HSDB Home > HSDB Search Results > Full Record
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dichloroethylene
Development Support Document Final, October 15, 2007 Accessible 2013 1,1-Dichloroethylene CAS Registry Number: 75-35-4 Prepared by Shannon Ethridge, M.S. Toxicology Section Chief Engineer’s Office ___________________________________________________________ TEXAS COMMISSION ON ENVIRONMENTAL QUALITY 1,1 Dichloroethylene Page 2 TABLE OF CONTENTS CHAPTER 1 SUMMARY TABLES ........................................................................................... 4 CHAPTER 2 MAJOR USES OR SOURCES ............................................................................ 6 CHAPTER 3 ACUTE EVALUATION ....................................................................................... 6 3.1 HEALTH-BASED ACUTE REV AND ESL ................................................................................. 6 3.1.1 Physical/Chemical Properties and Key Studies ............................................................. 6 3.1.2 Mode-of-Action (MOA) Analysis ................................................................................. 10 3.1.3 Dose Metric .................................................................................................................. 10 3.1.4 Point of Departure (POD) for the Key Study............................................................... 10 3.1.5 Dosimetric Adjustments ............................................................................................... 11 3.1.6 Critical Effect and Adjustment of PODHEC .................................................................. 11 3.1.7 Health-Based -
Tall Man Lettering List REPORT DECEMBER 2013 1
Tall Man Lettering List REPORT DECEMBER 2013 1 TALL MAN LETTERING LIST REPORT WWW.HQSC.GOVT.NZ Published in December 2013 by the Health Quality & Safety Commission. This document is available on the Health Quality & Safety Commission website, www.hqsc.govt.nz ISBN: 978-0-478-38555-7 (online) Citation: Health Quality & Safety Commission. 2013. Tall Man Lettering List Report. Wellington: Health Quality & Safety Commission. Crown copyright ©. This copyright work is licensed under the Creative Commons Attribution-No Derivative Works 3.0 New Zealand licence. In essence, you are free to copy and distribute the work (including other media and formats), as long as you attribute the work to the Health Quality & Safety Commission. The work must not be adapted and other licence terms must be abided. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nd/3.0/nz/ Copyright enquiries If you are in doubt as to whether a proposed use is covered by this licence, please contact: National Medication Safety Programme Team Health Quality & Safety Commission PO Box 25496 Wellington 6146 ACKNOWLEDGEMENTS The Health Quality & Safety Commission acknowledges the following for their assistance in producing the New Zealand Tall Man lettering list: • The Australian Commission on Safety and Quality in Health Care for advice and support in allowing its original work to be either reproduced in whole or altered in part for New Zealand as per its copyright1 • The Medication Safety and Quality Program of Clinical Excellence Commission, New South -
Health Effects Support Document for Hexachlorobutadiene Health Effects Support Document for Hexachlorobutadiene
Health Effects Support Document for Hexachlorobutadiene Health Effects Support Document for Hexachlorobutadiene U.S. Environmental Protection Agency Office of Water (4304T) Health and Ecological Criteria Division Washington, DC 20460 www.epa.gov/safewater/ EPA 822-R-03-002 February 2003 Printed on Recycled Paper FOREWORD The Safe Drinking Water Act (SDWA), as amended in 1996, requires the Administrator of the Environmental Protection Agency (EPA) to establish a list of contaminants to aid the agency in regulatory priority setting for the drinking water program. In addition, SDWA requires EPA to make regulatory determinations for no fewer than five contaminants by August 2001. The criteria used to determine whether or not to regulate a chemical on the CCL are the following: The contaminant may have an adverse effect on the health of persons. The contaminant is known to occur or there is a substantial likelihood that the contaminant will occur in public water systems with a frequency and at levels of public health concern. In the sole judgment of the administrator, regulation of such contaminant presents a meaningful opportunity for health risk reduction for persons served by public water systems. The Agency’s findings for the three criteria are used in making a determination to regulate a contaminant. The Agency may determine that there is no need for regulation when a contaminant fails to meet one of the criteria. This document provides the health effects basis for the regulatory determination for hexachlorobutadiene. In arriving at the regulatory determination, data on toxicokinetics, human exposure, acute and chronic toxicity to animals and humans, epidemiology, and mechanisms of toxicity were evaluated. -
Toxicological Profile for 1,1-Dichloroethene Draft for Public Comment December 2019 1,1-DICHLOROETHENE Ii
F Toxicological Profile for 1,1-Dichloroethene Draft for Public Comment December 2019 1,1-DICHLOROETHENE ii DISCLAIMER Use of trade names is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry, the Public Health Service, or the U.S. Department of Health and Human Services. This information is distributed solely for the purpose of pre dissemination public comment under applicable information quality guidelines. It has not been formally disseminated by the Agency for Toxic Substances and Disease Registry. It does not represent and should not be construed to represent any agency determination or policy. ***DRAFT FOR PUBLIC COMMENT*** 1,1-DICHLOROETHENE iii FOREWORD This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for these toxic substances described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced. The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile begins with a relevance to public health discussion which would allow a public health professional to make a real-time determination of whether the presence of a particular substance in the environment poses a potential threat to human health. -
Depletion of Trace Elements and Acute Ocular Toxicity Induced by Desferrioxamine in Patients with Thalassaemia
Arch Dis Child: first published as 10.1136/adc.63.3.250 on 1 March 1988. Downloaded from Archives of Disease in Childhood, 1988, 63, 250-255 Depletion of trace elements and acute ocular toxicity induced by desferrioxamine in patients with thalassaemia S DE VIRGILIIS, M CONGIA, M P TURCO, F FRAU, C DESSI, F ARGIOLU, R SORCINELLI,* A SITZIA,* AND A CAO Istituto di Clinica e Biologia dell Eta' Evolutiva, Universita' Studi Cagliari, and *Istituto di Clinica Oculistica, Universita' Studi Cagliari, Cagliari, Sardinia, Italy SUMMARY High doses of intravenous desferrioxamine infused over a short period of time induce a large faecal and urinary iron excretion but also produce retinal abnormalities that are characterised by decreased amplitude on electroretinography and defective dark adaptation. This regimen also results in high faecal iron, zinc, and copper excretion, and reduced granulocyte zinc concentrations and alkaline phosphatase activity. The retinal abnormalities may be related to the zinc and copper deficiency and/or iron depletion 'per se' which interferes negatively with critical iron dependent enzymes. Subcutaneous infusion of desferrioxamine is the comply with the regimen of subcutaneous adminis- most efficient method for reducing the iron burden tration. in patients with thalassaemia major who are trans- fusion dependent.1 The daily infusion of 40- Patients and methods 60 mg/kg over 12 hours for six days a week is usually sufficient to obtain iron balance.'v Because some Fifteen children, aged from 9 to 16 years, with http://adc.bmj.com/ -
1,1-Dichloroethene (Vinylidene Chloride)
This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization, or the World Health Organization. Concise International Chemical Assessment Document 51 1,1-DICHLOROETHENE (VINYLIDENE CHLORIDE) Please note that the pagination and layout of this web version are not identical to the printed CICAD First draft prepared by Dr Bob Benson, US Environmental Protection Agency, Denver, Colorado, USA Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2003 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 by UNEP, ILO, the Food and Agriculture Organization of the United Nations, WHO, the United Nations Industrial Development Organization, the United Nations Institute for Training and Research, and the Organisation for Economic Co-operation and Development (Participating Organizations), following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase coordination in the field of chemical safety. -
Chelation Therapy
Corporate Medical Policy Chelation Therapy File Name: chelation_therapy Origination: 12/1995 Last CAP Review: 2/2021 Next CAP Review: 2/2022 Last Review: 2/2021 Description of Procedure or Service Chelation therapy is an established treatment for the removal of metal toxins by converting them to a chemically inert form that can be excreted in the urine. Chelation therapy comprises intravenous or oral administration of chelating agents that remove metal ions such as lead, aluminum, mercury, arsenic, zinc, iron, copper, and calcium from the body. Specific chelating agents are used for particular heavy metal toxicities. For example, desferroxamine (not Food and Drug Administration [FDA] approved) is used for patients with iron toxicity, and calcium-ethylenediaminetetraacetic acid (EDTA) is used for patients with lead poisoning. Note that disodium-EDTA is not recommended for acute lead poisoning due to the increased risk of death from hypocalcemia. Another class of chelating agents, called metal protein attenuating compounds (MPACs), is under investigation for the treatment of Alzheimer’s disease, which is associated with the disequilibrium of cerebral metals. Unlike traditional systemic chelators that bind and remove metals from tissues systemically, MPACs have subtle effects on metal homeostasis and abnormal metal interactions. In animal models of Alzheimer’s disease, they promote the solubilization and clearance of β-amyloid protein by binding to its metal-ion complex and also inhibit redox reactions that generate neurotoxic free radicals. MPACs therefore interrupt two putative pathogenic processes of Alzheimer’s disease. However, no MPACs have received FDA approval for treating Alzheimer’s disease. Chelation therapy has also been investigated as a treatment for other indications including atherosclerosis and autism spectrum disorder. -
Cardiotoxicity of Doxorubicin Is Mediated Through Mitochondrial Iron Accumulation
Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation Yoshihiko Ichikawa, … , Tejaswitha Jairaj Naik, Hossein Ardehali J Clin Invest. 2014;124(2):617-630. https://doi.org/10.1172/JCI72931. Research Article Cardiology Doxorubicin is an effective anticancer drug with known cardiotoxic side effects. It has been hypothesized that doxorubicin- dependent cardiotoxicity occurs through ROS production and possibly cellular iron accumulation. Here, we found that cardiotoxicity develops through the preferential accumulation of iron inside the mitochondria following doxorubicin treatment. In isolated cardiomyocytes, doxorubicin became concentrated in the mitochondria and increased both mitochondrial iron and cellular ROS levels. Overexpression of ABCB8, a mitochondrial protein that facilitates iron export, in vitro and in the hearts of transgenic mice decreased mitochondrial iron and cellular ROS and protected against doxorubicin-induced cardiomyopathy. Dexrazoxane, a drug that attenuates doxorubicin-induced cardiotoxicity, decreased mitochondrial iron levels and reversed doxorubicin-induced cardiac damage. Finally, hearts from patients with doxorubicin-induced cardiomyopathy had markedly higher mitochondrial iron levels than hearts from patients with other types of cardiomyopathies or normal cardiac function. These results suggest that the cardiotoxic effects of doxorubicin develop from mitochondrial iron accumulation and that reducing mitochondrial iron levels protects against doxorubicin- induced cardiomyopathy. Find the latest version: https://jci.me/72931/pdf Research article Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation Yoshihiko Ichikawa,1 Mohsen Ghanefar,1 Marina Bayeva,1 Rongxue Wu,1 Arineh Khechaduri,1 Sathyamangla V. Naga Prasad,2 R. Kannan Mutharasan,1 Tejaswitha Jairaj Naik,1 and Hossein Ardehali1 1Feinberg Cardiovascular Institute, Northwestern University School of Medicine, Chicago, Illinois, USA. -
Effect of Antioxidant Treatment of Streptozotocin-Induced Diabetic Rats on Endoneurial Blood Flow, Motor Nerve Conduction Veloci
Effect of Antioxidant Treatment of Streptozotocin-Induced Diabetic Rats on Endoneurial Blood Flow, Motor Nerve Conduction Velocity, and Vascular Reactivity of Epineurial Arterioles of the Sciatic Nerve Lawrence J. Coppey, Jill S. Gellett, Eric P. Davidson, Joyce A. Dunlap, Donald D. Lund, and Mark A. Yorek We have shown that diabetes-induced reduction in en- vascular and neural complications. Diabetes 50: doneurial blood flow (EBF) and impaired endothelium- 1927–1937, 2001 dependent vascular relaxation precede slowing of motor nerve conduction velocity (MNCV) and decreased sci- -atic nerve Na؉/K؉ ATPase activity. Furthermore, vascu lar dysfunction was accompanied by an accumulation of xidative stress has been defined as a distur- superoxide in arterioles that provide circulation to the bance in the balance between the production of sciatic nerve. In the present study, we examined the reactive oxygen species—oxygen-free radicals, effect that treatment of streptozotocin-induced diabetic i.e., hydroxyl radical (OH•), superoxide anion rats with antioxidants has on vascular and neural func- O• (O 2–), and H2O2—and antioxidant defenses, which may tion. Diabetic rats were treated with 0.5% ␣-lipoic acid lead to tissue injury (1). Oxidative stress and the damage as a diet supplement or with hydroxyethyl starch defer- that it causes have been implicated in a wide variety of oxamine (HES-DFO) by weekly intravenous injections natural and pathological processes, including aging, can- at a dose of 75 mg/kg. The treatments significantly improved diabetes-induced decrease in EBF, acetylcho- cer, diabetes, atherosclerosis, neurological degeneration, line-mediated vascular relaxation in arterioles that pro- schizophrenia, and autoimmune disorders, such as arthri- vide circulation to the region of the sciatic nerve, and tis (2). -
Review of Oral Iron Chelators (Deferiprone and Deferasirox) for the Treatment of Iron Overload in Pediatric Patients
Review of Oral Iron Chelators (Deferiprone and Deferasirox) for the Treatment of Iron Overload in Pediatric Patients D. Adam Algren, MD Assistant Professor of Pediatrics and Emergency Medicine Division of Pediatric Pharmacology and Medical Toxicology Departments of Pediatrics and Emergency Medicine Children’s Mercy Hospitals and Clinics/Truman Medical Center University of Missouri-Kansas City School of Medicine 1 PROPOSAL The World Health Organization Model List of Essential Medicines and Model Formulary 2010 list deferoxamine (DFO) as the treatment of choice for both acute and chronic iron poisoning. The Model Formulary currently does not designate any orally administered agents for the chelation of iron. It is proposed that deferasirox be considered the oral chelator of choice in the treatment of chronic iron overload. Deferasirox is widely available recent evidence support that it is both safe and efficacious. INTRODUCTION Acute iron poisoning and chronic iron overload result in significant morbidity and mortality worldwide. Treatment of acute iron poisoning and chronic iron overload can be challenging and care providers are often confronted with management dilemmas. Oral iron supplements are commonly prescribed for patients with iron deficiency anemia. The wide availability of iron supplements and iron-containing multivitamins provide easy accessibility for both adults and children. The approach to treatment of acute iron toxicity involves providing adequate supportive care, optimizing hemodynamic status and antidotal therapy with IV deferoxamine, when indicated.1 Early following an acute ingestion gastrointestinal (GI) decontamination can be potentially beneficial. Multiple options exist including: syrup of ipecac, gastric lavage, and whole bowel irrigation (WBI). Although definitive evidence that GI decontamination decreases morbidity and mortality is lacking it is often considered to be beneficial. -
Iron Chelating Agents
Pharmacy Benefit Coverage Criteria Effective Date ............................................ 1/1/2021 Next Review Date… ..................................... 1/1/2022 Coverage Policy Number ................................ P0090 Iron Chelating Agents Table of Contents Related Coverage Resources Medical Necessity Criteria ................................... 1 Dimercaprol and Edetate Calcium Disodium FDA Approved Indications ................................... 3 Penicillamine and trientene hydrochloride Recommended Dosing ........................................ 4 Background .......................................................... 8 References ........................................................ 11 INSTRUCTIONS FOR USE The following Coverage Policy applies to health benefit plans administered by Cigna Companies. Certain Cigna Companies and/or lines of business only provide utilization review services to clients and do not make coverage determinations. References to standard benefit plan language and coverage determinations do not apply to those clients. Coverage Policies are intended to provide guidance in interpreting certain standard benefit plans administered by Cigna Companies. Please note, the terms of a customer’s particular benefit plan document [Group Service Agreement, Evidence of Coverage, Certificate of Coverage, Summary Plan Description (SPD) or similar plan document] may differ significantly from the standard benefit plans upon which these Coverage Policies are based. For example, a customer’s benefit plan document may -
Changes in Tissue Gadolinium Biodistribution Measured in an Animal Model Exposed to Four Chelating Agents
Japanese Journal of Radiology (2019) 37:458–465 https://doi.org/10.1007/s11604-019-00835-1 ORIGINAL ARTICLE Changes in tissue gadolinium biodistribution measured in an animal model exposed to four chelating agents Türker Acar1,6 · Egemen Kaya2 · Mustafa Deniz Yoruk3 · Neslihan Duzenli4 · Recep Selim Senturk4 · Cenk Can4 · Lokman Ozturk3 · Canberk Tomruk5 · Yigit Uyanikgil5 · Frank J. Rybicki6 Received: 17 December 2018 / Accepted: 22 March 2019 / Published online: 30 March 2019 © Japan Radiological Society 2019 Abstract Purpose This study investigated the potential to reduce gadolinium levels in rodents after repetitive IV Gadodiamide admin- istration using several chelating agents. Materials and methods The following six groups of rats were studied. Group 1: Control; Group 2: Gadodiamide only; Group 3: Meso-2,3-Dimercaptosuccinic acid (DMSA) + Gadodiamide; Group 4: N-Acetyl-L-cysteine (NAC) + Gadodiamide; Group 5: Coriandrum sativum extract + Gadodiamide; and Group 6: Deferoxamine + Gadodiamide. Brain, kidney, and blood samples were evaluated via inductively coupled plasma mass spectrometry. The brain was also evaluated histologically. Results Kidney gadolinium levels in Groups 4 and 5 were approximately double that of Group 2 (p = 0.033 for each). There was almost no calcifcation in rat hippocampus for Group 4 rodents when compared with Groups 2, 3, 5 and 6. Conclusion Our preliminary study shows that excretion to the kidney has a higher propensity in NAC and Coriandrum sati- vum groups. It may be possible to change the distribution of gadolinium by administrating several agents. NAC may lower Gadodiamide-induced mineralization in rat hippocampus. Keywords Gadolinium deposition · Dimercaptosuccinic acid · N-Acetyl-L-cysteine · Coriandrum sativum · Deferoxamine Introduction However, the safety profle of gadolinium-based agents [1] was questioned after the discovery of nephrogenic sys- Gadolinium-based contrast agents (GBCA) have been safely temic fbrosis [2], a scleroderma-like disease characterized used in diagnostic radiology since the 1980s.