromodynamics.[1] The simplest case, SU(1) , is the trivial group, having only a single element. The group SU(2) is isomorphic to the group of quaternions of norm 1, and is thus diffeomorphic to the 3-sphere. Since unit quaternions can be used to represent rotations in 3-dimensional space (up to sign), there is a surjective homomorphism from SU(2) to the rotation group SO(3) whose kernel is {+ I, − I}. [nb 2] SU(2) is also identical to one of the symmetry groups of spinors, Spin(3), that enables a spinor presentation of rotations. Contents Properties Lie algebra Fundamental representation Adjoint representation The group SU(2) Diffeomorphism with S 3 Isomorphism with unit quaternions Lie Algebra The group SU(3) Topology Representation theory Lie algebra Lie algebra structure Generalized special unitary group Example Important subgroups See also 1 of 10 2/22/2018, 8:54 PM Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Remarks Notes References Properties The special unitary group SU( n) is a real Lie group (though not a complex Lie group). -
Topological Groups
Topological Groups Siyan Daniel Li-Huerta September 8, 2020 Definition A topological group is a group G with a topological space structure such that The multiplication map µ : G × G ! G is continuous, The inverse map ι : G ! G is continuous. Example Any group G with the discrete topology, The group R under addition with the Euclidean topology, × The group C under multiplication with the Euclidean topology, 1 × × The subgroup S = fz 2 C j jzj = 1g ⊂ C , The group GLn(R) = fA 2 Matn×n(R) j det A 6= 0g under multiplication with the Euclidean topology. Remark Any finite Hausdorff topological group G must be discrete. 2 / 9 Let G be a topological group, and let g be in G. Then left translation (i.e. multiplication) by g equals the composite (g;id) µ G / fgg × G / G; so it's continuous. Its inverse is left translation by g −1, so it's even a homeomorphism. The same holds for right translation. Definition Let X be a topological space. We say X is homogeneous if, for every x and y in X , there exists a homeomorphism f : X ! X such that f (x) = y. Example Any topological group G is homogeneous (using left translation), n n+1 The n-sphere S = f~v 2 R j k~vk= 1g is homogeneous (using rotations). Thus topological groups are very special topological spaces: they look \the same" around every point. So it often suffices to study neighborhoods of one point. Let's pick the point 1! 3 / 9 Proposition Let G be a topological group, and let U be a neighborhood of 1. -
Introducing Group Theory with Its Raison D'etre for Students
Introducing group theory with its raison d’etre for students Hiroaki Hamanaka, Koji Otaki, Ryoto Hakamata To cite this version: Hiroaki Hamanaka, Koji Otaki, Ryoto Hakamata. Introducing group theory with its raison d’etre for students. INDRUM 2020, Université de Carthage, Université de Montpellier, Sep 2020, Cyberspace (virtually from Bizerte), Tunisia. hal-03113982 HAL Id: hal-03113982 https://hal.archives-ouvertes.fr/hal-03113982 Submitted on 18 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Introducing group theory with its raison d’être for students 1 2 3 Hiroaki Hamanaka , Koji Otaki and Ryoto Hakamata 1Hyogo University of Teacher Education, Japan, [email protected], 2Hokkaido University of Education, Japan, 3Kochi University, Japan This paper reports results of our sequence of didactic situations for teaching fundamental concepts in group theory—e.g., symmetric group, generator, subgroup, and coset decomposition. In the situations, students in a preservice teacher training course dealt with such concepts, together with card-puzzle problems of a type. And there, we aimed to accompany these concepts with their raisons d’être. Such raisons d’être are substantiated by the dialectic between tasks and techniques in the praxeological perspective of the anthropological theory of the didactic. -
Group Theory
Group theory March 7, 2016 Nearly all of the central symmetries of modern physics are group symmetries, for simple a reason. If we imagine a transformation of our fields or coordinates, we can look at linear versions of those transformations. Such linear transformations may be represented by matrices, and therefore (as we shall see) even finite transformations may be given a matrix representation. But matrix multiplication has an important property: associativity. We get a group if we couple this property with three further simple observations: (1) we expect two transformations to combine in such a way as to give another allowed transformation, (2) the identity may always be regarded as a null transformation, and (3) any transformation that we can do we can also undo. These four properties (associativity, closure, identity, and inverses) are the defining properties of a group. 1 Finite groups Define: A group is a pair G = fS; ◦} where S is a set and ◦ is an operation mapping pairs of elements in S to elements in S (i.e., ◦ : S × S ! S: This implies closure) and satisfying the following conditions: 1. Existence of an identity: 9 e 2 S such that e ◦ a = a ◦ e = a; 8a 2 S: 2. Existence of inverses: 8 a 2 S; 9 a−1 2 S such that a ◦ a−1 = a−1 ◦ a = e: 3. Associativity: 8 a; b; c 2 S; a ◦ (b ◦ c) = (a ◦ b) ◦ c = a ◦ b ◦ c We consider several examples of groups. 1. The simplest group is the familiar boolean one with two elements S = f0; 1g where the operation ◦ is addition modulo two.