Habitat Determinants of Chaetodon Butterflyfish and Fishery-Targeted Coral Reef Fish Assemblages in the Central Philippines

Total Page:16

File Type:pdf, Size:1020Kb

Habitat Determinants of Chaetodon Butterflyfish and Fishery-Targeted Coral Reef Fish Assemblages in the Central Philippines ResearchOnline@JCU This file is part of the following reference: Leahy, Susannah Marie (2016) Habitat determinants of Chaetodon butterflyfish and fishery-targeted coral reef fish assemblages in the central Philippines. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/46299/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/46299/ Habitat determinants of Chaetodon butterflyfish and fishery-targeted coral reef fish assemblages in the central Philippines Thesis submitted by Susannah Marie Leahy (BSc, MAppSci) on 8 February 2016 for the degree of Doctor of Philosophy in the College of Marine and Environmental Sciences, the Centre for Tropical and Environmental Sustainability Science, and the Centre of Excellence for Coral Reef Studies James Cook University Cairns, Queensland, Australia This page is intentionally left blank. ii Acknowledgements I would first like to thank my supervisors: Garry Russ, Rene Abesamis, and Mike Kingsford. Garry, for his guidance and advice, and for his trust in me. Rene, for teaching me how to function in the Philippines. Mike, for being such a source of wisdom when I felt out of my depth. I would also like to thank the organisations who funded my work, including the Graduate Research School at James Cook University for a Postgraduate Research Scholarship and for two research grants, as well as the Australian Society for Fish Biology for the Michael Hall Student Innovation Award. A big thank you to Garry as well for being so incredibly generous with his funding from the Australian Research Council Centre of Excellence for Coral Reef Studies. A number of people facilitated my work and provided support at key times in my PhD. At Silliman University, Claro Renato Jadloc was the most helpful and supportive friend and colleague I could have asked for. I would also like to thank Angel Alcala, Ma’am Emily, Ma’am Janet, Abner Bucol, Jasper Maypa, and Brian Stockwell for their friendship and support. Antonio Yocor and Christopher Sanson were my heroes during my fieldwork and deserve a big thank you, as do Dioscoro Inocencio, Zacharias Generoso, Rey Santero, Mac Mac, Roland Tuble and his family, and the many boat captains and crew members who made my work possible. A particular thank you to Mercy Quisto and Monet Raymundo, who welcomed me into their home and treated me like family. I would also like to thank the resource managers, administrators, and fisherfolk who permitted me to access their coral reefs and who trusted me to do good work. In particular, thank you to the staff at the Environmental and Rural Development Program iii in Dumaguete and to their colleagues at the municipals halls of Dauin, Zamboanguita, and Siaton. Thank you to the barangay captains, fisherfolk associations, and bantay dagat of barangays Looc, Bantayan, Bulak, Lipayo, Masaplod Sur, Maayongtubig, Apo Island, Basak, Guinsuan, Latason, Kabkab, Bonbonon, Salag, and Cabangahan, and most especially to those at Piapi, Poblacion I, Poblacion III, Masaplod Norte, Lutoban, Andulay, and Bonbonon, who gave me such a warm welcome and were so supportive of my work. Back home, I would like to thank Rhondda Jones and Justin Rizzari for encouraging me to explore a whole new world of statistics, and Gordon Bailey, Andrew Gray-Spence, and Joel Millwood for making sure I had the hardware and software to make it happen. Thank you to my friends on the Townsville and Cairns campuses, who put up with so much of my grief, and to my kayaking mates, who got me out of my head and onto the river when I needed it most. And of course, a special thank you to Bronwyn Masters for putting up with so much, and for being my rock. I wouldn’t have made it without you. iv Statement on the contribution of others The research presented in this thesis was primarily funded by an Australian Research Council grant to Prof. Garry Russ, and was further supported by two JCU Graduate Research School grants and an Australian Society for Fish Biology Michael Hall Student Innovation award to Susannah Leahy. The long-term monitoring reported in Chapter 4 was supported by funding to Prof. Garry Russ from the UNEP-NRMC Philippines (1983), the Great Barrier Reef Marine Park Authority (1985), a Pew Fellowship (1999-2000), an ARC Discovery grant (2002-2004) and funding from the ARC Centre of Excellence in Coral Reef Studies (2006-2013). This thesis was primarily supervised by Prof. Garry Russ, who supported the development of each component project and provided guidance and editorial support on all thesis chapters. This thesis was also supervised by Dr. Rene Abesamis, who provided guidance on the logistics of conducting research in the Philippines, and some editorial support of Chapters 2, 3, and 5. Prof. Michael Kingsford also supervised this thesis, and provided some statistical and professional advice. The Silliman University Angelo King Center for Research and Environmental Management (SUAKCREM) provided office and laboratory space and logistical assistance during periods of fieldwork in the Philippines. The Kingsford Otolith Laboratory at JCU Townsville provided space laboratory space and equipment to process otoliths (Chapter 3). All data reported in this thesis were collected by Susannah Leahy, with the exception of: v (1) otolith increment numbers and widths (Chapter 3), which were collected by a commercial professional otolith ageing entity (Tropical Fish Ageing, Townsville) headed by Dr. Dongchun Lou; (2) long-term fish and benthic monitoring data (Chapter 4), which were collected by Prof. Garry Russ from 1983 to 2014; (3) remotely sensed imagery (Chapter 5), which was collected by the WorldView- 2 satellite, which is owned and operated by DigitalGlobe. Imagery was purchased from the Australian WorldView-2 imagery provider GeoImage Pty. Ltd., with some basic pre-processing steps already completed. Co-authors on current and future publications arising from this thesis made intellectual contributions to the manuscripts, in the form of guidance at the experimental design stage and the editing stage. Non-authors who provided important support for the thesis data chapters are: Prof. Rhondda Jones, Dr. Justin Rizzari, and Mr Mason Campbell, who acted as statistical “sounding boards” throughout the thesis; anonymous reviewers at Marine and Freshwater Research (Chapter 2) and Coral Reefs (Chapter 3), who provided helpful comments on earlier versions of the data chapter manuscripts; and Claro Renato Jadloc, who facilitated all of my fieldwork in the Philippines. I am the primary author of three of the four publications arising from this thesis (Chapters 2, 3, and 5), as I conceived of each research question, designed the experimental approach, implemented the work, collected the data, carried out the statistical analyses, and wrote the manuscripts. I am the second author of the publication arising from Chapter 4, although the first author (G.R. Russ) and I have contributed equally to that manuscript. G.R. Russ designed the experimental approach in 1983, was awarded funding for the work, collected the data used in Chapter 4 over the course of 31 years of monitoring the study sites, and edited the manuscript produced from this data vi chapter. I carried out the statistical analyses on the dataset and prepared the manuscript for the chapter. All of the research presented and reported in this thesis was conducted within the guidelines of the James Cook University Animal Ethics Committee (approval number A1803). vii List of publications arising from this thesis Leahy, S. M., G. R. Russ, and R. A. Abesamis. 2015. Primacy of bottom-up effects on a butterflyfish assemblage. Marine and Freshwater Research, 10.1071/MF15012 Leahy, S. M., G. R. Russ, and R. A. Abesamis. 2015. Pelagic larval duration and settlement size of a reef fish are spatially consistent, but post-settlement growth varies at the reef scale. Coral Reefs 34:1283-1296, 10.1007/s00338-015-1330-y Russ, G. R., and S. M. Leahy (in review). Rates and degrees of decline and recovery of corals and Chaetodon butterflyfish on Philippine coral reefs. Environmental Biology of Fishes Leahy, S. M., G. R. Russ, and R. A. Abesamis (in prep). Quality over quantity: habitat condition is a stronger driver of fish biomass on coral reefs than habitat spatial extent and connectedness. Ecology viii General Abstract Habitat availability and suitability are key factors determining the local abundance of a species and the structure of species assemblages. Nowhere is this more evident than in coral reef systems, where the availability, condition, and complexity of scleractinian corals are major determinants of the abundance, growth, and survival of both specialist and generalist coral reef fishes. Unfortunately, these shallow water habitats are also extremely vulnerable to destructive natural events such as cyclones, as well as anthropogenic environmental disturbances such as reduced water quality, overfishing and destructive fishing, and increased temperatures and reduced ocean pH associated with climate change. The deterioration of shallow water habitats is particularly pronounced in poor, developing nations such as those in the Coral Triangle, where marine biodiversity is high, but so are human population density and reliance on resource extraction. No-take marine reserves (NTMRs) are used throughout the region to reduce human impacts on coastal areas, and produce benefits for conservation, fisheries, or even both. This thesis aims to determine the habitat characteristics that drive the abundance, species richness, growth rates, and assemblage structure of coral reef fishes in order to inform placement of NTMRs, and to identify potential environmental stressors that may require more complex management strategies.
Recommended publications
  • Description of a New Species of Butterflyfish, Roa Australis, from Northwestern Australia (Pisces: Perciformes: Chaetodontidae)
    © Copyright Australian Museum, 2004 Records of the Australian Museum (2004) Vol. 56: 167–171. ISSN 0067-1975 Description of a New Species of Butterflyfish, Roa australis, from Northwestern Australia (Pisces: Perciformes: Chaetodontidae) RUDIE H. KUITER Ichthyology, Museum Victoria, Melbourne VIC 3001, Australia [email protected] · [email protected] ABSTRACT. A new species of butterflyfish (genus Roa) is described from the North-West Shelf of Western Australia and the Arafura Sea. Roa australis n.sp., the only known species of the Roa modesta-complex in the southern hemisphere, is most similar to Roa excelsa from the Hawaiian Islands, differing from it most noticeably in having narrower and fainter brown bars, white instead of brown anterior dorsal spines, and subequal 3rd and 4th dorsal spines rather than a distinctly longer 3rd spine. KUITER, RUDIE H., 2004. Description of a new species of butterflyfish, Roa australis, from northwestern Australia (Pisces: Perciformes: Chaetodontidae). Records of the Australian Museum 56(2): 167–171. The new species and three close relatives comprise the small about 200 m, although differently coloured, may belong to Indo-Pacific genus Roa (Jordan, 1923), and as a group they this genus (Kuiter, 2002). The four species share a banded are often referred to as the “modestus species complex” of pattern of alternating broad brown and pale bands, and have the genus Chaetodon. They have widely separated a distinctive, about eye-sized, black spot on the soft dorsal distributions: R. jayakari (Norman, 1939) occurs in the fin. All have been referred to Roa modesta (or, more often northwestern Indian Ocean from the west coast of India to as Chaetodon modestus) by various authors, because the the Red Sea; R.
    [Show full text]
  • Chaetodon Larvatus Ordine Perciformes Cuvier, 1831 Famiglia Chaetodontidae
    Identificazione e distribuzione nei mari italiani di specie non indigene Classe Osteichthyes Chaetodon larvatus Ordine Perciformes Cuvier, 1831 Famiglia Chaetodontidae SINONIMI RILEVANTI Chaetodon karraf Cuvier, 1831 DESCRIZIONE COROLOGIA / AFFINITA’ Corpo fortemente appiattito e alto. Testa piccola Tropicale con bocca protrattile leggermente obliqua. Denti DISTRIBUZIONE ATTUALE lunghi e stretti sulla parte anteriore di entrambe le mascelle. Occhi relativamente grandi, interorbitale Oceano Indiano occidentale: Mar Rosso e Golfo di stretto. Pinna dorsale continua. Pinna caudale Aden. tronca. Piccole scaglie ctenoidi su tutto il corpo. Scaglia ascellare appuntita alla base della pinna PRIMA SEGNALAZIONE IN MEDITERRANEO pelvica. Bordo del preopercolo denticolato. Israele, gennaio 2011 (Salameh et al. 2011) COLORAZIONE PRIMA SEGNALAZIONE IN ITALIA Testa anteriormente marrone-arancione. Corpo - grigiastro con diverse linee giallastre verticali a V. Parte posteriore della pinna dorsale nera; pinna ORIGINE caudale nera con bordo posteriore bianco- Mar Rosso trasparente. Pinna anale grigia. Pinna pettorale trasparente. Pinna pelvica arancione. VIE DI DISPERSIONE PRIMARIE Migrazione lessepsiana. FORMULA MERISTICA D XI,27; A III,23; P 15; V I,5 Identificazione e distribuzione nei mari italiani di specie non indigene TAGLIA MASSIMA VIE DI DISPERSIONE SECONDARIE 120 mm STADI LARVALI STATO DELL ’INVASIONE Alieno. SPECIE SIMILI MOTIVI DEL SUCCESSO CARATTERI DISTINTIVI La tipica colorazione distingue questa specie dalle altre specie appartenenti alla
    [Show full text]
  • Growth of Chaetodon Larvatus (Chaetodontidae: Pisces) in the Southern Red Sea
    Marine Biology (2006) 148: 1113–1122 DOI 10.1007/s00227-005-0146-7 RESEARCH ARTICLE Z. A. Zekeria Æ S. Weertman Æ B. Samuel Æ T. Kale-ab J. J. Videler Growth of Chaetodon larvatus (Chaetodontidae: Pisces) in the southern Red Sea Received: 22 March 2004 / Accepted: 15 August 2005 / Published online: 15 November 2005 Ó Springer-Verlag 2005 Abstract Growth and age of Chaetodon larvatus were vertebrae to estimate age while the second is based on studied using growth bands in otoliths and length-fre- the length distribution of fish in a cohort and monitors quency analyses. Otoliths of 180 C. larvatus were ex- changes in the distribution with time. Both methods tracted and measured. Polished sections of sagittae have been widely employed for growth and ageing revealed alternating opaque and translucent bands cor- studies of temperate fishes and yielded good results. responding with a seasonal growth pattern. Both mass Until recently, the methods were not used for tropical and size of the otoliths continue to grow steadily fish growth studies for two reasons. First, tropical fish throughout life. Length-at-age data revealed very fast were assumed to lack seasonal growth patterns. This was growth during the first year. Growth proceeded at a thought to result in poorly developed growth marks in decreasing rate during the second and the third year; the hard parts (Brothers 1980). Second, tropical fishes fishes older than 3 years did not grow noticeably. No were believed to lack seasonality in recruitment. Pro- difference in growth patterns between males and females tracted recruitment would result in skewed and bimodal could be detected.
    [Show full text]
  • Adec Preview Generated PDF File
    Rec. West. Aust. Mus., 1977,6 (1) FIVE PROBABLE HYBRID BUTTERFLYFISHES OF THE GENUS CHAETODON FROM THE CENTRAL AND WESTERN PACIFIC JOHN E. RANDALL* GERALD R. ALLENt and ROGERC. STEENEf [Received 19 September 1976. Accepted 5 May 1977. Published 30 December 1977.] ABSTRACT The following five cases of probable hybridisation in marine butterflyfishes (genus Chaetodon) are reported: C. auriga x C. ephippium (Tuamotu Archipelago), C. ephippium x C. semeion (Marshall Islands), C. kleini x C. unimaculatus (Marshall Islands), C. miliaris x C. tinkeri (Hawaiian Islands), and C. aureofasciatus x C. rainfordi (Great Barrier Reef). Comparisons between the presumed hybrids and their respective parent species are presented, and each trio is illustrated. In addition, a discussion of possible conditions responsible for hybridisation in chaetodontids is included. INTRODUCTION Relatively few marine fishes have been reported as hybrids; of 212 fish hybrids listed by Slastenenko (1957), only 30 were inhabitants of the sea. The same preponderance of freshwater hybrids over marine is apparent in the review by Schwartz (1972) of the hybrid fishes of the world. In the present paper data are given for five presumed hybrids of the marine butterflyfish genus Chaetodon (family Chaetodontidae). In addition, the junior authors have observed (but not collected) probable hybrid crosses between C. ornatissimus - C. meyeri and C. pelewensis - C. punctatofasciatus at Palau, New Britain, and the northern Great Barrier Reef. *Bernice P. Bishop Museum, P.O. Box 6037, Honolulu, Hawaii 96818, D.S.A. tWestern Australian Museum, Francis Street, Perth, Australia 6000. fp.o. Box 188, Cairns, Queensland, Australia 4870. 3 Chaetodontids have not been reported previou~ly as hybrids, although this phenomenon has been documented in the closely related angelfishes (Pomacanthidae).
    [Show full text]
  • And Platycephalus Indicus (Teleostei: Platycephalidae) in the Mediterranean Sea
    BioInvasions Records (2012) Volume 1, Issue 1: 53–57 doi: http://dx.doi.org/10.3391/bir.2012.1.1.12 Open Access © 2012 The Author(s). Journal compilation © 2012 REABIC Aquatic Invasions Records Recent evidence on the presence of Heniochus intermedius (Teleostei: Chaetodontidae) and Platycephalus indicus (Teleostei: Platycephalidae) in the Mediterranean Sea Michel Bariche Department of Biology, Faculty of Arts and Sciences, American University of Beirut, PO Box 11-0236, Beirut, Lebanon E-mail: [email protected] Received: 4 January 2012 / Accepted: 23 February 2012 / Published online: 7 March 2012 Handling editor: Ernesto Azzurro, ISPRA, Institute for Environmental Protection and Research, Italy Abstract A second specimen of the Red Sea bannerfish Heniochus intermedius Steindachner, 1893 and a specimen of the Bartail flathead Platycephalus indicus (Linnaeus, 1758) have been recently collected from Lebanon (eastern Mediterranean). The two alien species constitute very rare occurrences in the Mediterranean; the first record of H. intermedius dates back to 2002 and only a few P. indicus individuals were collected between the 1950s and 1970s. Their presence in the Mediterranean is discussed as well as possible future trends in light of recent environmental changes. Key words: Heniochus intermedius, Platycephalus indicus, alien species, Lessepsian migration, Lebanon, eastern Mediterranean Introduction associated to coral reefs (Randall 1983; CIESM 2009). Butterflyfishes (Chaetodontidae) are marine Flatheads (Platycephalidae) are large bottom fishes that can be easily recognized by a deep dwelling fishes found mostly in the Indo-Pacific compressed body, small terminal and protractile area. They are characterized by an elongate mouth and bright coloration patterns (Randall body, a depressed head and a large mouth, with 1983; Nelson 2006).
    [Show full text]
  • Housereef Marineguide
    JUVENILE YELLOW BOXFISH (Ostracion cubicus) PHUKET MARRIOTT RESORT & SPA, MERLIN BEACH H O U S E R E E F M A R I N E G U I D E 1 BRAIN CORAL (Platygyra) PHUKET MARRIOTT RESORT & SPA, MERLIN BEACH MARINE GUIDE Over the past three years, Marriott and the IUCN have been working together nationwide on the Mangroves for the Future Project. As part of the new 5-year environmental strategy, we have incorporated coral reef ecosystems as part of an integrated coastal management plan. Mangrove forests and coral reefs are the most productive ecosystems in the marine environment, and thus must be kept healthy in order for marine systems to flourish. An identication guide to the marine life on the hotel reef All photos by Sirachai Arunrungstichai at the Marriott Merlin Beach reef 2 GREENBLOTCH PARROTFISH (Scarus quoyi) TABLE OF CONTENTS: PART 1 : IDENTIFICATION Fish..................................................4 PHUKET MARRIOTT RESORT & SPA, Coral..............................................18 MERLIN BEACH Bottom Dwellers.........................21 HOUSE REEF PART 2: CONSERVATION Conservation..........................25 MARINE GUIDE 3 GOLDBAND FUSILIER (Pterocaesio chrysozona) PART 1 IDENTIFICATION PHUKET MARRIOTT RESORT & SPA, MERLIN BEACH HOUSE REEF MARINE GUIDE 4 FALSE CLOWN ANEMONEFISH ( Amphiprion ocellaris) DAMSELFISHES (POMACE NTRIDAE) One of the most common groups of fish on a reef, with over 320 species worldwide. The most recognized fish within this family is the well - known Clownfish or Anemonefish. Damselfishes range in size from a few
    [Show full text]
  • The Global Trade in Marine Ornamental Species
    From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak ACKNOWLEDGEMENTS UNEP World Conservation This report would not have been The authors would like to thank Helen Monitoring Centre possible without the participation of Corrigan for her help with the analyses 219 Huntingdon Road many colleagues from the Marine of CITES data, and Sarah Ferriss for Cambridge CB3 0DL, UK Aquarium Council, particularly assisting in assembling information Tel: +44 (0) 1223 277314 Aquilino A. Alvarez, Paul Holthus and and analysing Annex D and GMAD data Fax: +44 (0) 1223 277136 Peter Scott, and all trading companies on Hippocampus spp. We are grateful E-mail: [email protected] who made data available to us for to Neville Ash for reviewing and editing Website: www.unep-wcmc.org inclusion into GMAD. The kind earlier versions of the manuscript. Director: Mark Collins assistance of Akbar, John Brandt, Thanks also for additional John Caldwell, Lucy Conway, Emily comments to Katharina Fabricius, THE UNEP WORLD CONSERVATION Corcoran, Keith Davenport, John Daphné Fautin, Bert Hoeksema, Caroline MONITORING CENTRE is the biodiversity Dawes, MM Faugère et Gavand, Cédric Raymakers and Charles Veron; for assessment and policy implemen- Genevois, Thomas Jung, Peter Karn, providing reprints, to Alan Friedlander, tation arm of the United Nations Firoze Nathani, Manfred Menzel, Julie Hawkins, Sherry Larkin and Tom Environment Programme (UNEP), the Davide di Mohtarami, Edward Molou, Ogawa; and for providing the picture on world’s foremost intergovernmental environmental organization.
    [Show full text]
  • Behavioral and Ecological Correlates of Foureye Butterflyfish, Chaetodon
    Rev. Biol. Trop., 51, Supl. 4: 77-81, 2003 www.rbt.ac.cr, www.ucr.ac.cr Behavioral and ecological correlates of foureye butterflyfish, Chaetodon capistratus, (Perciformes: Chaetodontidae) infected with Anilocra chaetodontis (Isopoda: Cymothoidae) Dwayne W. Meadows and Christina M. Meadows Department of Zoology, Weber State University, Ogden, UT 84408-2505, U.S.A. Current address: 789 Mahealani Place, Kihei, HI 96753, U. S. A. Phone (808) 879-4921, e-mail: [email protected] (Received 31-VIII-2001. Corrected 11-III-2002. Accepted 22-XI-2002) Abstract: We observed the behavior and ecology of Chaetodon capistratus infected and uninfected with the ecto- parasitic isopod Anilocra chaetodontis to assess whether there may be parasite induced alterations in host biology, host defenses against infection, and/or pathology related to infection. We also examined habitat related differences in infection rates. Infected fish had higher rates of interaction with conspecifics and spent more time in low flow envi- ronments (which might improve transmission of juvenile parasites to new hosts). Butterflyfish without isopods were chased more frequently by damselfishes, fed more, and had larger territories. Time spent near conspecifics, and fish condition and gonadosomatic index did not vary between infected and uninfected fish. These results suggest that foureye butterflyfish behavior is altered by the isopod parasite in order for the isopods to more easily gain mates or transmit offspring to new hosts. Key words: Caribbean, coral reef, fish, host behavior, parasite, isopod. Animals infected with parasites often be- studies examining whether parasites alter be- have differently than uninfected conspecifics havior in definitive hosts (see reviews in (see reviews in Moore 1995, Poulin 1995).
    [Show full text]
  • Andrew David Dorka Cobián Rojas Felicia Drummond Alain García Rodríguez
    CUBA’S MESOPHOTIC CORAL REEFS Fish Photo Identification Guide ANDREW DAVID DORKA COBIÁN ROJAS FELICIA DRUMMOND ALAIN GARCÍA RODRÍGUEZ Edited by: John K. Reed Stephanie Farrington CUBA’S MESOPHOTIC CORAL REEFS Fish Photo Identification Guide ANDREW DAVID DORKA COBIÁN ROJAS FELICIA DRUMMOND ALAIN GARCÍA RODRÍGUEZ Edited by: John K. Reed Stephanie Farrington ACKNOWLEDGMENTS This research was supported by the NOAA Office of Ocean Exploration and Research under award number NA14OAR4320260 to the Cooperative Institute for Ocean Exploration, Research and Technology (CIOERT) at Harbor Branch Oceanographic Institute-Florida Atlantic University (HBOI-FAU), and by the NOAA Pacific Marine Environmental Laboratory under award number NA150AR4320064 to the Cooperative Institute for Marine and Atmospheric Studies (CIMAS) at the University of Miami. This expedition was conducted in support of the Joint Statement between the United States of America and the Republic of Cuba on Cooperation on Environmental Protection (November 24, 2015) and the Memorandum of Understanding between the United States National Oceanic and Atmospheric Administration, the U.S. National Park Service, and Cuba’s National Center for Protected Areas. We give special thanks to Carlos Díaz Maza (Director of the National Center of Protected Areas) and Ulises Fernández Gomez (International Relations Officer, Ministry of Science, Technology and Environment; CITMA) for assistance in securing the necessary permits to conduct the expedition and for their tremendous hospitality and logistical support in Cuba. We thank the Captain and crew of the University of Miami R/V F.G. Walton Smith and ROV operators Lance Horn and Jason White, University of North Carolina at Wilmington (UNCW-CIOERT), Undersea Vehicle Program for their excellent work at sea during the expedition.
    [Show full text]
  • University of Groningen Butterflyfishes of the Southern Red Sea Zekeria
    University of Groningen Butterflyfishes of the Southern Red Sea Zekeria, Zekeria Abdulkerim IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2003 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Zekeria, Z. A. (2003). Butterflyfishes of the Southern Red Sea: Ecology and population dynamics. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 26-09-2021 Butterflyfishes of the Southern Red Sea 31 Chapter 4 Resource Partitioning among Four Butterflyfish Species Z. A. Zekeria, Y. Dawit, S. Ghebremedhin, M. Naser and J. J. Videler Published in Marine and Freshwater Research. 2002,vol. 53, pp.1-6. 32 Chapter 4. Resource Partitioning Abstract Feeding habits and territorial behaviour of four sympatric Red Sea butterflyfishes were investigated in the Eritrean coastal waters.
    [Show full text]
  • Centropomidae
    click for previous page CENTRP 1983 FAO SPECIES IDENTIFICATION SHEETS FISHING AREA 51 (W. Indian Ocean) CENTROPOMIDAE Barramundis, sea perches Body elongate or oblong, compressed, dorsal profile concave at nape. Mouth large, jaws equal or with lower longer than upper; teeth small, in narrow or villiform bands on jaws and on vomer and palatines (roof of mouth), sometimes also on tongue; preopercle with a serrated posterior border or with 2 ridges; opercle with a single spine. Dorsal fin almost wholly separated into 2, with 7 or 8 stronq spines in front, followed by 1 spine and 10 to 15 soft rays; pelvic fins below pectoral fins, with a stronq spine and 5 soft rays; anal fin short, with 3 spines and 8 to 13 soft rays; caudal fin rounded. Scales usually large, ctenoid and adherent; lateral line continued onto caudal fin. Colour: usually dark grey or green above and silvery below. Medium- to large-sized bottom-living fishes occurring in coastal waters, estuaries and lagoons, in depths between about 10 and 30 m. Highly esteemed food and sport fishes taken mainly by artisanal fisheries. dorsal fins almost separate lateral line single spine continued onto tail concave - 2 - FAO Sheets CENTROPOMIDAE Fishing Area 51 SIMILAR FAMILIES OCCURRING IN THE AREA: Serranidae: spinous and soft parts of dorsal fin not as deeply notched; also, colour pattern distinctive and/or caudal fin truncate or weakly emarginate in some. Lethrinidae, Lutjanidae: dorsal fin not deeply notched, head profile not concave over eye and canine teeth present in some. Sciaenidae: lateral line also extends onto tail, but only 2 anal spines.
    [Show full text]
  • Portent Or Accident? Two New Records of Thermophilic Fish from the Central Mediterranean
    BioInvasions Records (2015) Volume 4, Issue 4: 299–304 Open Access doi: http://dx.doi.org/10.3391/bir.2015.4.4.12 © 2015 The Author(s). Journal compilation © 2015 REABIC Rapid Communication Portent or accident? Two new records of thermophilic fish from the central Mediterranean 1 2 1 Julian Evans *, Reno Tonna and Patrick J. Schembri 1Department of Biology, University of Malta, Msida MSD2080, Malta 2Namaste Flat 5, Triq il-Merzuq, Birzebbuga, Malta E-mail: [email protected] (JE), [email protected] (RT), [email protected] (PJS) *Corresponding author Received: 19 April 2015 / Accepted: 10 August 2015 / Published online: 14 September 2015 Handling editor: John Mark Hanson Abstract The blue tang Acanthurus coeruleus Bloch and Schneider, 1801 and the Red Sea bannerfish Heniochus intermedius Steindachner, 1893 are reported for the first time from the Maltese Islands, which also represents the first central Mediterranean record for both species. The new records are based on an individual of A. coeruleus observed in October 2013 and a specimen of H. intermedius caught in November 2014; no individuals of either species have been found since. The occurrence of these species in Malta may be due to a westwards range expansion in the Mediterranean, given that both species were previously recorded from the Levantine Sea, but they could also have been introduced directly in Maltese waters through the aquarium trade or by shipping, particularly since evidence for established populations in the eastern Mediterranean is lacking. The relevance of these new additions of thermophilic fishes to the central Mediterranean ichthyofauna is discussed in relation to ongoing biotic changes in this sea.
    [Show full text]