<<

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2020 doi:10.20944/preprints202002.0350.v1

Article Random pullback attractor of a non-autonomous local modified stochastic Swift-Hohenberg with multiplicative noise

Yongjun Li 1*, Tinggang Zhao1 and Hongqing Wu1

1 School of Mathematics, Lanzhou City University, Lanzhou, 730070, P.R. China; [email protected] (Y. Li); [email protected](T.Zhao); [email protected](H.Wu), * Correspondence: [email protected] (Y. Li)

Abstract: In this paper, we study the existence of the random -pullback attractor of a non-autonomous local modified stochastic Swift-Hohenberg equation with multiplicative noise in 2 stratonovich sense. It is shown that a random -pullback attractor exists in H0 (D) when its external force has exponential growth. Due to the stochastic term, the estimate are delicate, we overcome this difficulty by using the Ornstein-Uhlenbeck(O-U) transformation and its properties.

Keywords: Swift-Hohenberg equation; Random -pullback attractor; Non-autonomous random

1. Introduction The Swift-Hohenberg(S-H) type equations arise in the study of convective hydrodynamical, plasma confinement in toroidal and viscous film flow, was introduced by authors in [1]. After that, Doelman and Standstede [2] proposed the following modified Swift-Hohenberg equation for a pattern formation system near the onset to instability

223 uuuaubuut + ++++=2||0, (1.1)

where a and b are arbitrary constants. We can see from the above equation that there exist two operators  and 2 , these two operators 1 2 have some symmetry, for any uHD 0 (), the inner product (,)(,)=uuuu −  =‖u‖ , for any 2 2 2 2 u H0 () D , (,)(,)==u uu u ‖u‖ ,  is antisymmetry and  is symmetry. We will use the symmetry principle study S-H equation. The dynamical properties of the S-H equation are important for the studies pattern formation system have been extensively investigated by many authors; see [3-8]. Polat [8] establish the existence of global attractor for the system (1.1), and then Song et al. [7] improved the result in H.k Recently for non-autonomous modified S-H equation:

duuu+(2| 22 au + |( b 3  , ))( + u ) + u  g x t+ dt −= lu dW t , (1.2)

it has also attracted the interest of many authors. If l = 0 , equation (1.2) becomes a non-autonomous modified S-H equaiton. Park [9] proved the existence of -pullback attractor when the external force has exponential growth, Xu et al.[10] established the existence of uniform attractor when the external force g(x,t) satisfies translation bounded, these results need the spatial variable in two dimensions. When l = 0 , equation (1.2) becomes a non-autonomous stochastic S-H equation, if |b|<< 1 is a constant, Guo et al.[11] investigated the equation when g(x,t) = 0 and proved the existence of random attractor which need the spatial variable in one dimension. For g( x , t )= 0, to the best of our knowledge, the existence of random -pullback attractor for equation (1.2) has not yet considered.

© 2020 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2020 doi:10.20944/preprints202002.0350.v1

In this paper, we consider the following one dimensional non-autonomous local modified stochastic S-H equation with multiplicative noise:

223 (1.3) duuuaubuug+++++−=(2(, ))( ),[ xxxx tdtludW ,), tin D 

uuxD==xx 0,, (1.4) (1.5) u x( , u ) ,x D= 2 Where D is a bounded open interval, Δu means uxx , and Δ u means uxxxx, |b|< 4 , a and l are arbitrary constants, W(t) is a two-sided real-valued Wiener process on a probability space which will 2 2 be specified later. For the external force g(x)∈ Lloc(R,L (D)), we assume that there exist M > 0 and β > 0 such that

(1.6)

The assumption is same as [8, 12], through simple calculation, for all t∈ R , we have

(1.7)

An outline of this paper is as follows: In section 2, we recall some basic concepts about random -pullback attractors. In Section 3, we prove that the stochastic dynamical system generated by 2 (1.3) exists a random -pullback attractor in H0 (D) .

2.2 Preliminaries There are many research results on random attractors and related issues. The reader is referred to [13-19] for more details, we only list the definitions and abstract result

Let ( X ,‖‖ X ) be a separable Banach space with Borel  -algebra ()X and (,,) be a probability space. In this paper, the term -a.s.(the abbreviation for almost surely) denotes that an event happens with probability one. In other words, the set of possible exception may be non-empty, but it has probability zero.

Definition 2.1.([15,16,20,21]) (,,,()) tt is called a metric dynamical systems if  :  →  is

((),)  -measurable,and 0 is the identity on  , stts+ = for all ts,  and t = for all t  . Definition 2.2.([12,13,18]) A non-autonomous (NRDS) ( , ) on X over a

metric dynamical system (,,,()) tt is a mapping (tXXtxtx ,  ,):,(  , ,,→→  )( , ,) , which represents the dynamics in the state space X and satisfies the properties (i) (,,) is the identity on ;

(ii) (tt ,,)(  ss ,,)(= ,,)  s− for all  st; (iii) → (tx ,,) is -measurable for all t  and xX . In the sequel, we use to denote a collection of some families of nonempty bounded subsets of X: D, D = {(,) D t  (): X t  ,  }. Definition 2.3.([12,13,18]) A set B is called a random -pullback bounded absorbing set for NRDS

(,) if for any t  and any D , there exists  0 (,)tD such that

(tDB ,  ,)  t−− (tt  ,)(  , )   for any  0 . Definition 2.4.([12,13,18]) A set ={(,):,}A t t   is called a random -pullback attractor for {,} if the following hold: (i) At(,) is a random compact set;

(ii) is invariant; that is, for -a.s.  , and   t , (,,)(,)(,)t   A  = A t t−  ;

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2020 doi:10.20944/preprints202002.0350.v1

(iii) attracts all set in ; that is, for all B and -a.s.  ,

lim((,,)(,),(,))0.dtBA t −−tt =  →−

Where d is the Hausdorff semimetric given by dist( B , )=− supinf b a X . bB a Definition 2.5.([14, 17]) A NRDS ( , ) on a Banach space X is said to be pullback flattening if for every random bounded set BBtt ={(,):,} , for any   0 and   there exists a T B( ,t , )   and a finite dimensional subspace X such that

(i) PtB((,,)(,))−−tt is bounded, and  T

(ii)|| ()((,,)(,))IPtB− || −−ttX ,  T

where P X: X →  is a bounded projector.

Theorem 2.1.([14, 17]) Suppose that ( , ) is a continuous NRDS on a uniformly convex Banach space X. If ( , ) possesses a random − pullback bounded absorbing sets BBtt ={(,):,} and ( , ) is pullback flattening, then there exists a random -pullback attractor ={(,):,}Att .

3. Random pullback attractor for modified Swift-Hohenberg

In this section, we will use abstract theory in section 2 to obtain the random -pullback attractor for equation (1.3)-(1.5). First we introduce an Ornstein-Uhlenbeck process, 0  zedt(()) :()( = ),. − tt− We known from [6], it is the solution of Langevin equation dz+= zdt dW( t ). Wt() is a two-sided real-valued Wiener process on a probability space (,,) , where  =={(,):(0)0},C is the Borel algebra induced by the compact open topology of  , and is the corresponding Wiener measure on { , } . We identify()t with Wt(), i.e., W( tW )(== ,)( ttt ),. Define the Wiener time shift by

t (ssttt )()(=+− s),, ,.

Then (,,,) t is an ergodic metric dynamical system. From [15,16,20], it is known that the random variable z() is tempered and there exists a

t -invariant set of full measure    such that for all  : t |z (t ) | 1 lim== 0, limz (s ) ds 0, (3.1) tt→||tt → 0 and for any   0 , there exists ( ) 0, such that t |ztzdst (  ) |++  (  )|  |, |  (  ) | ( )| |. (3.2) ts0 −lz() −−lz()()  lz   Let v( seu , )( s= ) st− , then dv= − les−− t u() s dz + e s t du . Using Langevin equation, combined with the original equation (1.3), we get

dv 223 lzlzlz(  )2  (  )( ) − + v +2 v + ( a − lz )| v ++= bev|( , ),[s−−− ts  ts,ev t ), eg x s in D  (3.3) ds xxx v=  v =0 on  D  [ ,  ), (3.4) −lz()st− (3.5) v(,)(). x == v e u x in D

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2020 doi:10.20944/preprints202002.0350.v1

Equation (1.3)-(1.5) are equivalent to equation (3.3)-(3.5), by a standard method, it can be 2 proved that the problem (3.3)-(3.5) is well posed in HD0 (), that is, for every   and 2 2 v H D 0 (), there exits a unique solution vCHD([,),()) 0 (see e.g.[2,8,22]). Furthermore, the 2 solution is continuous with respect to the initial condition v in HD0 (). To construct a non-autonomous random dynamical system {Vt ( , , ) } for problem (3.3)-(3.5), we 22 define VtHDHD(,,) :()() 00→ by V(,,) t v . Then the system {Vt ( , , ) } is a 2 non-autonomous random dynamical system in HD0 (). We now apply abstract theory in Section 2 to obtain the random -pullback attractors for non-autonomous modified Swift-Hohenberg equation, by the equivalent, we only consider the random -pullback attractor of equation (3.3)-(3.5). p 2 For convenience, the LD() norm of u will be denoted by‖‖p , H L= D () with a scalar k ‖‖ 2 product and the norm of Sobolev spaces WDp () by  kp, , we regard the space HD0 () endowed

with the norm || ||u 2,2 =‖ u‖, c or c() denote the arbitrary positive constants, which only depend on  and may be different from line to line and even in the same line.

For our purpose that the following Gagliardo-Nirenberg inequality will be used.

Lemma 3.1. (Gagliardo-Nirenberg Inequality). Let D be an open, bounded domain of the Lipschitz class in n . Assume that 1,1,1,01pqr    and let nnn km−−+−()(1). pqr Then the following inequality holds:

1− ‖ucDuu‖k,, prm q ()‖ ‖ ‖ ‖

Lemma 3.2. For all t  , the following inequality hold: 2()2 −−−tt ‖v( tceveH , ,)( −t )(1( t‖ )),+ + ‖ ‖ (3.6) and

t t 2 (s−+  tl ) 2() zdr tt− 2( )2 −−−tt  evdsceveHs t ‖ ‖ +( + )(1( )). ‖ ‖ (3.7)  xx 

Proof. Let vs() or v denotes vs(,,) st−  be the solution of equation (3.3)-(3.5). Taking the inner product of equation (3.3) with v , we get

1 d 22224 lz()st− ‖vvv‖+‖ v ‖ a +2( lz  v , ) + bev ()( −+ , v‖ ) v‖ x ‖‖4 2 ds

2lzlz (s−− ts  t )(  )4 − +=ev eg‖‖ x4 s v ( ( , ), ). Using Young inequality, we get

1 22 | (2,+v ) |4. vvv ‖ ‖ ‖‖ 4 By integration by parts, we obtain lz()()() 2 lz   2 lz   2 2 bes− t(,)(), v v= be s − t v vdx = − be s − t v v + vv dx xDD x xx x thus

lz()() 22b lz   bes−− t(,). v v=− e s t v v dx x2 D xx Applying the H o lder inequality and Young inequality, we get b b b2 belz(s− t  )| ( vve2 , ) |= | lz (  s − t  ) vvdxe 2 |  | | lz (  s − t ‖ ) vv‖‖‖ 2 ‖ v‖ 2 + e 2 lz (  s − t ‖ ) v‖ 4 , x2D xx 2 xx44 xx 16

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2020 doi:10.20944/preprints202002.0350.v1

and

−−lzlz()2() 221 egxsvvegxss−− ts t | ((,),) |((,). +‖‖ ‖ ‖ 4 1 For convenience, we take  = , | |b 2  (| |b 4  , the same conclusion hold), we obtain 4 db2 1 ‖vvalzveveg‖22242++−−+−‖ ‖ x2(5)2(1)(( s ‖ , ).‖ 2lzlz ()2s−− ts  () t‖ ‖ − ‖ ‖ ds 424 Taking   0 such that a − −  50, we have 2 db2224 2()lz st− ‖vvlzvev‖++−+−‖ ‖ 2()2(1) ‖‖ ‖‖4 ds 4 1  −−−+2(5)((,).avegx s ‖‖22−2()lz st− ‖ ‖ 2 42 By the Sobolev imbedding L D( )L ( D)  and Young inequality, we get 2 224 b 2()2()lzlz − −−−−+2(5)2(1).avcvevce ‖‖ ‖‖ s−− ts t‖‖ 444 Thus we obtain

d 2222 −2()lz  ‖vvlzvcegx‖++−+‖ ‖ s 2()(1((,)). ‖‖ st− ‖ ‖ ds s 22()slzdr−  rt− Multiply this by e  and integrating from  to t , we have t t 222 (s−+  t ) 2() l zdrrt− ‖v() tev‖ + ds s ‖ ‖  tt t −−2 ( +−−tl  ) zdrt +− 2()2  s ( r l−−− tr ) zlz ts 2() t 2 () 22 ++eveg x sds ‖ ‖ s (1(‖ , ) ) ‖   00 t −−2( +−−tl  )2( zdrt +−  s )2(rrs l t )2(zlz )2()2 − 2 ++eveg  −−ts t ‖ ‖ (1 ‖ (,))x sds‖   From (3.2), we get 00 2l z () dr  ()( + t − ),2 l z ()2(  − lz  )  ()( + t − s ).  −−tr s t r s− t Then we have t t 222 ()s−+ 2() tl zdr rt− ‖v() tev‖ + ds s ‖ ‖  t −−−−()2()2tt s ++ceveg( )((1( x sds ,‖ ))) ‖ ‖ ‖   t +ceveeg( + )(1(−−− x()22 ,tts sds )).‖ ‖ ‖ ‖  

Thus we get the desired results.

Lemma 3.3. For all t  , the following inequality hold:

1122 −−()t 2( )2 1 −−t 33 ‖++v( tcevev , ,)( −t )[(1)‖ ‖ ‖ ‖ ‖ t − (3.8) 8 11 t −  s ++e−t ( H ( te )( ) H )] 33 s ds − 2 Proof. Taking inner product of equation (3.3) with  v , we have 1 d ‖v‖2 +‖  2 v‖ 2 +2(  v ,  2 v ) + ( a − lz‖ ) v‖ 2 2 ds (3.9)

lz(s− t  )2 2 2 lz (  s − t  ) 3 2− lz (  s − t  ) 2 +be(,) vvex  + (,) vve  = ((,),). gxsv 

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2020 doi:10.20944/preprints202002.0350.v1

By the H o l d e r inequality, Young inequality and Gagliardo-Nirenberg inequality, we get 1 −+2(,)8,vvvv2222 ‖ ‖ ‖ ‖ 8 1113 lzlzlz()()()s−−− ts ts t 22222 88 |||bevvbevvcevv (,) | || xx ‖ ‖4‖ ‖ ‖‖‖ ‖ 1622 1 lz()st− +‖ 22vcev‖ 33‖‖ , 8 111 2lzlzlz ()2s−−− ts ()2 ts t () 323222 44 evvevvcevvv| (,) |  ‖‖6‖ ‖ ‖ ‖‖‖‖ ‖ 511 1622 1 lz()st− =+cevvvcev2lz ()st− ‖ 222‖44‖‖ ‖ ‖ 33‖‖ 8

−−lzlz()2() 2222 1 egx svvegxs−− ts t ((,),)2(,). s + ‖ ‖ ‖ ‖ 8 Putting all these inequalities together, we deduce 1622 d lz()st− ‖+−+−++vlzvavc‖2222 2()2(8)(( eveg‖ x ,‖ s )). ‖ ‖ 33‖‖ −2lz ()st− ‖ ‖ ds s 22()slzdr−  rt− Multiplying this by ()se−  and integrating it over ( , ) t , we get ts t 2t−− 2()22() l zdrs r−− tr l t zdr 22 ()(tev− )[ tcev ds‖ ‖ ‖ ‖ 

s 1622 t lz() 22()s−  l zdrrt− 22st− −2lz () +−++()((seveveg , ) ) x sds ]. ‖ ‖ 33‖‖ st− ‖ ‖  Then we have t t 221 −−2 ( +t s ) 2 l zdr () rt− ‖+v( tcev‖ )[(1) ds s ‖ ‖ t − 

t 1622 t tt−−2 ( ++t s ) 2 l  zdr ()()r−− ts t lz −−2 ( +−t s ) 2 l  zdr () lz 2 () s  r−− ts t 2 ++ev dseg x s 33‖‖ s ‖ ( ,‖ ) ].  rrr By (3.2), (3.6) and the inequality ()()abc++ (,0,1) aba br , we get t 16 22 22 tt−2 (t − s ) + 2 l z (   ) dr + lz (   )  r−− t s t −− ()ts es 3‖ v‖ 3 ds c() e‖ v‖ 3 ds  11 t c( ) e−t e  s ( e − ( s − ‖ ) v‖ 2 + 1 + e −  s H ( s )) 3 ds  

11 22 11 11 t −()ss −  −  c( ) e−ts e ( e3‖ v‖ 3 + 1 + e 3 H 3 ( s )) ds   11 22 8 11 −−()t t −  s c( )( e33‖ v‖ + 1 + e−t e33 H( s ) ds ).   Thus we have 11 22 1 −−()t ‖v( t ,‖ )2  c ( )[(1 + ) e−− (ts‖ ) v‖ 2 + e33‖ v‖ + 1 t − 

8 11 t −  s ++e−t ( H ( t ) e33 H ( s )) ds )]. − We complete the proof of Lemma 3.3. Let be the set of all function r :→ (0, + ) such that limet r2 ( t )= 0 and denote by t→− the class of all families Dˆ ={():} D t t such that D( t ) B ( r ( t )) for some rt() , B( r ( t )) 2 denote the closed ball in HD0 () with radius rt(). Let

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2020 doi:10.20944/preprints202002.0350.v1

811 t −  s 2 −t rtceHteHsds( )2()[1((=++  )())] 33 (3.10) 1 − ˆ ˆ By lemma 3.3 for any D and t  , there exists 0 ( ,D , ) t t  such that

‖vtrtforany(,,)(),. −t ‖ 10

3 Since 0  , simple calculation imply that rt1() , which say that the B r( t(1 )) be a 11 2 family of random -pullback bounded absorbing sets in HD0 () and { (B ( r)) t1 }  .

Theorem 3.1. The non-autonomous random dynamical system to problem (1.1)-(1.3) possesses a unique 2 random -pullback attractor in HD0 ().

Proof. We need only prove that the dynamical system (3.3)-(3.5) satisfies the pullback flattening −1 2 condition. Since A is a continuous compact operator in HD0 (), by the classical spectral theorem,  there exists a sequence {} jj=1 satisfing

0,,,→12 +→ +jj asj  2 and a family of elements {}e jj=1 of HD0 () which are orthonormal in H such that + Aeejjjj= ,.

Let Hspaneeemm= {,,,}12 in H and Pmm H: H → be an orthogonal projector. For any vH we write

vP=+−=+ vIPvvvmm(). 12 2 Taking inner product of (3.3) with  v2 in H , we get

1 d 22222 ‖+vvvva2222‖ +‖ lzv +−‖ 2(,) () ‖ ‖ 2 ds

lzlzlz()2s−−− ts  ()() ts t  22322 − ++=bevvevveg(|| ,)( x sv ,)(222 ( , ),). By the H o l d e r inequality, Young inequality and Gagliardo-Nirenberg inequality, we get

2222 1 −+2(,)8,vvvv ‖ ‖ ‖ ‖ 228 1 −belz(s−− t  )( v2 ,  2 v ) ‖  2 v‖ 2 + 2 b 2 e 2 lz (  s t ‖ ) v‖ 4 xx28 2 4 1 ‖ 2v‖ 2 + ce2lz (st− ‖ ) v‖ 4(1−‖ )  v‖ 4 8 2

11 =‖ 2v‖ 2 + ce2lz (st− ‖ ) v‖ 3‖  v‖ () = 842 11 ‖ 2v‖ 2 +‖  v‖ 2 + ce4lz (st− ‖ ) v‖ 6 , 822

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2020 doi:10.20944/preprints202002.0350.v1

1 −+evvvev2lzlz ()4s−− ts () t (,)232223 ‖ ‖ ‖‖ 226 8 1 +‖ 223(1)3vcevv‖ 4lz ()st− ‖‖ −‖ ‖ 8 2

11 =+=‖ 222vcevv‖ 4lz ()st− ‖‖‖ ‖ () 832 11 ++‖ 2224vvcev‖ ‖ ‖ 8lz ()st− ‖‖, 822

−−lzlz()2() 2222 1 egxs svvegx−− ts t ((,),)2(,). s + ‖ ‖ ‖ ‖ 228 Putting all these inequalities together, we have

d 2 2 2 2 ‖v2‖ +‖  v 2‖ +2( a − lz‖ )  v 2‖ ds 18‖ v‖2 + c ( e4lz (s− t ‖ ) v‖ 6 + e 8 lz (  s − t ‖ ) v‖ 4 + e− 2 lz (  s − t ‖ ) g ( x , s‖ ) 2 ). 222 n‖vv22‖ ‖ ‖ , which imply that

d 22 ‖+−vlzv22‖ (2)n ‖ ‖ ds +++cvevevegx‖((,)).‖2642 s4()8()2()lzlzlzs−−− ts ts‖ t ‖ ‖‖ − ‖ ‖ s nrslzdr− t 2() − Multiply this by ()se−  and integrating from  to t , we obtain ts t nrt−− tnr2()2()  l t zdrs −− l zdr 22 ()[tevcsev−+ (1) −ds‖ ‖ ‖ ‖ 2  s t nrs− t 2()  l zdr − 4lzlzlz ()8  ()2 ()642  − +−++()((seeveveg , ) ) x ] sds s−−− ts ts‖ t ‖ ‖‖ ‖ ‖  Thus we get tt tt 226 1 nr(s tnr−  t ts) +− t 2 l  ++ zdrs ()( −−− t ) 2 l zdr () lz 4 () ‖++vcev‖ dsev[(1) ds ss‖ ‖ ‖‖ 2 t −  tt tt nr(s ts−  tnrt ) ++− ts 2  l t +− zdr () −−−− lzs 8  ()( t l ) zdr 2 lz()42 2 () ++ev dsegss x s ds ‖‖ ‖ (,)‖  tt 1 ()(−  )()(s −−  ts ) t − 26 +c( )[(1 ) evnn dsev‖ ds+‖ ‖‖ t −  tt ++ev()(nn− dseg  )()(s −−  ts‖ ) xt ‖ −s42 ds ‖ ( ,‖ )] 

=+cIIII( +)()).1234 +

By simple calculation, we find that there exists N  , nN, n −   , and t 1  (st− ) 2 ()st− 2 I(1 + ) e‖  vds‖   , en ‖  vs (‖ ) → 0 asn →  , 1 t −  According to Lebesgue dominated convergent theorem, we obtain

Ias1 →→ n0.  Using (3.6), we get t I c e(n −− )(st ) ( e−(ss − ‖ ) v‖ 2 + 1 + e −  H ( s )) 3 ds 2   t c e(n −− )(st ) ( e−3 (ss − ‖ ) v‖ 6 + 1 + e − 3  H 3 ( s )) ds   −3 (tt −  ) − 4  −t ee631 c[ e‖ v‖ + + H ( t )] → 0 as n →  , n−44   n −   n − 

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2020 doi:10.20944/preprints202002.0350.v1

t IceeveHsds++ ()()n −−st(1(−−−()22 ))ss‖ ‖ 3   t ()()−−st −−−2 ()422ss . ++ceeveHsdsn (1( )) ‖ ‖   −−−2 ()3tt −t ee421 ++→→c[( evHtas )]0,  n ‖ ‖ , nnn−−−33 and t −ts 22()()−−st Ieegx→→ sdsegx  ‖ sas(,),(,)0, n ‖ n ‖ ‖ 4  Again using Lebesgue dominated convergent theorem, we get (−− )(st ) 2 en ‖ g( x , s‖ ) ds→ 0 as n → . In summary, we obtain that the terms on the right hand of inequality (3.13) tend to 0 as n →,

which say that ‖vt2 (,,)0 −t ‖→ , i.e., the random dynamical system (3.3)-(3.5) satisfies pullback flattening. 5. 4.Conclusions

This paper extends the existence of pullback attractor of non-autonomous modified S-H equation to the case of non-autonomous stochastic modified S-H equation with multiplicative noise. In the concrete experiment, the random term in the equation is more consistent with the actual problem. For S-H equation with multiplicative noise, the external force has exponential growth, we have proved that the equation exists a random -pullback attractor in one dimension. In the future work, we will continue to investigate whether the same results can be obtained when the spatial dimension is two-dimensional or n-dimensional.

Author Contributions: All the authors have equal contribution to this study. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China(11761044, 11661048) and the key constructive discipline of Lanzhou City University (LZCU-ZDJSXK-201706).

Conflflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

1. J.B. Swift, P.C. Hohenberg, Hydrodynamics fluctuations at the convective instability, Phys. Rev. A, 1977, 15, 319-328. 2. D. Blomker , M.Hairer, G.Pavlioyis, Stochastic Swift-Hohenberg equation near a change of stability, Proceedings of Equa.Diff., 2005, 11, 27-37. 3. A.Doelman, B.Standstede, A.Scheel, G. Schneider, Propagation of hexagonal pat- terens near onset, European J.Appl.Math., 2003, 85-110. 4. L.A.Peletier, V. Rottscha¨fer, Large time behavior of solution of the Swift-Hohenberg equation, Comptes Rendus Mathematique, 2003, 336(3), 225-230. 5. L.A. Peletier, V.Rottscha¨fer, Pattern selection of solutions of the Swift-Hohenberg equation, Physica D, 2004, 194(1-2),95-126. 6. L.A. Peletier, J.F.Williamas, Some canonical bifurcations in the Swift-Hohenberg equation, SIAM J.Appl.Dyn.Syst., 2007, 6, 208-235. 7. L.Song, Y.Zhang, T.Ma,Global attractor of a modified Swift-Hohenberg equation in Hk spaces, Nonlinear Anal., 2006, 64, 483-498. 8. M.Polat, Global attractor for a modified Swift-Hohenbergequation, Comput. Math. Appl., 2009,57, 62-66.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2020 doi:10.20944/preprints202002.0350.v1

9. S.H. Park, J.Y. Park, Pullback attractors for a non-autonomous modified Swift- Hohenberg equation, Comput. Math. Appl., 2014, 67, 542-548. 10. L.Xu, Q.Ma, Existence of the uniform attractors for a non-autonomous modified Swift-Hohenberg equation, Advances in Difference Equations, 2015, 2015(1):153. 11. C.Guo, Y.Guo, C.Li, Dynamical behavior of a local modifed stochastic Swift- Hohonberg equation with multiplicative noise, Boundary Value Problems, 2017, DOI: 10.1186/s13661-017-0753-5. 12. Y.Li, C.Zhong, Pullback attractors for the norm-to-weak continuous process and ap- plication to the non-autonomous reaction-diffusion equations, Applied Mathematics and Computation, 2007, 190, 1020-1029. 13. B.Wang, Sufficient and necessary criteria for existence of pullback attractors for non- compact random dynamical system, J.Differential Equations, 2009, 253, 544-1583. 14. P.E.Kloeden, J.A.Langa, Flattening, squeezing and the existence of random attractors, Proc.R.Soc.A, 2007, 463, 163-181. 15. P.W.Bates, K.Lu, B.Wang, Random attractors for stochastic reaction-diffusion equa- tions on unbounded domains, J.Differential Equations, 2009, 246, 845-869. 16. Y.Li, B.Guo, Random attractors for quasi-continuous random dynamical systems and application to stochastic reaction-diffiusion equation, J.Differential Equations, 2008, 245, 1775-1800. 17. Y.Li, J.Wei, T.Zhao, The existence of random D-pullback attractors for a random dynamical system and its applicatin, Journal of Applied Analysis and Computaiton, 2019, 9(4), 1571-1588. 18. Y.Wang, J.Wang, Pullback attractors for multi-valued non-compact random dynam- ical systems generated by reaction-diffusion equations on an unbounded domain, J.Differential Equations, 2015, 259, 728-776. 19. Z.Wang, S.Zhou, Random attractor for stochastic reaction-diffusion equation with multiplicative noise on unbounded domains}, Journal of Mathematical Analysis and Applications, 2011, 384, 160-172. 20. J.Duan, An introduction to Stochastic Dynamics, Science Press, Beijing, 2014. 21. L.Arnold, Random Dynamical System, Springer-Verlag, 1998. 22. R.Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd ed., Springer-Verlag, 1997.