Los Peces Payaso

Total Page:16

File Type:pdf, Size:1020Kb

Los Peces Payaso reCONOCER LOS PECES PAYASO Y SUS ANÉMONAS ANFITRIÓN Eric Fombuena García. Martín Fombuena Marchi 1 2 Anémonas anfitrión Stichodactyla mertensii (Brandt, 1835) Distribución: Océano Índico y Pacífico occidental desde el Mar Rojo y la costa este de África, India, Indonesia, Australia, Nueva Guinea y hasta las islas Fiji. Hábitat: Fondos arenosos o grietas en la roca de arrecifes coralinos entre 1 metro y los 20 metros de profundidad. Dimensiones: El diámetro máximo que alcanza es de 150 centímetros. Coloración: El pie suele ser de coloración marrón con manchas anaranjadas y rosas. Los tentáculos son blancos, crema, amarillos, gris, marrón, púrpura o verde. Las puntas de los tentáculos presentan una mancha de color distinto al resto. 3 Anémonas anfitrión Distribución Stichodactyla mertensii Tentáculos: Los tentáculos son cortos y de puntas redondeadas que presentan un color blanco, amarillo y verde. Toxicidad: Muy urticante. Carácter: Suelen enterrar el pie en la arena. Se comerá los camarones (salvo simbiontes Periclemenes y Thor amboniensis) y peces pequeños del acuario. Peces: A. akallopisos, A. akindynos, A. allardi, A. chrysogaster, A. chrysopterus, A. clarkii, A. fuscocaudatus, A. latifasciatus, A. leucokranos, A. ocellaris, A. sandaracinos y A. tricinctus. Alimentación: Con buena luz, está más lo que ella sea capaz de atrapar de la alimentación de los peces, por lo general será suficiente. Una o dos veces al mes se puede complementar con un poco de mejillón, almeja, calamar, camarón, krill, mysis o pejerreyes. Es peligroso sobrealimentarla pues se le puede provocar la muerte. Reproducción: Se reproducen tanto asexualmente como sexualmente. Iluminación: Iluminación moderada a intensa. Corriente: Flujo de agua moderado a fuerte. Acuario: Difícil de mantener. Mínimo 300 litros. Si en acuario de arrecife. pH: 8.1 a 8.3 Temperatura: 25 a 28ºC Dureza: 8 a 12º KH Densidad: 1.021 a 1.024 Nitritos y Amoniaco: 0 Nitratos: Inferior a 30. 4 Bibliografía Bibliografía ALLEN, G.R. (1975). Los peces anémona. Su clasificación y la biología. Segunda Edición. TFH Publications, Inc., Neptune City , Nueva Jersey . ARVEDLUND, M. y L. Nielsen. (1996). Do the anemonefish Amphiprion ocellaris (Pisces: Pomacentridae) imprint themselves to their host sea anemone Heteractis magnifica (Athozoa: Actinidae)?. Ethology, 102: 197-211. ARVEDLUND, M., I. Bundgaard, L. Nielsen. (2000). Host imprinting in anemonefishes (Pisces: Pomacentridae): does it dictate spawning site preferences?. Environmental Biology of Fishes, 58: 203-213. BHAT, A. (2004). Coral reefs and their fauna: An underwater fantasyland. Resonance, September: 62-73. DEBELIUS, Helmut y Baensch, Hans A. (1997). Atlas Marino. Mergus. FAUTIN, D. y G. Allen. (1992). Field Guide to Anemonefishes and their Host Sea Anemones. Perth: Western Australian Museum. FRICKE, H., S. Fricke. (1977). Monogamy and sex change by aggressive dominance in coral reef fish. Nature, 266: 830-832. MICHAEL, Scott W. (en inglés) Reef aquarium fishes. Microcosm.T.F.H. 2005. MYRBERG, Jr., A., L. Fuiman. (2002). The Sensory World of Coral Reef Fishes. Pp. 146 in P. Sale, ed. Coral Reef Fishes. San Diego, California: Academic Press. NELSON, J., P. Phang, L. Chou. (1996). Survival and growth rates of the anemonefish Amphiprion ocellaris: a transfer experiment. Journal of Fish Biology, 48: 1130-1138. NILSEN, A.J. y Fossa, S.A. (2002). Reef Secrets. TFH Publications. SADOVY, Y., A. Vincent. (2002). Ecological Issue and the Trade in Live Reef Fishes. Pp. 395 in P. Sale, ed. Coral Reef Fishes. San Diego, California: Academic Press. SANO, M., M. Shimizu, Y. Nose. (1984). Food habits of teleostean reef fishes in Okinawa Island, Southern Japan. Japan: University of Tokyo Press. SPRUNG, Julian y Delbeek, J.Charles. (1994) The Reef Aquarium. Ricordea Publishing. THRESHER, R. (1984). Reproduction in Reef Fishes. New Jersey: T.F.H. Publications, Inc.. 5 Bibliografía TULLOCK, J.H. (1998). Clownfishes and Sea Anemones. New York. Barron’s Educational Series, Inc. ISBN-13: 978-0-7641-0511-1. ISBN-10: 0-7641-0511-6 Internet: Discover life. http://www.discoverlife.org/ Encyclopedia of Life. http://eol.org/ Food and Agriculture Organization of the United Nations. http://www.fao.org/ ITIS. http://www.itis.gov/ IUCN Red List. http://www.iucnredlist.org/ Marine Species Identification Portal. http://species-identification.org/ PESI. http://www.eu-nomen.eu/ Wikipedia. http://en.wikipedia.org/ Wikipedia. http://es.wikipedia.org/ WoRMS. World Register of Marine Species. http://www.marinespecies.org/ 6 Índice Índice Introducción 1 Generalidades 3 Taxonomía 7 Género Amphiprion. (Bloch & Schneider, 1801): 9 Amphiprion akallopisos. (Bleeker, 1853) 9 Amphiprion akindynos. (Allen, 1972) 11 Amphiprion allardi. (Klausewitz, 1970) 13 Amphiprion barberi. (Allen, Drew & Kaufman, 2008) 15 Amphiprion bicinctus. (Rüppell, 1830) 17 Amphiprion chagosensis. (Allen, 1972) 19 Amphiprion chrysogaster. (Cuvier, 1830) 21 Amphiprion chrysopterus. (Cuvier, 1830) 23 Amphiprion clarkii. (Bennett, 1830) 25 Amphiprion ephippium. (Bloch, 1790) 29 Amphiprion frenatus. (Brevoort, 1856) 31 Amphiprion fuscocaudatus. (Allen, 1972) 33 Amphiprion latezonatus. (Waite, 1900) 35 Amphiprion latifasciatus. (Allen, 1972) 37 Amphiprion leucokranos. (Allen, 1973) 39 Amphiprion mccullochi. (Whitley, 1929) 41 Amphiprion melanopus. (Bleeker, 1852) 43 Amphiprion nigripes. (Regan, 1908) 47 Amphiprion ocellaris. (Cuvier, 1830) 49 Amphiprion omanensis. (Allen & Mee, 1991) 53 Amphiprion pacificus. (Allen, Drew & Fenner, 2010) 55 Amphiprion percula. (Lacepède, 1802) 57 Amphiprion perideraion. (Bleeker, 1855) 61 Amphiprion polymnus. (Linnaeus, 1758) 63 Amphiprion rubrocinctus. (Richardson, 1842) 67 Amphiprion sandaracinos. (Allen, 1972) 69 Amphiprion sebae. (Bleeker, 1853) 71 Amphiprion thiellei. (Burgess, 1981) 73 Amphiprion tricinctus. (Schultz & Welander, 1953) 75 Género Premnas. (Cuvier, 1816): 77 Premnas biaculeatus. (Bloch, 1790) 77 Anémonas anfitrión 81 Generalidades 81 Alimentación 81 Cryptodendrum adhaesivum 83 Enctamea quadricolor 87 Heteractis aurora 91 Heteractis crispa 93 Heteractis magnifica 97 7 Índice Heteractis malu 101 Macrodactyla doreensis 103 Stichodactyla gigantea 105 Stichodactyla haddoni 107 Stichodactyla mertensii 109 Bibliografía 111 Índice 113 8 .
Recommended publications
  • Petition to List Eight Species of Pomacentrid Reef Fish, Including the Orange Clownfish and Seven Damselfish, As Threatened Or Endangered Under the U.S
    BEFORE THE SECRETARY OF COMMERCE PETITION TO LIST EIGHT SPECIES OF POMACENTRID REEF FISH, INCLUDING THE ORANGE CLOWNFISH AND SEVEN DAMSELFISH, AS THREATENED OR ENDANGERED UNDER THE U.S. ENDANGERED SPECIES ACT Orange Clownfish (Amphiprion percula) photo by flickr user Jan Messersmith CENTER FOR BIOLOGICAL DIVERSITY SUBMITTED SEPTEMBER 13, 2012 Notice of Petition Rebecca M. Blank Acting Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave, NW Washington, D.C. 20230 Email: [email protected] Samuel Rauch Acting Assistant Administrator for Fisheries NOAA Fisheries National Oceanographic and Atmospheric Administration 1315 East-West Highway Silver Springs, MD 20910 E-mail: [email protected] PETITIONER Center for Biological Diversity 351 California Street, Suite 600 San Francisco, CA 94104 Tel: (415) 436-9682 _____________________ Date: September 13, 2012 Shaye Wolf, Ph.D. Miyoko Sakashita Center for Biological Diversity Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C. § 1533(b), Section 553(3) of the Administrative Procedures Act, 5 U.S.C. § 553(e), and 50 C.F.R.§ 424.14(a), the Center for Biological Diversity hereby petitions the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (“NOAA”), through the National Marine Fisheries Service (“NMFS” or “NOAA Fisheries”), to list eight pomacentrid reef fish and to designate critical habitat to ensure their survival. The Center for Biological Diversity (“Center”) is a non-profit, public interest environmental organization dedicated to the protection of imperiled species and their habitats through science, policy, and environmental law. The Center has more than 350,000 members and online activists throughout the United States.
    [Show full text]
  • Thesis and Paper II
    Adaptation of anemonefish to their host anemones: From Genetics to Physiology Nguyen Thi Hai Thanh Thesis for the degree of Philosophiae Doctor (PhD) University of Bergen, Norway 2020 Adaptation of anemonefish to their host anemones: From Genetics to Physiology Nguyen Thi Hai Thanh ThesisAvhandling for the for degree graden of philosophiaePhilosophiae doctorDoctor (ph.d (PhD). ) atved the Universitetet University of i BergenBergen Date of defense:2017 21.02.2020 Dato for disputas: 1111 © Copyright Nguyen Thi Hai Thanh The material in this publication is covered by the provisions of the Copyright Act. Year: 2020 Title: Adaptation of anemonefish to their host anemones: From Genetics to Physiology Name: Nguyen Thi Hai Thanh Print: Skipnes Kommunikasjon / University of Bergen Scientific environment i Scientific environment The work of this doctoral thesis was financed by the Norwegian Agency for Development Cooperation through the project “Incorporating Climate Change into Ecosystem Approaches to Fisheries and Aquaculture Management” (SRV-13/0010) The experiments were carried out at the Center for Aquaculture Animal Health and Breeding Studies (CAAHBS) and Institute of Biotechnology and Environment, Nha Trang University (NTU), Vietnam from 2015 to 2017 under the supervision of Dr Dang T. Binh, Dr Ha L.T.Loc and Assoc. Professor Ngo D. Nghia. The study was continued at the Department of Biology, University of Bergen under the supervision of Professor Audrey J. Geffen. Acknowledgements ii Acknowledgements During these years of my journey, there are so many people I would like to thank for their support in the completion of my PhD. I would like to express my gratitude to my principle supervisor Audrey J.
    [Show full text]
  • Antifouling Activity by Sea Anemone (Heteractis Magnifica and H. Aurora) Extracts Against Marine Biofilm Bacteria
    Lat. Am. J. Aquat. Res., 39(2):Antifouling 385-389, 2011 activity from sea anemone extracts Heteractis magnifica and H. aurora 385 DOI: 10.3856/vol39-issue2-fulltext-19 Short Communication Antifouling activity by sea anemone (Heteractis magnifica and H. aurora) extracts against marine biofilm bacteria Subramanian Bragadeeswaran1, Sangappellai Thangaraj2, Kolandhasamy Prabhu2 & Solaman Raj Sophia Rani2 1Centre of Advanced Study in Marine Biology, Annamalai University Parangipettai 608 502, Tamil Nadu, India 2Ph.D., Research Scholars, Centre of Advanced Study in Marine Biology Annamalai University Parangipettai - 608 502, Tamil Nadu, India ABSTRACT. Sea anemones (Actiniaria) are solitary, ocean-dwelling members of the phylum Cnidaria and the class Anthozoa. In this study, we screened antibacterial activity of two benthic sea anemones (Heteractis magnifica and H. aurora) collected from the Mandapam coast of southeast India. Crude extracts of the sea anemone were assayed against seven bacterial biofilms isolated from three different test panels. The crude ex- tract of H. magnifica showed a maximum inhibition zone of 18 mm against Pseudomonas sp. and Escherichia coli and a minimum inhibition zone of 3 mm against Pseudomonas aeruginosa, Micrococcus sp., and Bacillus cerens for methanol, acetone, and DCM extracts, respectively. The butanol extract of H. aurora showed a maximum inhibition zone of 23 mm against Vibrio parahaemolyticus, whereas the methanol extract revealed a minimum inhibition zone of 1 mm against V. parahaemolyticus. The present study revealed that the H. aurora extracts were more effective than those of H. magnifica and that the active compounds from the sea anemone can be used as antifouling compounds. Keywords: anemones, bioactive metabolites, novel antimicrobial, biofilm, natural antifouling, India.
    [Show full text]
  • Pomacentridae): Structural and Expression Variation in Opsin Genes
    Molecular Ecology (2017) 26, 1323–1342 doi: 10.1111/mec.13968 Why UV vision and red vision are important for damselfish (Pomacentridae): structural and expression variation in opsin genes SARA M. STIEB,*† FABIO CORTESI,*† LORENZ SUEESS,* KAREN L. CARLETON,‡ WALTER SALZBURGER† and N. J. MARSHALL* *Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia, †Zoological Institute, University of Basel, Basel 4051, Switzerland, ‡Department of Biology, The University of Maryland, College Park, MD 20742, USA Abstract Coral reefs belong to the most diverse ecosystems on our planet. The diversity in col- oration and lifestyles of coral reef fishes makes them a particularly promising system to study the role of visual communication and adaptation. Here, we investigated the evolution of visual pigment genes (opsins) in damselfish (Pomacentridae) and exam- ined whether structural and expression variation of opsins can be linked to ecology. Using DNA sequence data of a phylogenetically representative set of 31 damselfish species, we show that all but one visual opsin are evolving under positive selection. In addition, selection on opsin tuning sites, including cases of divergent, parallel, conver- gent and reversed evolution, has been strong throughout the radiation of damselfish, emphasizing the importance of visual tuning for this group. The highest functional variation in opsin protein sequences was observed in the short- followed by the long- wavelength end of the visual spectrum. Comparative gene expression analyses of a subset of the same species revealed that with SWS1, RH2B and RH2A always being expressed, damselfish use an overall short-wavelength shifted expression profile. Inter- estingly, not only did all species express SWS1 – a UV-sensitive opsin – and possess UV-transmitting lenses, most species also feature UV-reflective body parts.
    [Show full text]
  • Orange Clownfish (Amphiprion Percula)
    NOAA Technical Memorandum NMFS-PIFSC-52 April 2016 doi:10.7289/V5J10152 Status Review Report: Orange Clownfish (Amphiprion percula) Kimberly A. Maison and Krista S. Graham Pacific Islands Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration U.S. Department of Commerce About this document The mission of the National Oceanic and Atmospheric Administration (NOAA) is to understand and predict changes in the Earth’s environment and to conserve and manage coastal and oceanic marine resources and habitats to help meet our Nation’s economic, social, and environmental needs. As a branch of NOAA, the National Marine Fisheries Service (NMFS) conducts or sponsors research and monitoring programs to improve the scientific basis for conservation and management decisions. NMFS strives to make information about the purpose, methods, and results of its scientific studies widely available. NMFS’ Pacific Islands Fisheries Science Center (PIFSC) uses the NOAA Technical Memorandum NMFS series to achieve timely dissemination of scientific and technical information that is of high quality but inappropriate for publication in the formal peer- reviewed literature. The contents are of broad scope, including technical workshop proceedings, large data compilations, status reports and reviews, lengthy scientific or statistical monographs, and more. NOAA Technical Memoranda published by the PIFSC, although informal, are subjected to extensive review and editing and reflect sound professional work. Accordingly, they may be referenced in the formal scientific and technical literature. A NOAA Technical Memorandum NMFS issued by the PIFSC may be cited using the following format: Maison, K. A., and K. S. Graham. 2016. Status Review Report: Orange Clownfish (Amphiprion percula).
    [Show full text]
  • The Global Trade in Marine Ornamental Species
    From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak ACKNOWLEDGEMENTS UNEP World Conservation This report would not have been The authors would like to thank Helen Monitoring Centre possible without the participation of Corrigan for her help with the analyses 219 Huntingdon Road many colleagues from the Marine of CITES data, and Sarah Ferriss for Cambridge CB3 0DL, UK Aquarium Council, particularly assisting in assembling information Tel: +44 (0) 1223 277314 Aquilino A. Alvarez, Paul Holthus and and analysing Annex D and GMAD data Fax: +44 (0) 1223 277136 Peter Scott, and all trading companies on Hippocampus spp. We are grateful E-mail: [email protected] who made data available to us for to Neville Ash for reviewing and editing Website: www.unep-wcmc.org inclusion into GMAD. The kind earlier versions of the manuscript. Director: Mark Collins assistance of Akbar, John Brandt, Thanks also for additional John Caldwell, Lucy Conway, Emily comments to Katharina Fabricius, THE UNEP WORLD CONSERVATION Corcoran, Keith Davenport, John Daphné Fautin, Bert Hoeksema, Caroline MONITORING CENTRE is the biodiversity Dawes, MM Faugère et Gavand, Cédric Raymakers and Charles Veron; for assessment and policy implemen- Genevois, Thomas Jung, Peter Karn, providing reprints, to Alan Friedlander, tation arm of the United Nations Firoze Nathani, Manfred Menzel, Julie Hawkins, Sherry Larkin and Tom Environment Programme (UNEP), the Davide di Mohtarami, Edward Molou, Ogawa; and for providing the picture on world’s foremost intergovernmental environmental organization.
    [Show full text]
  • Stichodactyla Gigantea and Heteractis Magnifica) at Two Small Islands in Kimbe Bay
    Fine-scale population structure of two anemones (Stichodactyla gigantea and Heteractis magnifica) in Kimbe Bay, Papua New Guinea Thesis by Remy Gatins Aubert In Partial Fulfillment of the Requirements For the Degree of Master of Science in Marine Science King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia December 2014 2 The thesis of Remy Gatins Aubert is approved by the examination committee. Committee Chairperson: Dr. Michael Berumen Committee Member: Dr. Xabier Irigoien Committee Member: Dr. Pablo Saenz-Agudelo Committee Member: Dr. Anna Scott EXAMINATION COMMITTEE APPROVALS FORM 3 COPYRIGHT PAGE © 2014 Remy Gatins Aubert All Rights Reserved 4 ABSTRACT Fine-scale population structure of two anemones (Stichodactyla gigantea and Heteractis magnifica) in Kimbe Bay, Papua New Guinea. Anemonefish are one of the main groups that have been used over the last decade to empirically measure larval dispersal and connectivity in coral reef populations. A few species of anemones are integral to the life history of these fish, as well as other obligate symbionts, yet the biology and population structure of these anemones remains poorly understood. The aim of this study was to measure the genetic structure of these anemones within and between two reefs in order to assess their reproductive mode and dispersal potential. To do this, we sampled almost exhaustively two anemones species (Stichodactyla gigantea and Heteractis magnifica) at two small islands in Kimbe Bay (Papua New Guinea) separated by approximately 25 km. Both the host anemones and the anemonefish are heavily targeted for the aquarium trade, in addition to the populations being affected by bleaching pressures (Hill and Scott 2012; Hobbs et al.
    [Show full text]
  • Report Re Report Title
    ASSESSMENT OF CORAL REEF BIODIVERSITY IN THE CORAL SEA Edgar GJ, Ceccarelli DM, Stuart-Smith RD March 2015 Report for the Department of Environment Citation Edgar GJ, Ceccarelli DM, Stuart-Smith RD, (2015) Reef Life Survey Assessment of Coral Reef Biodiversity in the Coral Sea. Report for the Department of the Environment. The Reef Life Survey Foundation Inc. and Institute of Marine and Antarctic Studies. Copyright and disclaimer © 2015 RLSF To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of RLSF. Important disclaimer RLSF advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, RLSF (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. Cover Image: Wreck Reef, Rick Stuart-Smith Back image: Cato Reef, Rick Stuart-Smith Catalogue in publishing details ISBN ……. printed version ISBN ……. web version Chilcott Island Contents Acknowledgments ........................................................................................................................................ iv Executive summary........................................................................................................................................ v 1 Introduction ...................................................................................................................................
    [Show full text]
  • Zootaxa, Designation of Ancylomenes Gen. Nov., for the 'Periclimenes
    Zootaxa 2372: 85–105 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) Designation of Ancylomenes gen. nov., for the ‘Periclimenes aesopius species group’ (Crustacea: Decapoda: Palaemonidae), with the description of a new species and a checklist of congeneric species* J. OKUNO1 & A. J. BRUCE2 1Coastal Branch of Natural History Museum and Institute, Chiba, 123 Yoshio, Katsuura, Chiba 299-5242, Japan. E-mail: [email protected] 2Crustacea Section, Queensland Museum, P. O. Box 3300, South Brisbane, Q4101, Australia. E-mail: [email protected] * In: De Grave, S. & Fransen, C.H.J.M. (2010) Contributions to shrimp taxonomy. Zootaxa, 2372, 1–414. Abstract A new genus of the subfamily Pontoniinae, Ancylomenes gen. nov. is established for the ‘Periclimenes aesopius species group’ of the genus Periclimenes Costa. The new genus is distinguished from other genera of Pontoniinae on account of the strongly produced inferior orbital margin with reflected inner flange, and the basicerite of the antenna armed with an angular dorsal process. Fourteen species have been previously recognized as belonging to the ‘P. aesopius species group’. One Eastern Pacific species (P. lucasi Chace), and two Atlantic species (P. anthophilus Holthuis & Eibl- Eibesfeldt, and P. pedersoni Chace) are now also placed in Ancylomenes gen. nov. A further new species associated with a cerianthid sea anemone, A. luteomaculatus sp. nov. is described and illustrated on the basis of specimens from the Ryukyu Islands, southern Japan, and Philippines. A key for their identification, and a checklist of the species of Ancylomenes gen.
    [Show full text]
  • Comparative Phylogeography in Fijian Coral Reef Fishes: a Multi-Taxa Approach Towards Marine Reserve Design
    Comparative Phylogeography in Fijian Coral Reef Fishes: A Multi-Taxa Approach towards Marine Reserve Design Joshua A. Drew1*, Paul H. Barber2 1 Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, United States of America, 2 Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America Abstract Delineating barriers to connectivity is important in marine reserve design as they describe the strength and number of connections among a reserve’s constituent parts, and ultimately help characterize the resilience of the system to perturbations at each node. Here we demonstrate the utility of multi-taxa phylogeography in the design of a system of marine protected areas within Fiji. Gathering mtDNA control region data from five species of coral reef fish in five genera and two families, we find a range of population structure patterns, from those experiencing little (Chrysiptera talboti, Halichoeres hortulanus, and Pomacentrus maafu), to moderate (Amphiprion barberi, Wst = 0.14 and Amblyglyphidodon orbicularis Wst = 0.05) barriers to dispersal. Furthermore estimates of gene flow over ecological time scales suggest species- specific, asymmetric migration among the regions within Fiji. The diversity among species-specific results underscores the limitations of generalizing from single-taxon studies, including the inability to differentiate between a species-specific result and a replication of concordant phylogeographic patterns, and suggests that greater taxonomic coverage results in greater resolution of community dynamics within Fiji. Our results indicate that the Fijian reefs should not be managed as a single unit, and that closely related species can express dramatically different levels of population connectivity.
    [Show full text]
  • Annotated Checklist of the Fishes of Lord Howe Island
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Allen, Gerald R., Douglass F. Hoese, John R. Paxton, J. E. Randall, C. Russell, W. A. Starck, F. H. Talbot, and G. P. Whitley, 1977. Annotated checklist of the fishes of Lord Howe Island. Records of the Australian Museum 30(15): 365–454. [21 December 1976]. doi:10.3853/j.0067-1975.30.1977.287 ISSN 0067-1975 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia ANNOTATED CHECKLIST OF THE FISHES OF LORD HOWE ISLAND G. R. ALLEN, 1,2 D. F. HOESE,1 J. R. PAXTON,1 J. E. RANDALL, 3 B. C. RUSSELL},4 W. A. STARCK 11,1 F. H. TALBOT,1,4 AND G. P. WHITlEy5 SUMMARY lord Howe Island, some 630 kilometres off the northern coast of New South Wales, Australia at 31.5° South latitude, is the world's southern most locality with a well developed coral reef community and associated lagoon. An extensive collection of fishes from lord Howelsland was made during a month's expedition in February 1973. A total of 208 species are newly recorded from lord Howe Island and 23 species newly recorded from the Australian mainland. The fish fauna of lord Howe is increased to 447 species in 107 families. Of the 390 species of inshore fishes, the majority (60%) are wide-ranging tropical forms; some 10% are found only at lord Howe Island, southern Australia and/or New Zealand.
    [Show full text]
  • UCLA Previously Published Works
    UCLA UCLA Previously Published Works Title Comparative phylogeography in Fijian coral reef fishes: a multi-taxa approach towards marine reserve design. Permalink https://escholarship.org/uc/item/6jd244rr Journal PloS one, 7(10) ISSN 1932-6203 Authors Drew, Joshua A Barber, Paul H Publication Date 2012 DOI 10.1371/journal.pone.0047710 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Comparative Phylogeography in Fijian Coral Reef Fishes: A Multi-Taxa Approach towards Marine Reserve Design Joshua A. Drew1*, Paul H. Barber2 1 Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, United States of America, 2 Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America Abstract Delineating barriers to connectivity is important in marine reserve design as they describe the strength and number of connections among a reserve’s constituent parts, and ultimately help characterize the resilience of the system to perturbations at each node. Here we demonstrate the utility of multi-taxa phylogeography in the design of a system of marine protected areas within Fiji. Gathering mtDNA control region data from five species of coral reef fish in five genera and two families, we find a range of population structure patterns, from those experiencing little (Chrysiptera talboti, Halichoeres hortulanus, and Pomacentrus maafu), to moderate (Amphiprion barberi, Wst = 0.14 and Amblyglyphidodon
    [Show full text]