An Introduction to Computational Group Theory Ákos Seress

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to Computational Group Theory Ákos Seress seress.qxp 5/21/97 4:13 PM Page 671 An Introduction to Computational Group Theory Ákos Seress an one rotate only one corner piece in groups to a certain extent, there are two systems Rubik’s cube? What are the energy which are particularly well suited for computa- levels of the buckyball molecule? Are tions with groups: GAP and Magma. Also, nu- the graphs on Figure 1 isomorphic? merous stand-alone programs and smaller sys- What is the Galois group of the poly- tems are available. Cnomial x8 +2x7 +28x6 + 1728x + 3456? What GAP can be obtained by anonymous ftp from are the possible symmetry groups of crystals? servers on three continents; the addresses can These are all questions which, directly or in a not be found on the World Wide Web page so obvious way, lead to problems in computa- http://www-groups.dcs.st-and.ac.uk/. tional group theory. For the availability of Magma, please see the Algebraic structures are well suited for ma- World Wide Web page http://www.maths. chine computations. One reason for that is that usyd.edu.au:8000/comp/magma/. we can describe large objects very concisely by The important subareas of CGT correspond a set of generators: for example, 50 bits are to the most frequently used representations of enough to define GL5(2), a group of order groups: permutation groups, matrix groups, and 9999360, by two 0-1 matrices of size 5 5. groups defined by generators and relators, as Even more importantly, often we can find a gen-× well as to perhaps the most powerful tool for the erating set which reflects the structure of the investigation of groups, representation theory. group so that structural and quantitative prop- Also, there are specialized and more efficient al- erties can be read off easily. gorithms for special classes such as nilpotent or Computational group theory (CGT) is one of solvable groups. In this survey in each subarea the oldest and most developed branches of com- we attempt to indicate the basic ideas and the putational algebra. Although most general-pur- size of jobs which can be handled by the current pose symbolic algebra programs can handle systems on a reasonable machine. Of course, we cannot be comprehensive here. Also, because of space restrictions, our reference list consists only of surveys, conference volumes, books, and Ákos Seress is associate professor of mathematics at The Ohio State University, Columbus, Ohio. His e-mail ad- journal special issues. Individual results are ref- dress is [email protected]. erenced in the text only if they appear in these volumes; most of the others can be traced back Partially supported by NSF Grant CCR-9503430 and by the Alexander von Humboldt Foundation. from these sources. An extended version of this article, with complete references, can be ob- Acknowledgement: the author is indebted to G. Havas, tained from http://www.math.ohio- D. Holt, W. Kantor, K. Lux, J. Neubüser, and E. O’Brien for their helpful comments. The part of the section state.edu/˜akos/ or http://www.math. “Polyclyclic Groups” about quotient group methods was rwth-aachen.de/˜Akos.Seress/. E. O’Brien’s written by J. Neubüser. database of papers on group theory, including JUNE/JULY 1997 NOTICES OF THE AMS 671 seress.qxp 5/21/97 4:13 PM Page 672 Finitely Presented Groups Let G = E be a presentation for a h |Ri group G : E = g1,... ,gn is a finite set of { } generators, and = r1 =1,... ,rm =1 is R { } a set of defining relations. Each ri is a word, using the generators in E and their inverses. The basic questions are to de- cide whether G is finite and to determine whether a given word represents the iden- tity of G. By the celebrated result of Novikov and Boone, these questions are undecidable: Figure 1. they cannot be answered by a recursive al- gorithm. Nevertheless, because of the prac- a lot of references to CGT, is available via tical importance of the problem, a lot of effort http://www.math.auckland.ac.nz/ is devoted to the development of methods for ˜obrien/. investigating finitely presented groups. We start with some historical remarks. Algo- One basic method is the Todd-Coxeter coset rithmic questions permeated group theory from enumeration procedure. Given G = E and h |Ri its inception in the last century. As examples, H = h1,... ,hk , where H G and each hj is a consider that Galois’s work was inspired by the wordh in the generatorsi of G≤and their inverses, solvability of equations. Thirty years later, Math- our goal is to compute the permutation repre- ieu announced the existence of the 5-transitive sentation of G on the right cosets of H. group M24, but he needed twelve years to find We set up a coset table: this is a matrix M, the “clarity and elegance necessary to present it.” where the rows are labelled by positive integers, Had he access to a computer, this period could representing cosets of H, and the columns are probably have been shortened significantly. Jor- labelled by the elements of 1 1 E := g1,... ,gn,g− ,... ,g . The entries (if dan, Hölder, Cole, and others could also have { 1 n− } used the machine in their quest to classify groups defined) are positive integers, M(k, g)=l, if we of small order. know that kg = l for the cosets k, l and for The “official” starting date of CGT may be g E . Originally, we have a 1 E table with no∈ entries, where 1 denotes the×| coset| H 1. As pinned down in 1911, when Dehn proposed the · solution of the word problem, Find an algorithm new cosets are defined, we add rows to the coset table. to decide whether, in a group defined by a finite Of course, we have to detect when two words, set of abstract generators and relators, a word defining different rows of the table, actually be- in the generators represents the identity. Dehn’s long to the same coset of H. To this end, for each question was motivated by topological consid- relation ri = gi gi gi , we also maintain a re- erations; even today it is hard to draw a sharp 1 2 ··· t lation table. This is a matrix Mi, with rows la- border between combinatorial group theory and belled by the cosets 1, 2,... , as defined in M, topology. The flourishing of CGT started in the and columns labelled by the elements of the se- sixties, when, for example, the basic methods for quence (gi ,gi ,... ,gi ). The entry Mi(k, gi ), if permutation group manipulation and the com- 1 2 t j defined, is the number of the coset kgi gi . putation of character tables were established, 1 ··· j Initially, we have Mi(k, git )=k for each row num- and term rewriting procedures were introduced. ber k, since ri =1 in G. Whenever a new coset Not much later, the first large applications, such is defined, we fill all entries of the relation ta- as Sims’s existence proof for Lyons’s sporadic bles that we can. simple group, arose, and the development of Finally, for each generator hj = gj1 gjt of the first integrated system, the Aachen-Sydney H, we maintain a subgroup table. This··· is a ma- Group System, started. Since then the area has trix Sj with only one row, corresponding to the been growing rapidly, both in terms of the design, coset H 1, and columns labelled by the factors · implementation, and application of algorithms, of hj. The rule for filling entries is the same as as well as in the number of mathematicians in- for the Mi ; originally, Sj (1,gjt )=1, since volved in this development. Nowadays, some of Hhj = H. the major lines of development are the integra- When the last entry is filled in a row of a re- tion of consequences of the classification of fi- lation table or a subgroup table, we also get an nite simple groups and methods suggested by extra piece of information, kg = l, for some complexity theoretical considerations into prac- cosets k, l and g E . This is called a deduction. ∈ tical algorithms and the systematic use of ran- If the entry M(k, g) is not yet defined, then we 1 domization. A more detailed history is in [11]. fill the entries M(k, g), M(l,g− ), and all possi- 672 NOTICES OF THE AMS VOLUME 44, NUMBER 6 seress.qxp 5/21/97 4:13 PM Page 673 ble entries in the relation and subgroup tables; this way, we may get further deductions. If M(k, g) is already defined but l := M(k, g) = l, then we 0 6 realize that l,l0 denote the same coset of H. This Figure 2. is called a coincidence. We replace all occurrences of l,l0 by the smaller of An alternative method to coset enumeration these two numbers and fill the entries of the ta- is the Knuth-Bendix term-rewriting procedure bles that we can. This may lead to further de- [13]. We collect a list of pairs of words (u, v) such ductions and coincidences. The process stops that u, v represent the same element of G. These when all entries of the coset table, the relation pairs are called rewriting rules, since we can re- tables, and subgroup tables are filled. place a word w1uw2 by w1vw2. The goal is to collect a confluent system of rules: no matter in We illustrate these ideas by enumerating which order the rules are applied, every word in G = g ,g g2 =1,g2 =1, (g g )3 =1 = S on 1 2 1 2 1 2 ∼ 3 the generators is converted into a unique nor- the cosetsh |of the subgroup H = g gi g g of 1 2 1 2 mal form.
Recommended publications
  • Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
    Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory.
    [Show full text]
  • The General Linear Group
    18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices.
    [Show full text]
  • Unitary Group - Wikipedia
    Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group Unitary group In mathematics, the unitary group of degree n, denoted U( n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL( n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group. In the simple case n = 1, the group U(1) corresponds to the circle group, consisting of all complex numbers with absolute value 1 under multiplication. All the unitary groups contain copies of this group. The unitary group U( n) is a real Lie group of dimension n2. The Lie algebra of U( n) consists of n × n skew-Hermitian matrices, with the Lie bracket given by the commutator. The general unitary group (also called the group of unitary similitudes ) consists of all matrices A such that A∗A is a nonzero multiple of the identity matrix, and is just the product of the unitary group with the group of all positive multiples of the identity matrix. Contents Properties Topology Related groups 2-out-of-3 property Special unitary and projective unitary groups G-structure: almost Hermitian Generalizations Indefinite forms Finite fields Degree-2 separable algebras Algebraic groups Unitary group of a quadratic module Polynomial invariants Classifying space See also Notes References Properties Since the determinant of a unitary matrix is a complex number with norm 1, the determinant gives a group 1 of 7 2/23/2018, 10:13 AM Unitary group - Wikipedia https://en.wikipedia.org/wiki/Unitary_group homomorphism The kernel of this homomorphism is the set of unitary matrices with determinant 1.
    [Show full text]
  • An Overview of Topological Groups: Yesterday, Today, Tomorrow
    axioms Editorial An Overview of Topological Groups: Yesterday, Today, Tomorrow Sidney A. Morris 1,2 1 Faculty of Science and Technology, Federation University Australia, Victoria 3353, Australia; [email protected]; Tel.: +61-41-7771178 2 Department of Mathematics and Statistics, La Trobe University, Bundoora, Victoria 3086, Australia Academic Editor: Humberto Bustince Received: 18 April 2016; Accepted: 20 April 2016; Published: 5 May 2016 It was in 1969 that I began my graduate studies on topological group theory and I often dived into one of the following five books. My favourite book “Abstract Harmonic Analysis” [1] by Ed Hewitt and Ken Ross contains both a proof of the Pontryagin-van Kampen Duality Theorem for locally compact abelian groups and the structure theory of locally compact abelian groups. Walter Rudin’s book “Fourier Analysis on Groups” [2] includes an elegant proof of the Pontryagin-van Kampen Duality Theorem. Much gentler than these is “Introduction to Topological Groups” [3] by Taqdir Husain which has an introduction to topological group theory, Haar measure, the Peter-Weyl Theorem and Duality Theory. Of course the book “Topological Groups” [4] by Lev Semyonovich Pontryagin himself was a tour de force for its time. P. S. Aleksandrov, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko described this book in glowing terms: “This book belongs to that rare category of mathematical works that can truly be called classical - books which retain their significance for decades and exert a formative influence on the scientific outlook of whole generations of mathematicians”. The final book I mention from my graduate studies days is “Topological Transformation Groups” [5] by Deane Montgomery and Leo Zippin which contains a solution of Hilbert’s fifth problem as well as a structure theory for locally compact non-abelian groups.
    [Show full text]
  • Lie Group and Geometry on the Lie Group SL2(R)
    INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Lie group and Geometry on the Lie Group SL2(R) PROJECT REPORT – SEMESTER IV MOUSUMI MALICK 2-YEARS MSc(2011-2012) Guided by –Prof.DEBAPRIYA BISWAS Lie group and Geometry on the Lie Group SL2(R) CERTIFICATE This is to certify that the project entitled “Lie group and Geometry on the Lie group SL2(R)” being submitted by Mousumi Malick Roll no.-10MA40017, Department of Mathematics is a survey of some beautiful results in Lie groups and its geometry and this has been carried out under my supervision. Dr. Debapriya Biswas Department of Mathematics Date- Indian Institute of Technology Khargpur 1 Lie group and Geometry on the Lie Group SL2(R) ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Debapriya Biswas for her help and guidance in preparing this project. Thanks are also due to the other professor of this department for their constant encouragement. Date- place-IIT Kharagpur Mousumi Malick 2 Lie group and Geometry on the Lie Group SL2(R) CONTENTS 1.Introduction ................................................................................................... 4 2.Definition of general linear group: ............................................................... 5 3.Definition of a general Lie group:................................................................... 5 4.Definition of group action: ............................................................................. 5 5. Definition of orbit under a group action: ...................................................... 5 6.1.The general linear
    [Show full text]
  • Bott Periodicity for the Unitary Group
    Bott Periodicity for the Unitary Group Carlos Salinas March 7, 2018 Abstract We will present a condensed proof of the Bott Periodicity Theorem for the unitary group U following John Milnor’s classic Morse Theory. There are many documents on the internet which already purport to do this (and do so very well in my estimation), but I nevertheless will attempt to give a summary of the result. Contents 1 The Basics 2 2 Fiber Bundles 3 2.1 First fiber bundle . .4 2.2 Second Fiber Bundle . .5 2.3 Third Fiber Bundle . .5 2.4 Fourth Fiber Bundle . .5 3 Proof of the Periodicity Theorem 6 3.1 The first equivalence . .7 3.2 The second equality . .8 4 The Homotopy Groups of U 8 1 The Basics The original proof of the Periodicity Theorem relies on a deep result of Marston Morse’s calculus of variations, the (Morse) Index Theorem. The proof of this theorem, however, goes beyond the scope of this document, the reader is welcome to read the relevant section from Milnor or indeed Morse’s own paper titled The Index Theorem in the Calculus of Variations. Perhaps the first thing we should set about doing is introducing the main character of our story; this will be the unitary group. The unitary group of degree n (here denoted U(n)) is the set of all unitary matrices; that is, the set of all A ∈ GL(n, C) such that AA∗ = I where A∗ is the conjugate of the transpose of A (conjugate transpose for short).
    [Show full text]
  • Introduction (Lecture 1)
    Introduction (Lecture 1) February 3, 2009 One of the basic problems of manifold topology is to give a classification for manifolds (of some fixed dimension n) up to diffeomorphism. In the best of all possible worlds, a solution to this problem would provide the following: (i) A list of n-manifolds fMαg, containing one representative from each diffeomorphism class. (ii) A procedure which determines, for each n-manifold M, the unique index α such that M ' Mα. In the case n = 2, it is possible to address these problems completely: a connected oriented surface Σ is classified up to homeomorphism by a single integer g, called the genus of Σ. For each g ≥ 0, there is precisely one connected surface Σg of genus g up to diffeomorphism, which provides a solution to (i). Given an arbitrary connected oriented surface Σ, we can determine its genus simply by computing its Euler characteristic χ(Σ), which is given by the formula χ(Σ) = 2 − 2g: this provides the procedure required by (ii). Given a solution to the classification problem satisfying the demands of (i) and (ii), we can extract an algorithm for determining whether two n-manifolds M and N are diffeomorphic. Namely, we apply the procedure (ii) to extract indices α and β such that M ' Mα and N ' Mβ: then M ' N if and only if α = β. For example, suppose that n = 2 and that M and N are connected oriented surfaces with the same Euler characteristic. Then the classification of surfaces tells us that there is a diffeomorphism φ from M to N.
    [Show full text]
  • What Does a Lie Algebra Know About a Lie Group?
    WHAT DOES A LIE ALGEBRA KNOW ABOUT A LIE GROUP? HOLLY MANDEL Abstract. We define Lie groups and Lie algebras and show how invariant vector fields on a Lie group form a Lie algebra. We prove that this corre- spondence respects natural maps and discuss conditions under which it is a bijection. Finally, we introduce the exponential map and use it to write the Lie group operation as a function on its Lie algebra. Contents 1. Introduction 1 2. Lie Groups and Lie Algebras 2 3. Invariant Vector Fields 3 4. Induced Homomorphisms 5 5. A General Exponential Map 8 6. The Campbell-Baker-Hausdorff Formula 9 Acknowledgments 10 References 10 1. Introduction Lie groups provide a mathematical description of many naturally-occuring sym- metries. Though they take a variety of shapes, Lie groups are closely linked to linear objects called Lie algebras. In fact, there is a direct correspondence between these two concepts: simply-connected Lie groups are isomorphic exactly when their Lie algebras are isomorphic, and every finite-dimensional real or complex Lie algebra occurs as the Lie algebra of a simply-connected Lie group. To put it another way, a simply-connected Lie group is completely characterized by the small collection n2(n−1) of scalars that determine its Lie bracket, no more than 2 numbers for an n-dimensional Lie group. In this paper, we introduce the basic Lie group-Lie algebra correspondence. We first define the concepts of a Lie group and a Lie algebra and demonstrate how a certain set of functions on a Lie group has a natural Lie algebra structure.
    [Show full text]
  • Quasi P Or Not Quasi P? That Is the Question
    Rose-Hulman Undergraduate Mathematics Journal Volume 3 Issue 2 Article 2 Quasi p or not Quasi p? That is the Question Ben Harwood Northern Kentucky University, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj Recommended Citation Harwood, Ben (2002) "Quasi p or not Quasi p? That is the Question," Rose-Hulman Undergraduate Mathematics Journal: Vol. 3 : Iss. 2 , Article 2. Available at: https://scholar.rose-hulman.edu/rhumj/vol3/iss2/2 Quasi p- or not quasi p-? That is the Question.* By Ben Harwood Department of Mathematics and Computer Science Northern Kentucky University Highland Heights, KY 41099 e-mail: [email protected] Section Zero: Introduction The question might not be as profound as Shakespeare’s, but nevertheless, it is interesting. Because few people seem to be aware of quasi p-groups, we will begin with a bit of history and a definition; and then we will determine for each group of order less than 24 (and a few others) whether the group is a quasi p-group for some prime p or not. This paper is a prequel to [Hwd]. In [Hwd] we prove that (Z3 £Z3)oZ2 and Z5 o Z4 are quasi 2-groups. Those proofs now form a portion of Proposition (12.1) It should also be noted that [Hwd] may also be found in this journal. Section One: Why should we be interested in quasi p-groups? In a 1957 paper titled Coverings of algebraic curves [Abh2], Abhyankar conjectured that the algebraic fundamental group of the affine line over an algebraically closed field k of prime characteristic p is the set of quasi p-groups, where by the algebraic fundamental group of the affine line he meant the family of all Galois groups Gal(L=k(X)) as L varies over all finite normal extensions of k(X) the function field of the affine line such that no point of the line is ramified in L, and where by a quasi p-group he meant a finite group that is generated by all of its p-Sylow subgroups.
    [Show full text]
  • The Centers of the Matrix Groups U(N) and SU(N) This Note Proves An
    The centers of the matrix groups U(n) and SU(n) This note proves an assertion in the hints for one of the Additional Exercises for Chapter 7. THEOREM. Let U(n) be the group of unitary n × n matrices (the entries are complex numbers, and the inverse is the conjugate of the transpose), and let SU(n) be the kernel of the determinant homomorphism U(n) ! C − f0g. Then the centers of both subgroups are the matrices of the form cI, where (as usual) I denotes the identity matrix and jc j = 1. In particular, the center of SU(n) is a finite cyclic group of order n. The argument relies heavily on the Spectral Theorem, which implies that for every unitary matrix A there is a unitary matrix P such that P AP −1 is diagonal. Proof. We shall first prove the result for U(n). If A lies in the center then for each unitary matrix P we have A = P AP −1. Since the Spectral Theorem implies that some matrix P AP −1 is diagonal, it follows that A must be diagonal. We claim that all the diagonal entries of A must th th be equal. Suppose that aj;j 6= ak;k. If P is the matrix formed by interchanging the j and k columns of the identity matrix, then P is a unitary matrix and B = P AP −1 is a diagonal matrix with aj;j = bk;k and bj;j = ak;k. But this means that A does not lie in the center of U(n).
    [Show full text]
  • Special Unitary Group - Wikipedia
    Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Special unitary group In mathematics, the special unitary group of degree n, denoted SU( n), is the Lie group of n×n unitary matrices with determinant 1. (More general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the special case.) The group operation is matrix multiplication. The special unitary group is a subgroup of the unitary group U( n), consisting of all n×n unitary matrices. As a compact classical group, U( n) is the group that preserves the standard inner product on Cn.[nb 1] It is itself a subgroup of the general linear group, SU( n) ⊂ U( n) ⊂ GL( n, C). The SU( n) groups find wide application in the Standard Model of particle physics, especially SU(2) in the electroweak interaction and SU(3) in quantum chromodynamics.[1] The simplest case, SU(1) , is the trivial group, having only a single element. The group SU(2) is isomorphic to the group of quaternions of norm 1, and is thus diffeomorphic to the 3-sphere. Since unit quaternions can be used to represent rotations in 3-dimensional space (up to sign), there is a surjective homomorphism from SU(2) to the rotation group SO(3) whose kernel is {+ I, − I}. [nb 2] SU(2) is also identical to one of the symmetry groups of spinors, Spin(3), that enables a spinor presentation of rotations. Contents Properties Lie algebra Fundamental representation Adjoint representation The group SU(2) Diffeomorphism with S 3 Isomorphism with unit quaternions Lie Algebra The group SU(3) Topology Representation theory Lie algebra Lie algebra structure Generalized special unitary group Example Important subgroups See also 1 of 10 2/22/2018, 8:54 PM Special unitary group - Wikipedia https://en.wikipedia.org/wiki/Special_unitary_group Remarks Notes References Properties The special unitary group SU( n) is a real Lie group (though not a complex Lie group).
    [Show full text]
  • Introducing Group Theory with Its Raison D'etre for Students
    Introducing group theory with its raison d’etre for students Hiroaki Hamanaka, Koji Otaki, Ryoto Hakamata To cite this version: Hiroaki Hamanaka, Koji Otaki, Ryoto Hakamata. Introducing group theory with its raison d’etre for students. INDRUM 2020, Université de Carthage, Université de Montpellier, Sep 2020, Cyberspace (virtually from Bizerte), Tunisia. hal-03113982 HAL Id: hal-03113982 https://hal.archives-ouvertes.fr/hal-03113982 Submitted on 18 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Introducing group theory with its raison d’être for students 1 2 3 Hiroaki Hamanaka , Koji Otaki and Ryoto Hakamata 1Hyogo University of Teacher Education, Japan, [email protected], 2Hokkaido University of Education, Japan, 3Kochi University, Japan This paper reports results of our sequence of didactic situations for teaching fundamental concepts in group theory—e.g., symmetric group, generator, subgroup, and coset decomposition. In the situations, students in a preservice teacher training course dealt with such concepts, together with card-puzzle problems of a type. And there, we aimed to accompany these concepts with their raisons d’être. Such raisons d’être are substantiated by the dialectic between tasks and techniques in the praxeological perspective of the anthropological theory of the didactic.
    [Show full text]