The Characterisation of Australian Freshwater Fish Immune Systems and Their Response to Immunomodulators

Total Page:16

File Type:pdf, Size:1020Kb

The Characterisation of Australian Freshwater Fish Immune Systems and Their Response to Immunomodulators View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RMIT Research Repository The characterisation of Australian freshwater fish immune systems and their response to immunomodulators A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Andrew Harford B. Sc. (Hons) Key Centre for Toxicology School of Medical Science Faculty of Life Sciences RMIT-University 11th October 2004 i Declaration I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program; and any editorial work, paid or unpaid, carried out by a third party is acknowledged. _____________________ _________ Andrew Harford Date Parts of this work have been presented at the following scientific forums; Harford, A.J., O’Halloran, K & Wright P.F.A. (2005). Murray cod (Macullochella peelii) immune function assays and their use in eco/immunotoxicology. Conference of the Australasian Society for Ecotoxicology, Melbourne, Vic, Australia, Sept 25-28, 2005. Harford, A.J., O’Halloran, K & Wright P.F.A. (2004). Immunomodulation of head kidney cell functions in Murray cod by microcystin-LR. Abstracts of the 10th International Congress of Toxicology, Tampere, Finland, July, 2004, Toxicology & Applied Pharmacology, 197 (3): 284. Wright, P.F., Harford, A.J., O’Halloran. K. (2004) Immunotoxic effects of in vivo chlorpyrifos exposure on Murray cod. Oral Platform presentation. Proc. 43rd Ann. Mtg SOT, Baltimore, Maryland, USA, March 2004. The Toxicologist CD, 78 (1-S): 321, abstract no. 1562. Harford, A.J., O’Halloran, K & Wright P.F.A. (2001). Effects of in vitro exposure to environmental pollutants on the phagocytic cells of Golden Perch (Macquaria ambigua). Proceedings of the 9th International Congress of Toxicologists, Brisbane, QLD, July, 2001. Toxicology, 164 (1-3): 212. The following manuscripts have been accepted for publication; Harford, A.J., O’Halloran, K & Wright P.F.A. (2006). Flow cytometric analysis and optimisation for measuring phagocytosis in three Australian freshwater fish. Fish & Shellfish Immunology. (in press; doi: 10.1016/j.fsi.2005.07.005). Harford, A.J., O’Halloran, K & Wright P.F.A. (2006). The effects of in vitro pesticide exposures on the phagocytic function of four native Australian freshwater fish. Aquatic toxicology. (in press). ii Acknowledgements I would like to acknowledge the following people: Paul Wright, my tireless supervisor, who has supported me through the challenging time of this project. My co-supervisor Kathy O’Halloran for her invaluable expertise and critical appraisal of my work. Thanks also to Daphne Cheah, Caroline Teasdale, Carmel Pollino, Phil Smith, Diana Donahue, Jorma Ahokas, Dani Sevior, Simone Yendle and the many other people at the Key Centre for Toxicology and RMIT that have helped me complete this thesis, especially during the move of campus. A special thanks to Caroline Haskard and CSIRO Land and Water in South Australia who also supplied me with cyanobacterial toxins Peter and Susan Coleman for their friendship and editorial help. My fish suppliers especially, Chris Harwood (Beauford Native Fish), Glenwaters native fish, Glenburn and Australian Aquaculture Products, Euroa. Amber for her love, support and patience. iii Table of contents Title..............................................................................................................................................i Declaration.................................................................................................................................ii Acknowledgements ...................................................................................................................iii Table of contents.......................................................................................................................iv List of Figures....................................................................................................................... xiiii List of Tables...........................................................................................................................xix List of Abbreviations..............................................................................................................xxii Summary ...................................................................................................................................1 Aims of this research................................................................................................................4 Chapter 1: General Introduction...........................................................................................5 1.1: The Murray-Darling Basin .............................................................................................5 1.2: Fish species of the Murray-Darling Basin......................................................................6 1.3: Aquaculture in the Murray-Darling basin ......................................................................8 1.3.1: Silver perch aquaculture..........................................................................................8 1.3.2: Murray cod aquaculture...........................................................................................9 1.3.3: Golden perch aquaculture........................................................................................9 1.4: Fish Immunology ...........................................................................................................9 1.4.1: Lymphoid and myeloid tissue ...............................................................................10 1.4.2: Immunocytes .........................................................................................................11 1.4.3: Immunoglobulins...................................................................................................13 1.4.4: Cytokines...............................................................................................................14 1.4.5: Acute Phase Proteins and Non-cellular non-specific mechanisms........................15 1.4.6: Fish immunophysiology........................................................................................16 iv 1.4.7: Sensitivity to stress................................................................................................18 1.4.8: Sensitivity to temperature......................................................................................19 1.5: Aquatic toxicology .......................................................................................................20 1.5.1: Overview ...............................................................................................................20 1.5.2: Aquatic toxicology in Australia ............................................................................21 1.5.3: Biomarkers (Biomonitoring) .................................................................................22 1.6: Immunotoxicology .......................................................................................................23 1.7: Fish immunotoxicology................................................................................................25 1.7.1: Assays used in fish immunotoxicology.................................................................26 1.8: Fish immunomodulators...............................................................................................29 1.8.1: Metals, heavy metals and organometallic compounds..........................................30 1.8.2: Organotins .............................................................................................................31 1.8.3: Pesticides...............................................................................................................31 1.8.4: Aromatic hydrocarbons .........................................................................................32 1.8.5: Antibiotics and immunostimulants........................................................................34 1.8.6: Polluted sites and chemical mixtures ....................................................................35 1.9: Summary of Chapter 1 .................................................................................................39 Chapter 2: Methodology .......................................................................................................41 2.1: Fish procurement, handling and maintenance..............................................................41 2.1.1: Species selection....................................................................................................41 2.1.2: Wet-laboratory water.............................................................................................44 2.1.3: Handling and maintenance ....................................................................................44 2.2: Fish manipulations .......................................................................................................46 2.3: Sample isolation methods.............................................................................................47 2.3.1: Blood and serum collection...................................................................................47 v 2.3.2: Head kidney...........................................................................................................47
Recommended publications
  • A Global Assessment of Parasite Diversity in Galaxiid Fishes
    diversity Article A Global Assessment of Parasite Diversity in Galaxiid Fishes Rachel A. Paterson 1,*, Gustavo P. Viozzi 2, Carlos A. Rauque 2, Verónica R. Flores 2 and Robert Poulin 3 1 The Norwegian Institute for Nature Research, P.O. Box 5685, Torgarden, 7485 Trondheim, Norway 2 Laboratorio de Parasitología, INIBIOMA, CONICET—Universidad Nacional del Comahue, Quintral 1250, San Carlos de Bariloche 8400, Argentina; [email protected] (G.P.V.); [email protected] (C.A.R.); veronicaroxanafl[email protected] (V.R.F.) 3 Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +47-481-37-867 Abstract: Free-living species often receive greater conservation attention than the parasites they support, with parasite conservation often being hindered by a lack of parasite biodiversity knowl- edge. This study aimed to determine the current state of knowledge regarding parasites of the Southern Hemisphere freshwater fish family Galaxiidae, in order to identify knowledge gaps to focus future research attention. Specifically, we assessed how galaxiid–parasite knowledge differs among geographic regions in relation to research effort (i.e., number of studies or fish individuals examined, extent of tissue examination, taxonomic resolution), in addition to ecological traits known to influ- ence parasite richness. To date, ~50% of galaxiid species have been examined for parasites, though the majority of studies have focused on single parasite taxa rather than assessing the full diversity of macro- and microparasites. The highest number of parasites were observed from Argentinean galaxiids, and studies in all geographic regions were biased towards the highly abundant and most widely distributed galaxiid species, Galaxias maculatus.
    [Show full text]
  • Gambusia Forum 2011
    Gambusia Forum 2011 Crowne Plaza Hotel, Melbourne Wednesday 1st – Thursday 2nd June 2011 Edited by: Dr Peter Jackson and Heleena Bamford Small fish… …big problem! Published by Murray–Darling Basin Authority Postal Address GPO Box 1801, Canberra ACT 2601 Office location Level 4, 51 Allara Street, Canberra City Australian Capital Territory Telephone (02) 6279 0100 international + 61 2 6279 0100 Facsimile (02) 6248 8053 international + 61 2 6248 8053 E-Mail [email protected] Internet http://www.mdba.gov.au For further information contact the Murray–Darling Basin Authority office on (02) 6279 0100 This report may be cited as: Gambusia Forum 2011: Small fish.....big problem! MDBA Publication No. 154/11 ISBN (on-line) 978-1-921914-21-8 ISBN (print) 978-1-921914-22-5 © Copyright Murray–Darling Basin Authority (MDBA), on behalf of the Commonwealth of Australia 2011. This work is copyright. With the exception of photographs, any logo or emblem, and any trademarks, the work may be stored, retrieved and reproduced in whole or in part, provided that it is not sold or used in any way for commercial benefit, and that the source and author of any material used is acknowledged. Apart from any use permitted under the Copyright Act 1968 or above, no part of this work may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the Commonwealth Copyright Administration, Attorney General’s Department, National Circuit, Barton ACT 2600 or posted at http://www.ag.gov.au/cca.
    [Show full text]
  • Phylogenetic Relationships and Historical Biogeography of Melanotaeniid Fishes in Australia and New Guinea
    Mar. Freshwater Res., 2000, 51, 713–23 Phylogenetic relationships and historical biogeography of melanotaeniid fishes in Australia and New Guinea K. McGuiganA, D. ZhuA, G. R. AllenB and C. MoritzA ACooperative Research Centre for Tropical Rainforest Ecology and Management, Department of Zoology and Entomology, University of Queensland, Brisbane, Qld 4072, Australia. email: [email protected] BWest Australian Museum, Francis Street, Perth 6009, Western Australia, Australia Abstract. Phylogenetic analysis of melanotaeniid mtDNA cytochrome b and tRNAPro-control region sequence is broadly consistent with the current taxonomy. However, the molecular phylogeny supports the elevation of M. s. australis to full species status and indicates either that it is a composite species or has introgressed with sym- patric Melanotaenia species. Phenotypically cryptic mtDNA diversity in north-eastern Australia possibly represents an undescribed species. Six major monophyletic clades present in the phylogeny were strongly supported by mor- phological data. The clades represent three biogeographic regions. Fish from northern New Guinea form a mono- phyletic clade, within which Melanotaenia and Glossolepis are polyphyletic. The divergence of this clade from those in southern New Guinea is consistent with the final uplift of the Central Highlands 5 million years BP. North-western New Guinea and associated islands represent another highly divergent, monophyletic clade of a similar age to that in northern New Guinea. The remaining four clades form a monophyletic assemblage restricted to southern New Guinea and Australia: one in northern Australia, one with a disjunct distribution in north-western and eastern Australia, one widespread throughout Australia and southern New Guinea, and one in southern New Guinea with an outlying species in northern Australia.
    [Show full text]
  • Cairns Regional Council Water and Waste Report for Mulgrave River Aquifer Feasibility Study Flora and Fauna Report
    Cairns Regional Council Water and Waste Report for Mulgrave River Aquifer Feasibility Study Flora and Fauna Report November 2009 Contents 1. Introduction 1 1.1 Background 1 1.2 Scope 1 1.3 Project Study Area 2 2. Methodology 4 2.1 Background and Approach 4 2.2 Demarcation of the Aquifer Study Area 4 2.3 Field Investigation of Proposed Bore Hole Sites 5 2.4 Overview of Ecological Values Descriptions 5 2.5 PER Guidelines 5 2.6 Desktop and Database Assessments 7 3. Database Searches and Survey Results 11 3.1 Information Sources 11 3.2 Species of National Environmental Significance 11 3.3 Queensland Species of Conservation Significance 18 3.4 Pest Species 22 3.5 Vegetation Communities 24 3.6 Regional Ecosystem Types and Integrity 28 3.7 Aquatic Values 31 3.8 World Heritage Values 53 3.9 Results of Field Investigation of Proposed Bore Hole Sites 54 4. References 61 Table Index Table 1: Summary of NES Matters Protected under Part 3 of the EPBC Act 5 Table 2 Summary of World Heritage Values within/adjacent Aquifer Area of Influence 6 Table 3: Species of NES Identified as Occurring within the Study Area 11 Table 4: Summary of Regional Ecosystems and Groundwater Dependencies 26 42/15610/100421 Mulgrave River Aquifer Feasibility Study Flora and Fauna Report Table 5: Freshwater Fish Species in the Mulgrave River 36 Table 6: Estuarine Fish Species in the Mulgrave River 50 Table 7: Description of potential borehole field in Aloomba as of 20th August, 2009. 55 Figure Index Figure 1: Regional Ecosystem Conservation Status and Protected Species Observation 21 Figure 2: Vegetation Communities and Groundwater Dependencies 30 Figure 3: Locations of Study Sites 54 Appendices A Database Searches 42/15610/100421 Mulgrave River Aquifer Feasibility Study Flora and Fauna Report 1.
    [Show full text]
  • Approved Conservation Advice for Craterocephalus Fluviatilis (Murray Hardyhead) (S266b of the Environment Protection and Biodiversity Conservation Act 1999)
    This Conservation Advice was approved by the Minister on 3 March 2012 Approved Conservation Advice for Craterocephalus fluviatilis (Murray hardyhead) (s266B of the Environment Protection and Biodiversity Conservation Act 1999) This Conservation Advice has been developed based on the best available information at the time this Conservation Advice was approved; this includes existing plans, records or management prescriptions for this species. Description Craterocephalus fluviatilis, McCulloch 1912, Family Atherinidae, also known as Murray hardyhead, are a small highly mobile schooling fish that attains 76 mm length (Ivantsoff and Crowley, 1996; Ebner and Raadik, 2001; Ellis, 2005). They are moderately deep bodied with a small protrusible mouth which projects forward as a tube when open (Crowley and Ivantsoff, 1990; Ellis, 2005). The colour varies from silver or silvery-green to dark golden dorsally, with a silvery-black (sometimes golden or reddish) mid-lateral stripe running along the body, and a pale abdomen with a silvery iridescent sheen (Crowley and Ivantsoff, 1990; Ellis, 2005; Hammer and Wedderburn, 2008). The body and fins may develop an orange sheen during the spawning period (Ebner and Raadik 2001; Ellis, 2005). Conservation Status The Murray hardyhead is listed as endangered. This species is eligible for listing as endangered under the Environment Protection and Biodiversity Conservation Act 1999 (Cwlth) (EPBC Act) as: it has undergone a severe reduction in numbers in the last 10 years, and recovery may depend upon translocations or restocking of hatchery-bred fish, and it has a restricted area of occupancy, which is precarious for the species’ survival due to ongoing threats (TSSC, 2011).
    [Show full text]
  • Survey Guidelines for Australia's Threatened Fish
    Survey guidelines for Australia’s threatened fish Guidelines for detecting fish listed as threatened under the Environment Protection and Biodiversity Conservation Act 1999 Authorship and acknowledgments This report updates and expands on a report prepared in May 2004 by Australian Museum ichthyologist John Pogonoski and approved by AMBS Senior Project Manager Jayne Tipping. The current (2011) report includes updates to the 2004 report and additional information regarding recently listed species, current knowledge of all the listed species and current survey techniques. This additional information was prepared by Australian Museum ichthyologists Dr Doug Hoese and Sally Reader. Technical assistance was provided by AMBS ecologists Mark Semeniuk and Lisa McCaffrey. AMBS Senior Project Manager Glenn Muir co- ordinated the project team and reviewed the final report. These guidelines could not have been produced without the assistance of a number of experts. Individuals who have shared their knowledge and experience for the purpose of preparing this report are indicated in Appendix A. Disclaimer The views and opinions contained in this document are not necessarily those of the Australian Government. The contents of this document have been compiled using a range of source materials and while reasonable care has been taken in its compilation, the Australian Government does not accept responsibility for the accuracy or completeness of the contents of this document and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of or reliance on the contents of the document. © Commonwealth of Australia 2011 This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation.
    [Show full text]
  • Fisheries Guidelines for Design of Stream Crossings
    Fish Habitat Guideline FHG 001 FISH PASSAGE IN STREAMS Fisheries guidelines for design of stream crossings Elizabeth Cotterell August 1998 Fisheries Group DPI ISSN 1441-1652 Agdex 486/042 FHG 001 First published August 1998 Information contained in this publication is provided as general advice only. For application to specific circumstances, professional advice should be sought. The Queensland Department of Primary Industries has taken all reasonable steps to ensure the information contained in this publication is accurate at the time of publication. Readers should ensure that they make appropriate enquiries to determine whether new information is available on the particular subject matter. © The State of Queensland, Department of Primary Industries 1998 Copyright protects this publication. Except for purposes permitted by the Copyright Act, reproduction by whatever means is prohibited without the prior written permission of the Department of Primary Industries, Queensland. Enquiries should be addressed to: Manager Publishing Services Queensland Department of Primary Industries GPO Box 46 Brisbane QLD 4001 Fisheries Guidelines for Design of Stream Crossings BACKGROUND Introduction Fish move widely in rivers and creeks throughout Queensland and Australia. Fish movement is usually associated with reproduction, feeding, escaping predators or dispersing to new habitats. This occurs between marine and freshwater habitats, and wholly within freshwater. Obstacles to this movement, such as stream crossings, can severely deplete fish populations, including recreational and commercial species such as barramundi, mullet, Mary River cod, silver perch, golden perch, sooty grunter and Australian bass. Many Queensland streams are ephemeral (they may flow only during the wet season), and therefore crossings must be designed for both flood and drought conditions.
    [Show full text]
  • Condition Monitoring of Threatened Fish Populations in Lake Alexandrina and Lake Albert
    Condition Monitoring of Threatened Fish Populations in Lake Alexandrina and Lake Albert Report to the Murray–Darling Basin Authority and the South Australian Department for Environment and Water Scotte Wedderburn and Thomas Barnes June 2018 © The University of Adelaide and the Department for Environment and Water With the exception of the Commonwealth Coat of Arms, the Murray–Darling Basin Authority logo, photographs and presented data, all material presented in this document is provided under a Creative Commons Attribution 4.0 International licence (https://creativecommons.org/licences/by/4.0/). For the avoidance of any doubt, this licence only applies to the material set out in this document. The details of the licence are available on the Creative Commons website (accessible using the links provided) as is the full legal code for the CC BY 4.0 licence (https://creativecommons.org/licences/by/4.0/legalcode). MDBA’s preference is that this publication be attributed (and any material sourced from it) using the following: Publication title: Condition Monitoring of Threatened Fish Populations in Lake Alexandrina and Lake Albert Source: Licensed from the Department for Environment and Water under a Creative Commons Attribution 4.0 International Licence The contents of this publication do not purport to represent the position of the Commonwealth of Australia or the MDBA in any way and are presented for the purpose of informing and stimulating discussion for improved management of Basin's natural resources. To the extent permitted by law, the copyright holders (including its employees and consultants) exclude all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this report (in part or in whole) and any information or material contained in it.
    [Show full text]
  • Weak but Parallel Divergence Between Ko¯Aro (Galaxias Brevipinnis) from Adjacent Lake and Stream Habitats
    Evolutionary Ecology Research, 2018, 19: 29–41 Weak but parallel divergence between ko¯aro (Galaxias brevipinnis) from adjacent lake and stream habitats Travis Ingram1 and Stephanie M. Bennington2 1Department of Zoology, University of Otago, Dunedin, New Zealand and 2Department of Marine Science, University of Otago, Dunedin, New Zealand ABSTRACT Background: Fish in New Zealand and elsewhere in the temperate Southern Hemisphere rarely show the adaptive divergence in sympatry or parapatry seen elsewhere in the world. Hypothesis: Galaxiid fish in high-elevation lakes will show parallel morphological shifts across six lake–stream ecotones, possibly accompanied by genetic divergence. Organism: Ko¯aro, the climbing galaxias, which is often the sole fish species in New Zealand lakes that lack introduced trout. Methods: Geometric morphometric analyses of photos taken of live fish collected from lakes and streams to measure the extent and direction of body shape divergence; microsatellite genotyping to measure genetic differentiation. Results: Ko¯aro show weak or no genetic differentiation between adjacent lake and stream habitats, but do show generally parallel shifts in body shape between lakes and streams. Keywords: diadromy, Galaxias brevipinnis, parapatric speciation, phenotypic change vector analysis, phenotypic plasticity. INTRODUCTION New species frequently originate as the result of populations adapting to occupy distinct ecological niches (Schluter, 2001; Nosil, 2012). Comparisons of populations occurring across sharp habitat transitions
    [Show full text]
  • Stock Assessment of Golden Perch for PIRSA
    Ferguson and Ye 2012 Stock assessment of golden perch for PIRSA Stock Assessment of Golden perch (Macquaria ambigua) G.J Ferguson and Q. Ye SARDI Publication No. F2007/001051-1 SARDI Research Report Series No. 656 SARDI Aquatic Sciences PO Box 120 Henley Beach SA 5022 October 2012 Fishery Stock Assessment Report to PIRSA Fisheries and Aquaculture 1 Ferguson and Ye 2012 Stock assessment of golden perch for PIRSA Stock Assessment of Golden perch (Macquaria ambigua) Fishery Stock Assessment Report to PIRSA Fisheries and Aquaculture G.J Ferguson and Q. Ye SARDI Publication No. F2007/001051-1 SARDI Research Report Series No. 656 October 2012 2 Ferguson and Ye 2012 Stock assessment of golden perch for PIRSA This publication may be cited as: Ferguson, G. J. and Ye, Q (2012). Stock Assessment of Golden perch (Macquaria ambigua). Stock Assessment Report for PIRSA Fisheries and Aquaculture. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. F2007/01051- 1. SARDI Research Report Series No. 656. 55pp. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.sardi.sa.gov.au DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report. The report has been through the SARDI Aquatic Sciences internal review process, and has been formally approved for release by the Research Chief, Aquatic Sciences. Although all reasonable efforts have been made to ensure quality, SARDI Aquatic Sciences does not warrant that the information in this report is free from errors or omissions.
    [Show full text]
  • Hatching Success of Rainbowfish Eggs Following Exposure to Air
    WellBeing International WBI Studies Repository 2014 Hatching Success of Rainbowfish ggsE Following Exposure to Air Lois J. Oulton Macquarie University Penelope Carbia Macquarie University Culum Brown Macquarie University Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/acwp_aff Part of the Animal Studies Commons, Behavior and Ethology Commons, and the Comparative Psychology Commons Recommended Citation Oulton, L., Carbia, P., & Brown, C. (2014). Hatching success of rainbowfish eggs following exposure to air. Australian Journal of Zoology, 61(5), 395-398. This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact [email protected]. Hatching success of rainbowfish eggs following exposure to air Lois Oulton, Penelope Carbia, and Culum Brown Macquarie University KEYWORDS egg desiccation, Lake Eacham, Melanotaenia, translocation ABSTRACT Translocation of fishes within and between drainage basins is widely recognised as a threatening process to Australian native fishes. While many translocations are deliberate, for example for fisheries enhancement, it is possible that translocation can occur naturally. In the Wet Tropic region of Australia, the widespread eastern rainbowfish, Melanotaenia splendida, has begun to colonise the Atherton tablelands. This is of particular concern because the area is home to several endangered endemic species such as the Lake Eacham rainbowfish, M. eachamensis, and its allies. It is likely that some of the translocations have occurred through the use of this species as bait, but the recent invasion of Lake Eacham may have occurred naturally via the movement of eggs between nearby streams running into Lake Tinaroo.
    [Show full text]
  • Freshwater Fishes of the Burdekin Dry Tropics Acknowledgements
    Freshwater Fishes of the Burdekin Dry Tropics Acknowledgements Much of the information about fish species and their distribution in the Burdekin Dry Tropics NRM region is based on the work of Dr Brad Pusey (Griffith University). The Australian Centre for Tropical Freshwater Research (ACTFR) provided access to their Northern Australian Fish (NAF) database which contains the most current fish survey data for tropical Australia. Dr Allan Webb (ACTFR) provided information on the exotic fish species recorded from the immediate Townsville region. Thanks to Alf Hogan from Fisheries Queensland for providing data on species distribution. Thanks also to Bernard Yau and efishalbum for their image of the Threadfin Silver Biddy. Published by NQ Dry Tropics Ltd trading as NQ Dry Tropics. Copyright 2010 NQ Dry Tropics Ltd ISBN 978-921584-21-3 The Copyright Act 1968 permits fair dealing for study research, news reporting, criticism, or review. Selected passages, tables or diagrams may be reproduced for such purposes provided acknowledgement of the source is included. Major extracts of the entire document may not be reproduced by any process without the written permission of the Chief Executive Officer, NQ Dry Tropics. Please reference as: Carter, J & Tait, J 2010, Freshwater Fishes of the Burdekin Dry Tropics, Townsville. Further copies may be obtained from NQ Dry Tropics or from our Website: www.nqdrytropics.com.au Cnr McIlwraith and Dean St P.O Box 1466, Townsville Q 4810 Ph: (07) 4724 3544 Fax: (07) 4724 3577 Important Disclaimer: The information contained in this report has been compiled in good faith from sources NQ Dry Tropics Limited trading as NQ Dry Tropics believes to be reliable.
    [Show full text]