Time-Dependent Quantum Mechanics and Spectroscopy.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Time-Dependent Quantum Mechanics and Spectroscopy.Pdf Time-Dependent Quantum Mechanics and Spectroscopy Andrei Tokmakoff 417351 800107 5 Contents TIME‐DEPENDENT QUANTUM MECHANICS 1. INTRODUCTION 1. Time‐Evolution with a Time‐Independent Hamiltonian 2. Exponential Operators 3. Two‐Level System THE TIME‐DEPENDENT HAMILTONIAN 2. TIME‐EVOLUTION OPERATOR 1. Time‐Evolution Operator 2. IntegratinG the TDSE Directly 3. Transitions Induced by Time‐Dependent Potential 4. Resonant Driving of a Two‐Level System 5. Schrödinger and HeisenberG Representations 6. Interaction Picture 7. Time‐Dependent Perturbation Theory 8. Fermi’s Golden Rule 3. IRREVERSIBLE RELAXATION 4. THE DENSITY MATRIX 5. ADIABATIC APPROXIMATION 1. Born–Oppenheimer Approximation 2. Nonadiabatic Effects 3. Diabatic and Adiabatic States 4. Adiabatic and Nonadiabatic dynamics 5. Landau–Zener Transition Probability 6. INTERACTION OF LIGHT AND MATTER 1. Electric Dipole Hamiltonian 2. Supplement: Review of Free Electromagnetic Field 3. Absorption Cross Section CONCEPTS AND TOOLS FOR CONDENSED PHASE DYNAMICS 7. MIXED STATES AND THE DENSITY MATRIX 8. IRREVERSIBLE AND RANDOM PROCESSES 1. Concepts and Definitions 2. Thermal Equilibrium 3. Fluctuations 9. TIME‐CORRELATION FUNCTIONS 1. Definitions, Properties, and Examples 2. Correlation Function from a Discrete Trajectory 3. Quantum Time‐Correlation Functions 4. Transition Rates from Correlation Functions 10. LINEAR RESPONSE THEORY 1. Classical Linear Response Theory 2. Quantum Linear Response Functions 3. The Response Function and Energy Absorption 4. Relaxation of a Prepared State SPECTROSCOPY 11. TIME‐DOMAIN DESCRIPTION OF SPECTROSCOPY 1. A Classical Description of Spectroscopy 2. Time‐Correlation Function Description of Absorption Lineshape 3. Different Types of Spectroscopy Emerge from the Dipole Operator 4. Ensemble Averaging and Line‐Broadening 12. COUPLING OF ELECTRONIC AND NUCLEAR MOTION 1. The Displaced Harmonic Oscillator Model 2. Coupling to a Harmonic Bath 3. Semiclassical Approximation to the Dipole Correlation Function 13. FLUCTUATIONS IN SPECTROSCOPY 1. Fluctuations and Randomness: Some Definitions 2. Line‐Broadening and Spectral Diffusion 3. Gaussian‐Stochastic Model for Spectral Diffusion 4. The Energy Gap Hamiltonian 5. Correspondence of Harmonic Bath and Stochastic Equations of Motion APPLICATIONS 14. ENERGY AND CHARGE TRANSFER 1. Electronic Interactions 2. Förster Resonance EnerGy Transfer 3. Excitons in Molecular Aggregates) 4. Multiple Excitations and Second Quantization 5. Marcus Theory for Electron Transfer 15. QUANTUM RELAXATION PROCESSES 1. Vibrational Relaxation 2. A Density Matrix Description of Quantum Relaxation 1. INTRODUCTION 1.1. Time Evolution with a Time-Independent Hamiltonian The time evolution of the state of a quantum system is described by the time-dependent Schrödinger equation (TDSE): irtHrtrt ,,, ˆ (1.1) t Hˆ is the Hamiltonian operator which describes all interactions between particles and fields, and determines the state of the system in time and space. Hˆ is the sum of the kinetic and potential energy. For one particle under the influence of a potential 2 HVrtˆˆˆ 2 , (1.2) 2m The state of the system is expressed through the wavefunction rt, . The wavefunction is complex and cannot be observed itself, but through it we obtain the probability density 2 Prt , which characterizes the spatial probability distribution for the particles described by Hˆ at time t. Also, it is used to calculate the expectation value of an operator Aˆ Atˆˆ * r,, t A r tdr t A ˆ t (1.3) Physical observables must be real, and therefore will correspond to the expectation values of Hermitian operators AAˆˆ † . Our first exposure to time-dependence in quantum mechanics is often for the specific case in which the Hamiltonian Hˆ is assumed to be independent of time: HHrˆˆ . We then assume a solution with a form in which the spatial and temporal variables in the wavefunction are separable: rt, rTt (1.4) 1 Hrˆ r iTt (1.5) Tt t r Here the left-hand side is a function only of time, and the right-hand side is a function of space only ( r , or rather position and momentum). Equation (1.5) can only be satisfied if both sides are equal to the same constant, E . Taking the right-hand side we have Hrˆ r EHˆ rrEr (1.6) r Andrei Tokmakoff, 12/1/2014 1-2 This is the Time-Independent Schrödinger Equation (TISE), an eigenvalue equation, for which r are the eigenstates and E are the eigenvalues. Here we note that HHEˆˆ , so Hˆ is the operator corresponding to E and drawing on classical mechanics we associate Hˆ with the expectation value of the energy of the system. Now taking the left-hand side of (1.5) and integrating: 1 TiE iE Tt 0 (1.7) Tt t t Tt exp iEt / (1.8) So, in the case of a bound potential we will have a discrete set of eigenfunctions n r with corresponding energy eigenvalues En from the TISE, and there are a set of corresponding solutions to the TDSE. nnrt,exp/ r iEt n (1.9) Since the only time-dependence is a phase factor, the probability density for an eigenstate is 2 independent of time: Pt n = constant. Therefore, the eigenstates r do not change with time and are called stationary states. However, more generally, a system may exist as a linear combination of eigenstates: iEn t/ rt,, cnn rt cnne r (1.10) nn 2 where c are complex amplitudes, with c 1. For such a case, the probability density will n n n oscillate with time. As an example, consider two eigenstates iE12 t//iE t rt, 1211 c e c 22 e (1.11) For this state the probability density oscillates in time as 22 Pt12 22 **it21 **it21 cccc11 2 2 1 21 2e cce2121 (1.12) 22 122cos() 1221 t where nn E / . We refer to this state of the system that gives rise to this time-dependent oscillation in probability density as a coherent superposition state, or coherence. More generally, the oscillation term in eq. (1.12) may also include a time-independent phase factor that arises from the complex expansion coefficients. 1-3 As an example, consider the superposition of the ground and first excited states of the quantum harmonic oscillator. The basis wavefunctions, 0 ()x and 1()x , and their stationary probability densities Pxxii ( ) | i ( ) are If we create a superposition of these states with eqn. (1.11), the time-dependent probability density oscillates, with x(t) bearing similarity to the classical motion. (Here c0 = 0.5 and c1 = 0.87.) P(x,t) x 1-4 Readings 1. Cohen-Tannoudji, C.; Diu, B.; Lalöe, F., Quantum Mechanics. Wiley-Interscience: Paris, 1977; p. 405. 2. Nitzan, A., Chemical Dynamics in Condensed Phases. Oxford University Press: New York, 2006; Ch. 1. 3. Schatz, G. C.; Ratner, M. A., Quantum Mechanics in Chemistry. Dover Publications: Mineola, NY, 2002; Ch. 2. 1-5 1.2. Exponential Operators Throughout our work, we will make use of exponential operators of the form Teˆ iAˆ We will see that these exponential operators act on a wavefunction to move it in time and space. ˆ Of particular interest to us is the time-propagator or time-evolution operator, Ueˆ iHt/ , which propagates the wavefunction in time. Note the operator Tˆ is a function of an operator, f ()Aˆ . A function of an operator is defined through its expansion in a Taylor series, for instance n ˆ ()iAˆˆˆ AA Teˆ iA 1 iAˆ (1.13) n0 n!2 Since we use them so frequently, let’s review the properties of exponential operators that can be established with eq. (1.13). If the operator Aˆ is Hermitian, then Teˆ iAˆ is unitary, i.e., TTˆˆ†1 . Thus the Hermitian conjugate of Tˆ reverses the action of Tˆ . For the time-propagator Uˆ , Uˆ † is often referred to as the time-reversal operator. The eigenstates of the operator Aˆ also are also eigenstates of f ()Aˆ , and eigenvalues are functions of the eigenvalues of Aˆ . Namely, if you know the eigenvalues and eigenvectors of Aˆ , ˆ i.e., Annn a , you can show by expanding the function that ˆ fA nnn fa (1.14) Our most common application of this property will be to exponential operators involving the ˆ Hamiltonian. Given the eigenstates n , then HEnnn implies ˆ iHt/ iEn t eenn (1.15) Just as Ueˆ iHtˆ / is the time-evolution operator, which displaces the wavefunctionin ˆ ˆ ipx x/ time, Dex is the spatial displacement operator that moves along the x coordinate. If we ˆ ˆ ipx / define Dex () , then the action of is to displace the wavefunction by an amount . ˆ x Dxx () (1.16) ˆ Also, applying Dx () to a position operator shifts the operator by ˆˆ† DxDxxˆˆ x (1.17) ˆ Thus eipx x is an eigenvector of xˆ with eigenvalue x + instead of x. The operator ˆ ipˆ ˆ ipx ˆ y Dex is a displacement operator for x position coordinates. Similarly, Dey ˆ ˆ generates displacements in y and Dz in z. Similar to the time-propagator U , the displacement 1-6 operatorDˆ must be unitary, since the action of Dˆˆ†D must leave the system unchanged. That is if ˆ ˆ † D shifts the system to x from x0 , then D shifts the system from x back to x0 . We know intuitively that linear displacements commute. For example, if we wish to shift a particle in two dimensions, x and y, the order of displacement does not matter. We end up at the same position. These displacement operators commute, as expected from [px,py] = 0. ibp first move along x by a, xy eey iapx xy 22 11 then along y by B. iapx ibpy ee xy11 reverse order Similar to the displacement operator, we can define rotation operators that depend on the ˆ iL x angular momentum operators, Lx, Ly, and Lz.
Recommended publications
  • An Introduction to Quantum Field Theory
    AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ...........................
    [Show full text]
  • Squeezed and Entangled States of a Single Spin
    SQUEEZED AND ENTANGLED STATES OF A SINGLE SPIN Barı¸s Oztop,¨ Alexander A. Klyachko and Alexander S. Shumovsky Faculty of Science, Bilkent University Bilkent, Ankara, 06800 Turkey e-mail: [email protected] (Received 23 December 2007; accepted 1 March 2007) Abstract We show correspondence between the notions of spin squeez- ing and spin entanglement. We propose a new measure of spin squeezing. We consider a number of physical examples. Concepts of Physics, Vol. IV, No. 3 (2007) 441 DOI: 10.2478/v10005-007-0020-0 Barı¸s Oztop,¨ Alexander A. Klyachko and Alexander S. Shumovsky It is well known that the concept of squeezed states [1] was orig- inated from the famous work by N.N. Bogoliubov [2] on the super- fluidity of liquid He4 and canonical transformations. Initially, it was developed for the Bose-fields. Later on, it has been extended on spin systems as well. The two main objectives of the present paper are on the one hand to show that the single spin s 1 can be prepared in a squeezed state and on the other hand to demonstrate≥ one-to-one correspondence between the notions of spin squeezing and entanglement. The results are illustrated by physical examples. Spin-coherent states | Historically, the notion of spin-coherent states had been introduced [3] before the notion of spin-squeezed states. In a sense, it just reflected the idea of Glauber [4] about creation of Bose-field coherent states from the vacuum by means of the displacement operator + α field = D(α) vac ;D(α) = exp(αa α∗a); (1) j i j i − where α C is an arbitrary complex parameter and a+; a are the Boson creation2 and annihilation operators.
    [Show full text]
  • Rotation and Spin and Position Operators in Relativistic Gravity and Quantum Electrodynamics
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 December 2019 doi:10.20944/preprints201912.0044.v1 Peer-reviewed version available at Universe 2020, 6, 24; doi:10.3390/universe6020024 1 Review 2 Rotation and Spin and Position Operators in 3 Relativistic Gravity and Quantum Electrodynamics 4 R.F. O’Connell 5 Department of Physics and Astronomy, Louisiana State University; Baton Rouge, LA 70803-4001, USA 6 Correspondence: [email protected]; 225-578-6848 7 Abstract: First, we examine how spin is treated in special relativity and the necessity of introducing 8 spin supplementary conditions (SSC) and how they are related to the choice of a center-of-mass of a 9 spinning particle. Next, we discuss quantum electrodynamics and the Foldy-Wouthuysen 10 transformation which we note is a position operator identical to the Pryce-Newton-Wigner position 11 operator. The classical version of the operators are shown to be essential for the treatment of 12 classical relativistic particles in general relativity, of special interest being the case of binary 13 systems (black holes/neutron stars) which emit gravitational radiation. 14 Keywords: rotation; spin; position operators 15 16 I.Introduction 17 Rotation effects in relativistic systems involve many new concepts not needed in 18 non-relativistic classical physics. Some of these are quantum mechanical (where the emphasis is on 19 “spin”). Thus, our emphasis will be on quantum electrodynamics (QED) and both special and 20 general relativity. Also, as in [1] , we often use “spin” in the generic sense of meaning “internal” spin 21 in the case of an elementary particle and “rotation” in the case of an elementary particle.
    [Show full text]
  • Lecture 3-7: General Formalism at Finite Temperature
    Lecture 3-7: General formalism at finite temperature Reference: Negele & Orland (N&O) Chapter 2 Lecture 3 Introduction Quantum statistical mechanics (Home reading) Three ensembles: microcanonical, canonical, grand canonical essemble Partition function and thermodynamics Physical response functions and Green’s function Consider a system subjected to a time-dependent external field, where the operators and corresponding states are in the Schrödinger picture. We shall study the system through the evolution operator. Time-ordered operator product where Time-ordered exponential t t where b a and t t n. It may be expanded in a Taylor series as follows, M n a The evolution operator Using the time-ordered exponential, the evolution operator may be written It is easy to verify that it satisfies the equation of motion and the boundary condition The response to an infinitesimal perturbation in the external field The Schrödinger picture and the Heisenberg picture. (Home reading) The response of a wavefunction to an infinitesimal perturbation by an external field is given by the functional derivative where the operator and the state in the Heisenberg picture is related to the operator in the Schrödinger picture by and Now, consider the response of the expectation value of an operator to an infinitesimal perturbation in the external field. ˆ ˆ The response of a measurement of O2 (t2 ) to a perturbation couple to O1 is specified by the response function, The above is one of century results in this chapter. The n-body real-time Green’s function The n-body imaginary-time Green’s function where Approximation strategies (Home reading) Asymptotic expansions Weak coupling and strong coupling Functional integral formulation A powerful tool for the study of many-body systems The Feynman path integral for a single particle system A different formulation to the canonical formalism, the propagator (or the matrix element of the evolution operator) plays the basic role.
    [Show full text]
  • Appendix: the Interaction Picture
    Appendix: The Interaction Picture The technique of expressing operators and quantum states in the so-called interaction picture is of great importance in treating quantum-mechanical problems in a perturbative fashion. It plays an important role, for example, in the derivation of the Born–Markov master equation for decoherence detailed in Sect. 4.2.2. We shall review the basics of the interaction-picture approach in the following. We begin by considering a Hamiltonian of the form Hˆ = Hˆ0 + V.ˆ (A.1) Here Hˆ0 denotes the part of the Hamiltonian that describes the free (un- perturbed) evolution of a system S, whereas Vˆ is some added external per- turbation. In applications of the interaction-picture formalism, Vˆ is typically assumed to be weak in comparison with Hˆ0, and the idea is then to deter- mine the approximate dynamics of the system given this assumption. In the following, however, we shall proceed with exact calculations only and make no assumption about the relative strengths of the two components Hˆ0 and Vˆ . From standard quantum theory, we know that the expectation value of an operator observable Aˆ(t) is given by the trace rule [see (2.17)], & ' & ' ˆ ˆ Aˆ(t) =Tr Aˆ(t)ˆρ(t) =Tr Aˆ(t)e−iHtρˆ(0)eiHt . (A.2) For reasons that will immediately become obvious, let us rewrite this expres- sion as & ' ˆ ˆ ˆ ˆ ˆ ˆ Aˆ(t) =Tr eiH0tAˆ(t)e−iH0t eiH0te−iHtρˆ(0)eiHte−iH0t . (A.3) ˆ In inserting the time-evolution operators e±iH0t at the beginning and the end of the expression in square brackets, we have made use of the fact that the trace is cyclic under permutations of the arguments, i.e., that Tr AˆBˆCˆ ··· =Tr BˆCˆ ···Aˆ , etc.
    [Show full text]
  • Quantum Field Theory II
    Quantum Field Theory II T. Nguyen PHY 391 Independent Study Term Paper Prof. S.G. Rajeev University of Rochester April 20, 2018 1 Introduction The purpose of this independent study is to familiarize ourselves with the fundamental concepts of quantum field theory. In this paper, I discuss how the theory incorporates the interactions between quantum systems. With the success of the free Klein-Gordon field theory, ultimately we want to introduce the field interactions into our picture. Any interaction will modify the Klein-Gordon equation and thus its Lagrange density. Consider, for example, when the field interacts with an external source J(x). The Klein-Gordon equation and its Lagrange density are µ 2 (@µ@ + m )φ(x) = J(x); 1 m2 L = @ φ∂µφ − φ2 + Jφ. 2 µ 2 In a relativistic quantum field theory, we want to describe the self-interaction of the field and the interaction with other dynamical fields. This paper is based on my lecture for the Kapitza Society. The second section will discuss the concept of symmetry and conservation. The third section will discuss the self-interacting φ4 theory. Lastly, in the fourth section, I will briefly introduce the interaction (Dirac) picture and solve for the time evolution operator. 2 Noether's Theorem 2.1 Symmetries and Conservation Laws In 1918, the mathematician Emmy Noether published what is now known as the first Noether's Theorem. The theorem informally states that for every continuous symmetry there exists a corresponding conservation law. For example, the conservation of energy is a result of a time symmetry, the conservation of linear momentum is a result of a plane symmetry, and the conservation of angular momentum is a result of a spherical symmetry.
    [Show full text]
  • Chapter 5 ANGULAR MOMENTUM and ROTATIONS
    Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another.
    [Show full text]
  • Interaction Representation
    Interaction Representation So far we have discussed two ways of handling time dependence. The most familiar is the Schr¨odingerrepresentation, where operators are constant, and states move in time. The Heisenberg representation does just the opposite; states are constant in time and operators move. The answer for any given physical quantity is of course independent of which is used. Here we discuss a third way of describing the time dependence, introduced by Dirac, known as the interaction representation, although it could equally well be called the Dirac representation. In this representation, both operators and states move in time. The interaction representation is particularly useful in problems involving time dependent external forces or potentials acting on a system. It also provides a route to the whole apparatus of quantum field theory and Feynman diagrams. This approach to field theory was pioneered by Dyson in the the 1950's. Here we will study the interaction representation in quantum mechanics, but develop the formalism in enough detail that the road to field theory can be followed. We consider an ordinary non-relativistic system where the Hamiltonian is broken up into two parts. It is almost always true that one of these two parts is going to be handled in perturbation theory, that is order by order. Writing our Hamiltonian we have H = H0 + V (1) Here H0 is the part of the Hamiltonian we have under control. It may not be particularly simple. For example it could be the full Hamiltonian of an atom or molecule. Neverthe- less, we assume we know all we need to know about the eigenstates of H0: The V term in H is the part we do not have control over.
    [Show full text]
  • Advanced Quantum Theory AMATH473/673, PHYS454
    Advanced Quantum Theory AMATH473/673, PHYS454 Achim Kempf Department of Applied Mathematics University of Waterloo Canada c Achim Kempf, September 2017 (Please do not copy: textbook in progress) 2 Contents 1 A brief history of quantum theory 9 1.1 The classical period . 9 1.2 Planck and the \Ultraviolet Catastrophe" . 9 1.3 Discovery of h ................................ 10 1.4 Mounting evidence for the fundamental importance of h . 11 1.5 The discovery of quantum theory . 11 1.6 Relativistic quantum mechanics . 13 1.7 Quantum field theory . 14 1.8 Beyond quantum field theory? . 16 1.9 Experiment and theory . 18 2 Classical mechanics in Hamiltonian form 21 2.1 Newton's laws for classical mechanics cannot be upgraded . 21 2.2 Levels of abstraction . 22 2.3 Classical mechanics in Hamiltonian formulation . 23 2.3.1 The energy function H contains all information . 23 2.3.2 The Poisson bracket . 25 2.3.3 The Hamilton equations . 27 2.3.4 Symmetries and Conservation laws . 29 2.3.5 A representation of the Poisson bracket . 31 2.4 Summary: The laws of classical mechanics . 32 2.5 Classical field theory . 33 3 Quantum mechanics in Hamiltonian form 35 3.1 Reconsidering the nature of observables . 36 3.2 The canonical commutation relations . 37 3.3 From the Hamiltonian to the equations of motion . 40 3.4 From the Hamiltonian to predictions of numbers . 44 3.4.1 Linear maps . 44 3.4.2 Choices of representation . 45 3.4.3 A matrix representation . 46 3 4 CONTENTS 3.4.4 Example: Solving the equations of motion for a free particle with matrix-valued functions .
    [Show full text]
  • Hamilton Equations, Commutator, and Energy Conservation †
    quantum reports Article Hamilton Equations, Commutator, and Energy Conservation † Weng Cho Chew 1,* , Aiyin Y. Liu 2 , Carlos Salazar-Lazaro 3 , Dong-Yeop Na 1 and Wei E. I. Sha 4 1 College of Engineering, Purdue University, West Lafayette, IN 47907, USA; [email protected] 2 College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; [email protected] 3 Physics Department, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; [email protected] 4 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310058, China; [email protected] * Correspondence: [email protected] † Based on the talk presented at the 40th Progress In Electromagnetics Research Symposium (PIERS, Toyama, Japan, 1–4 August 2018). Received: 12 September 2019; Accepted: 3 December 2019; Published: 9 December 2019 Abstract: We show that the classical Hamilton equations of motion can be derived from the energy conservation condition. A similar argument is shown to carry to the quantum formulation of Hamiltonian dynamics. Hence, showing a striking similarity between the quantum formulation and the classical formulation. Furthermore, it is shown that the fundamental commutator can be derived from the Heisenberg equations of motion and the quantum Hamilton equations of motion. Also, that the Heisenberg equations of motion can be derived from the Schrödinger equation for the quantum state, which is the fundamental postulate. These results are shown to have important bearing for deriving the quantum Maxwell’s equations. Keywords: quantum mechanics; commutator relations; Heisenberg picture 1. Introduction In quantum theory, a classical observable, which is modeled by a real scalar variable, is replaced by a quantum operator, which is analogous to an infinite-dimensional matrix operator.
    [Show full text]
  • The Position Operator Revisited Annales De L’I
    ANNALES DE L’I. H. P., SECTION A H. BACRY The position operator revisited Annales de l’I. H. P., section A, tome 49, no 2 (1988), p. 245-255 <http://www.numdam.org/item?id=AIHPA_1988__49_2_245_0> © Gauthier-Villars, 1988, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ .
    [Show full text]
  • 22.51 Course Notes, Chapter 9: Harmonic Oscillator
    9. Harmonic Oscillator 9.1 Harmonic Oscillator 9.1.1 Classical harmonic oscillator and h.o. model 9.1.2 Oscillator Hamiltonian: Position and momentum operators 9.1.3 Position representation 9.1.4 Heisenberg picture 9.1.5 Schr¨odinger picture 9.2 Uncertainty relationships 9.3 Coherent States 9.3.1 Expansion in terms of number states 9.3.2 Non-Orthogonality 9.3.3 Uncertainty relationships 9.3.4 X-representation 9.4 Phonons 9.4.1 Harmonic oscillator model for a crystal 9.4.2 Phonons as normal modes of the lattice vibration 9.4.3 Thermal energy density and Specific Heat 9.1 Harmonic Oscillator We have considered up to this moment only systems with a finite number of energy levels; we are now going to consider a system with an infinite number of energy levels: the quantum harmonic oscillator (h.o.). The quantum h.o. is a model that describes systems with a characteristic energy spectrum, given by a ladder of evenly spaced energy levels. The energy difference between two consecutive levels is ∆E. The number of levels is infinite, but there must exist a minimum energy, since the energy must always be positive. Given this spectrum, we expect the Hamiltonian will have the form 1 n = n + ~ω n , H | i 2 | i where each level in the ladder is identified by a number n. The name of the model is due to the analogy with characteristics of classical h.o., which we will review first. 9.1.1 Classical harmonic oscillator and h.o.
    [Show full text]