The Arguments for and Against Cannabinoids Application in Glaucomatous Retinopathy

Total Page:16

File Type:pdf, Size:1020Kb

The Arguments for and Against Cannabinoids Application in Glaucomatous Retinopathy See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/311895248 The arguments for and against cannabinoids application in glaucomatous retinopathy Article in Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie · February 2017 DOI: 10.1016/j.biopha.2016.11.106 CITATIONS READS 0 86 4 authors: Yunes Panahi Azadeh Manayi Baqiyatallah University of Medical Sciences Tehran University of Medical Sciences 191 PUBLICATIONS 1,332 CITATIONS 67 PUBLICATIONS 169 CITATIONS SEE PROFILE SEE PROFILE Marjan Nikan Mahdi Vazirian Tehran University of Medical Sciences Tehran University of Medical Sciences 10 PUBLICATIONS 17 CITATIONS 23 PUBLICATIONS 52 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Clinical trial of some medicinal plants, used in traditional medicine View project Analysis of natural products View project All content following this page was uploaded by Mahdi Vazirian on 29 December 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Biomedicine & Pharmacotherapy 86 (2017) 620–627 Available online at ScienceDirect www.sciencedirect.com Review The arguments for and against cannabinoids application in glaucomatous retinopathy a b b c, Yunes Panahi , Azadeh Manayi , Marjan Nikan , Mahdi Vazirian * a Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran b Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran c Pharmacognosy Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran A R T I C L E I N F O A B S T R A C T Article history: Received 29 October 2016 Glaucoma represents several optic neuropathies leading to irreversible blindness through progressive Received in revised form 21 November 2016 retinal ganglion cell (RGC) loss. Reduction of intraocular pressure (IOP) is known as the only modifiable Accepted 27 November 2016 factor in the treatment of this disorder. Application of exogenous cannabinoids to lower IOP has attracted attention of scientists as potential agents for the treatment of glaucoma. Accordingly, neuroprotective Keywords: effect of these agents has been recently described through modulation of endocannabinoid system in the Cannabis sativa eye. In the present work, pertinent information regarding ocular endocannabinoid system, mechanism of Endocannabinoid system exogenous cannabinoids interaction with the ocular endocannabinoid system to reduce IOP, and Glaucoma neuroprotection property of cannabinoids will be discussed according to current scientific literature. In Intraocular pressure addition to experimental studies, bioavailability of cannabinoids, clinical surveys, and adverse effects of Marijuana Neuroprotection application of cannabinoids in glaucoma will be reviewed. © 2016 Elsevier Masson SAS. All rights reserved. Contents 1. Introduction . 1 2. Natural source of cannabinoids . 3 3. Biosynthesis of cannabinoids . 3 4. Chemistry and bioavailability of some natural cannabinoids . 3 5. Endocannabinoid system in the eye . 3 6. Effects of cannabinoids in lowering of IOP . 3 7. Effects of cannabinoids in neuroprotection . 4 8. Adverse effects of marijuana . 5 9. Discussion . 5 Conflict of interest . 6 References . 6 1. Introduction humor formation and draining out, is the only known modifiable risk factor for prevention of glaucoma progress. Although, the Glaucoma, a neurodegenerative eye disease, known as a major elderly are at higher risk for the disease, glaucoma can develop in factor for irreversible blindness. It is predicted that more than 80 young adults, children, and infants [2,3]. Damage of optic nerve million people by 2020 will be affected by glaucoma leading to at most commonly occurs due to high IOP and progressive least 6–8 million bilaterally blind worldwide [1]. Increased degeneration of retinal ganglion cells (RGCs) leading to irreversible intraocular pressure (IOP) >22 mmHg, due to imbalance of aqueous vision loss [4]. Blood flow alteration as a result of IOP, produces hypoxia and ischemia in the retina and optic nerve [5]. Standard treatments are restricted to reduction of IOP using medications or surgery. While, these types of treatments are not effective in some * Corresponding author. patients and a subset of glaucoma is not associated with high IOP E-mail address: [email protected] (M. Vazirian). http://dx.doi.org/10.1016/j.biopha.2016.11.106 0753-3322/© 2016 Elsevier Masson SAS. All rights reserved. Y. Panahi et al. / Biomedicine & Pharmacotherapy 86 (2017) 620–627 621 [6]. Protection of retinal ganglion cells from damage and death enzymes of their synthesis and metabolism and cannabinoid directly can be considered as a novel approach to combat glaucoma receptors in the retina [15]. The physiological and pharmacological [7]. activities of endocannabinoids along with natural and synthetic Resin glands located on secreting trichomes of female-plant cannabinoids are mediated mostly by two receptors, cannabinoid flowers of Cannabis sativa (Cannabaceae family) contain consider- receptor 1 (CB1) and cannabinoid receptor 2 (CB2) [13]. Receptors able amount of cannabinoids. Smaller quantity of these chemically of CB1 are predominantly expressed in the central nervous system active compounds was found in the leaves of the cannabis plant (CNS), while receptors of CB2 are mainly located in peripheral (marijuana) [8]. Several cannabinoids have been isolated of the tissues and immune system and also found in the CNS [16–18]. plant, of which D9-tetrahydrocannabinol (D9-THC), cannabichro- Anandamide (N-arachidonoylethanolamine, AEA) and 2-arachido- mene (CBC), cannabigerol (CBG), cannabinol (CBN) and cannabi- noylglycerol (2-AG) (Fig. 1) are the two most studied endogenous diol (CBD) are the most relevant in the amount of cannabinoids. cannabinoids. Endocannabinoids also activate other targets, Synthetic modulators of endogenous cannabinoid system has been including non-CB1, non-CB2 G-protein-coupled receptors and also investigated for their therapeutic potentials in addition to various ion channels [19]. Therapeutic effects of cannabinoids in phytocannabinoids (Fig. 1) [9]. These compounds possess thera- CNS pathologies like Parkinson’s disease, Alzheimer’s disease, peutic effects on cancer, pain, emesis, inflammation, obesity, and Huntington disease, head trauma, and multiple sclerosis (MS) have neurodegenerative diseases along with other psychotropic prop- been reported in the previous studies [20–24]. In this review, the erties [10–13]. knowledge of therapeutic potential of cannabinoids will be The beneficial function of cannabinoids in ocular physiology particularly discussed in glaucoma. Relevant information regard- and disease dates back to 1971 when it was reported that smoking ing chemistry and bioavailability of cannabinoids, the ocular marijuana lower the IOP [14]. Role of cannabinoids in retinal endocannabinoid system, and ocular hypotensive as well as circuitry and vision is supported by the presence of the functional neuroprotective properties of cannabinoids will be provided in endocannabinoid system including endogenous cannabinoids, the treatment of glaucoma. OH OH O OH OH O O 2-arachidonyl glycerol (2-AG) 2-arachidonyl glyceryl ether OH H O OH N OH N O H anandamide (AEA) N-arachidonyl dopamine (NADA) Endocannabinoids OH H OH OH H H H O O HO delta9-tetrahydrocannabinol cannabinol cannabidiol Natural cannabinoids O HO O OH H H O H N O O H N O WIN55212-2 nabilone dronabinol Synthetic cannabinoids Fig. 1. Chemical structures of some cannabinoids. 622 Y. Panahi et al. / Biomedicine & Pharmacotherapy 86 (2017) 620–627 2. Natural source of cannabinoids formula of C21H26O2, molecular mass 310.4319 g/mol, was isolated from the plant cannabis. Average bioavailability of inhaled CBN is Cannabis has three specious including C. sativa, Cannabis indica, 38% (range 8–65%) [9,33,45]. and Cannabis ruderalis. About 113 cannabinoids with various effects were isolated from C. sativa which is an annual herbaceous 5. Endocannabinoid system in the eye plant [25]. There are some studies indicate that C. indica contains higher amount of D9-THC than CBD, while C. sativa have more In addition to the human retina, presence of CB1 and CB2 has amount of CBD [26]. Wild specious of cannabis, C. ruderalis, lack been shown in several specious. Generally, CB1 is found in cones, meaningful quantity of psychoactive cannabinoids [27]. horizontal cells, amacrine, some bipolar cells, RGCs, and ganglion cell axons [13,46–49]. In human, receptors of CB1 are expressed in 3. Biosynthesis of cannabinoids outer segments of photoreceptor cells, outer plexiform layer, inner plexiform layer, two synaptic layers of the retina, inner nuclear Cannabinoids are primarily synthesized in glandular trichomes layer, ganglion cell layer, and retinal pigment epithelium cells. CB2 of flowers and, to a lesser extent, leaves of the female plant from receptors are found in human retinal pigment epithelium cells fatty acid and isoprenoid precursors [28]. A type III polyketide [47,50,51]. Immunocytochemical methods revealed that transient synthase is the first enzyme in the cannabinoid synthesis pathway receptor potential vanilloid type 1 (TRPV1), a ligand-gated, which catalyzes hexanoyl-CoA condensation with
Recommended publications
  • Cannabinoid-Induced Hypotension and Bradycardia in Rats Is 1 Mediated by CB1-Like Cannabinoid Receptors
    0022-3565/97/2813-1030$03.00/0 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Vol. 281, No. 3 Copyright © 1997 by The American Society for Pharmacology and Experimental Therapeutics Printed in U.S.A. JPET 281:1030–1037, 1997 Cannabinoid-Induced Hypotension and Bradycardia in Rats Is 1 Mediated by CB1-Like Cannabinoid Receptors KRISTY D. LAKE, DAVID R. COMPTON, KAROLY VARGA, BILLY R. MARTIN and GEORGE KUNOS Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia Accepted for publication February 19, 1997 ABSTRACT 9 Previous studies indicate that the CB1 cannabinoid receptor an- potency was (-)-11-OH-D -THC dimethylheptyl $ (-)-3-[2- tagonist, N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophe- hydroxy-4-(1,1-dimethyl-heptyl)phenyl]-4-[3-hydroxy-propyl]cy- nyl)-4-methyl-1H-pyrazole-3-carboxamide HCl (SR141716A), in- clohexan-1-ol . (-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)phenyl]- hibits the anandamide- and D9-tetrahydrocannabinol- (THC) 4-[3-hydroxy-propyl]cyclohexan-1-ol . THC . anandamide $ induced hypotension and bradycardia in anesthetized rats with a (-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)phenyl]-4-[3-hydroxy- potency similar to that observed for SR141716A antagonism of propyl]cyclohexan-1-ol, which correlated well with CB1 receptor THC-induced neurobehavioral effects. To further test the role of affinity or analgesic potency (r 5 0.96-0.99). There was no hypo- CB1 receptors in the cardiovascular effects of cannabinoids, we tension or bradycardia after palmitoylethanolamine or (1)-11-OH- examined two additional criteria for receptor-specific interactions: D9-THC dimethylheptyl.
    [Show full text]
  • Medicinal Chemistry Endeavors Around the Phytocannabinoids
    CHEMISTRY & BIODIVERSITY – Vol. 4 (2007) 1707 REVIEW Medicinal Chemistry Endeavors around the Phytocannabinoids by Eric Stern and Didier M. Lambert* Drug Design and Discovery Center and Unite´ de Chimie pharmaceutique et de Radiopharmacie, Ecole de Pharmacie, Faculte´ de Me´decine, Universite´ catholique de Louvain, Avenue E. Mounier 73, U.C.L. 73.40, B-1200 Bruxelles (phone: þ3227647347; fax: þ3227647363; e-mail: [email protected]) Over the past 50 years, a considerable research in medicinal chemistry has been carried out around the natural constituents of Cannabis sativa L. Following the identification of D9-tetrahydrocannabinol (D9-THC) in 1964, critical chemical modifications, e.g., variation of the side chain at C(3) and the opening of the tricyclic scaffold, have led to the characterization of potent and cannabinoid receptor subtype-selective ligands. Those ligands that demonstrate high affinity for the cannabinoid receptors and good biological efficacy are still used as powerful pharmacological tools. This review summarizes past as well as recent developments in the structure–activity relationships of phytocannabinoids. 1. Introduction. – Despite the wide uses of preparations of the hemp Cannabis sativa L. during the History, the modern pharmacology of natural cannabinoids has been hampered by the slow progress in the elucidations of the chemical structures of its major components. Indeed, it is nowadays known that more than 70 compounds derived from a diterpene structure are present in the plant [1], and this fact may explain the difficulty to obtain pure chemical entities in the past. In addition, the medicinal research for more than a half century has been driven by the search for the components responsible for the psychoactive effects of cannabis, this era in the history of the chemical research on cannabinoids have been recently reviewed [2][3].
    [Show full text]
  • Icrs2015 Programme
    TH 25 ANNUAL SYMPOSIUM OF THE INTERNATIONAL CANNABINOID RESEARCH SOCIETY WOLFVILLE NOVA SCOTIA JUNE 28 - JULY 3, 2015 TH 25 ANNUAL SYMPOSIUM OF THE INTERNATIONAL CANNABINOID RESEARCH SOCIETY WOLFVILLE JUNE 28 – JULY 3, 2015 Symposium Programming by Cortical Systematics LLC Copyright © 2015 International Cannabinoid Research Society Research Triangle Park, NC USA ISBN: 978-0-9892885-2-1 These abstracts may be cited in the scientific literature as follows: Author(s), Abstract Title (2015) 25th Annual Symposium on the Cannabinoids, International Cannabinoid Research Society, Research Triangle Park, NC, USA, Page #. Funding for this conference was made possible in part by grant 5R13DA016280-13 from the National Institute on Drug Abuse. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does mention by trade names, commercial practices, or organizations imply endorsement by the U.S. Government. Sponsors ICRS Government Sponsors National Institute on Drug Abuse Non- Profit Organization Sponsors Kang Tsou Memorial Fund 2015 ICRS Board of Directors Executive Director Cecilia Hillard, Ph.D. President Stephen Alexander, Ph.D. President- Elect Michelle Glass, Ph.D. Past President Ethan Russo, M.D. Secretary Steve Kinsey, Ph.D. Treasurer Mary Abood, Ph.D. International Secretary Roger Pertwee, D . Phil. , D . S c. Student Representative Tiffany Lee, Ph.D. Grant PI Jenny Wiley, Ph.D. Managing Director Jason Schechter, Ph.D. 2015 Symposium on the Cannabinoids Conference Coordinators Steve Alexander, Ph.D. Cecilia Hillard, Ph.D. Mary Lynch, M.D. Jason Schechter, Ph.D.
    [Show full text]
  • Effects of Abnormal Cannabidiol on Oxytocin-Induced Myometrial Contractility
    REPRODUCTIONRESEARCH Effects of abnormal cannabidiol on oxytocin-induced myometrial contractility Diarmaid D Houlihan, Michael C Dennedy and John J Morrison Department of Obstetrics and Gynecology, Clinical Sciences Institute, University College Hospital, National University of Ireland Galway, Newcastle Road, Galway, Ireland Correspondence should be addressed to J J Morrison; Email: [email protected] Abstract The objective of this study was to investigate the effects of abnormal cannabidiol (abn-cbd) on oxytocin-induced myometrial contractility occurring during pregnancy. Isometric tension recordings were performed in isolated myometrial strips from biopsies obtained at K K elective cesarean section. The effects of cumulative doses of abn-cbd (10 9–10 5 M) on oxytocin-induced myometrial contractions alone, and on those following pre-incubation with SR 144528, AM 251, methylene blue, and iberiotoxin were measured, and dose– K response curves were constructed. The pD2 ( log EC50) values and the maximal inhibitory (MMI) values that were achieved were compared for each tissue type. Abn-cbd exerted a potent relaxant effect on oxytocin-induced myometrial contractions in vitro. Pre-incubation with the guanylate cyclase inhibitor, methylene blue, and the BKCa channel antagonist, iberiotoxin, significantly ! ! attenuated this effect (for pD2, P 0.01; for MMI, P 0.01). Abn-cbd exerts a potent inhibitory effect on human uterine contractility. This effect is partially mediated through modulation of guanylate cyclase and activation of BKCa channel activity. These findings have implications for physiologic regulation of myometrial quiescence. Reproduction (2010) 139 783–788 Introduction regioisomer of cannabidiol, which mediates a relaxant effect in isolated rat mesenteric artery via a mechanism The endocannabinoids comprise a family of eicosanoid that is distinct from CB1 and CB2 receptor activation and related unsaturated fatty acid derivatives, of which (Jarai et al.
    [Show full text]
  • Cannabinoids for the Control of Experimental Multiple Sclerosis Pryce, Gareth
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen Mary Research Online Cannabinoids for the control of experimental multiple sclerosis Pryce, Gareth The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author For additional information about this publication click this link. https://qmro.qmul.ac.uk/jspui/handle/123456789/673 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] 1 Cannabinoids for the control of experimental multiple sclerosis GARETH PRYCE Neuroimmunology Unit, Neuroscience & Trauma Barts and the London School of Medicine and Dentistry Queen Mary University of London UK 2 This thesis is dedicated in memory of my Dad, Glyn Pryce (1927-2010), with love and thanks. 3 ACKNOWLEDGEMENTS I wouldlike to thank DavidBaker andGavin Giovannoni for their supervision and providingme with the opportunity to undertake this thesis. I wouldlike to thank J.Ludovic Croxford, Sam Jackson, Sarah Al-Izki from the lab past and present; Ana Cabranes (RIP) and the Javier Fernadez-Ruiz laboratory in Madrid, Spain; the Vincenzo Di Marzio Laboratory Naples, Italy; the Andy Irving Laboratory, Dundee; the laboratories of Elga De Vries andSandra Amor at the Free University Amsterdam, The Netherlands and the laboratories of Ruth Ross and Roger Pertwee in Aberdeen and Alison Hardcastle University College London for providing me with supportive data and particularly Cristina Visintin and David Selwoodof University College London andCanbex for providingdata from contract Research organizations.
    [Show full text]
  • Expression of Cannabinoid Receptors in Human Osteoarthritic Cartilage
    Expression of cannabinoid receptors in human osteoarthritic cartilage: implications for future therapies DUNN, Sara L., WILKINSON, Jeremy Mark, CRAWFORD, Aileen, BUNNING, Rowena A.D. <http://orcid.org/0000-0003-3110-0445> and LE MAITRE, Christine L. <http://orcid.org/0000-0003-4489-7107> Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/11794/ This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. Published version DUNN, Sara L., WILKINSON, Jeremy Mark, CRAWFORD, Aileen, BUNNING, Rowena A.D. and LE MAITRE, Christine L. (2016). Expression of cannabinoid receptors in human osteoarthritic cartilage: implications for future therapies. Cannabis and Cannabinoid Research, 1 (1), 3-15. Copyright and re-use policy See http://shura.shu.ac.uk/information.html Sheffield Hallam University Research Archive http://shura.shu.ac.uk Cannabis and Cannabinoid Research Volume 1.1, 2016 Cannabis and DOI: 10.1089/can.2015.0001 Cannabinoid Research ORIGINAL RESEARCH Open Access Expression of Cannabinoid Receptors in Human Osteoarthritic Cartilage: Implications for Future Therapies Sara L. Dunn,1 Jeremy Mark Wilkinson,2 Aileen Crawford,3 Rowena A.D. Bunning,1 and Christine L. Le Maitre1,* Abstract Introduction: Cannabinoids have shown to reduce joint damage in animal models of arthritis and reduce ma- trix metalloproteinase expression in primary human osteoarthritic (OA) chondrocytes. The actions of cannabi- noids are mediated by a number of receptors, including cannabinoid receptors 1 and 2 (CB1 and CB2), G- protein-coupled receptors 55 and 18 (GPR55 and GPR18), transient receptor potential vanilloid-1 (TRPV1), and peroxisome proliferator-activated receptors alpha and gamma (PPARa and PPARc).
    [Show full text]
  • Cannabinoid Receptors and Endocannabinoids
    The AAPS Journal 2006; 8 (2) Article 34 (http://www.aapsj.org). Themed Issue: Lipid Mediator Lipidomics: New Pathways in Mapping Resolution Guest Editors - Charles N. Serhan, Song Hong and Yan Lu Cannabinoid Receptors and Endocannabinoids: Evidence for New Players Submitted: December 29 , 2005 ; Accepted: February 28 , 2006; Published: April 28, 2006 Ken Mackie1 and Nephi Stella2 1 Departments of Anesthesiology and Physiology and Biophysics, University of Washington, Seattle WA 2 Departments of Pharmacology, Psychiatry, and Behavioral Sciences, University of Washington, Seattle, WA A BSTRACT nabinoids, and are getting much closer to overcoming It is now well established that the psychoactive effects of these 2 challenges. Cannabis sativa are primarily mediated through neuronal C sativa contains ~60 phytocannabinoids, a handful of which CB1 receptors, while its therapeutic immune properties are bioactive as defi ned by their ability to specifi cally inter- are primarily mediated through CB2 receptors. Two endo- act with membrane-associated receptors, the cannabinoid cannabinoids, arachidonoylethanolamide and 2-arachi- receptors. The best-known phytocannabinoid is Δ 9 -tetrahy- donoylglycerol, have been identifi ed, their action on CB1 drocannabinol (THC),3 which is thought to mediate most — if and CB2 thoroughly characterized, and their production not all — of the psychotropic and addictive properties of C and inactivation elucidated. However, many signifi cant sativa . 4 Recent evidence suggest that some of the antiinfl am- exceptions to these
    [Show full text]
  • Pharmacological Actions of Cannabinoids
    Pharmacological Actions of Cannabinoids R.G. Pertwee School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK [email protected] 1Introduction.................................... 2 2 Bioassays for Characterizing CB1 and CB2 Receptor Ligands .......... 6 2.1 InVitroBindingAssays.............................. 6 2.2 In Vitro Functional Bioassays .......................... 9 2.2.1AssaysUsingWholeCellsorCellMembranes.................. 9 2.2.2IsolatedNerve–SmoothMusclePreparations.................. 11 2.3 In Vivo Bioassays ................................. 11 2.4 CannabinoidReceptorKnockoutMice...................... 12 3CB1 and CB2 Cannabinoid Receptor Ligands .................. 13 3.1 CannabinoidReceptorAgonists......................... 13 3.2 Cannabinoid CB1 and CB2 ReceptorAntagonists................ 20 3.2.1 Selective CB1 ReceptorAntagonists....................... 20 3.2.2 Selective CB2 ReceptorAntagonists........................ 22 3.3 InverseAgonismatCannabinoidReceptors................... 22 3.4 NeutralAntagonismatCannabinoidReceptors................. 24 4 Other Pharmacological Targets for Cannabinoids in Mammalian Tissues ... 26 4.1 Receptors...................................... 26 4.1.1VanilloidReceptors................................ 26 4.1.2 CB1 ReceptorSubtypes.............................. 27 4.1.3 CB2-LikeReceptors................................ 27 4.1.4 Neuronal Non-CB1,Non-CB2,Non-TRPV1Receptors ............. 28 4.1.5ReceptorsforAbnormal-Cannabidiol.....................
    [Show full text]
  • THC Reduces Ki67-Immunoreactive Cells Derived from Human Primary Glioblastoma in a GPR55-Dependent Manner
    cancers Article THC Reduces Ki67-Immunoreactive Cells Derived from Human Primary Glioblastoma in a GPR55-Dependent Manner Marc Richard Kolbe 1, Tim Hohmann 1 , Urszula Hohmann 1 , Chalid Ghadban 1, Ken Mackie 2, Christin Zöller 3, Julian Prell 3, Jörg Illert 3, Christian Strauss 3 and Faramarz Dehghani 1,* 1 Department of Anatomy and Cell Biology, Medical Faculty of Martin-Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle (Saale), Germany; [email protected] (M.R.K.); [email protected] (T.H.); [email protected] (U.H.); [email protected] (C.G.) 2 Department of Psychological & Brain Sciences, Indiana University, 1101E. 10th, Bloomington, IN 47405, USA; [email protected] 3 Department of Neurosurgery, University Hospital Halle (Saale), Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany; [email protected] (C.Z.); [email protected] (J.P.); [email protected] (J.I.); [email protected] (C.S.) * Correspondence: [email protected]; Tel.: +49-345-557-1707 Simple Summary: Glioblastoma (GBM) is the most frequent primary brain tumor entity with poor prognosis and resistance to current standard therapies. Cannabinoids, such as tetrahydrocannabinol (THC) and cannabidiol (CBD) are discussed as promising compounds for individualized treatment, as they exert anti-tumor effects by binding to cannabinoid-specific receptors. However, their phar- Citation: Kolbe, M.R.; Hohmann, T.; Hohmann, U.; Ghadban, C.; Mackie, macology is highly diverse and complex. The present study was designed to verify (1) whether K.; Zöller, C.; Prell, J.; Illert, J.; Strauss, cannabinoids show even any effect in GBM cells derived from primary human tumor samples and C.; Dehghani, F.
    [Show full text]
  • Time-Dependent Vascular Actions of Cannabidiol in the Rat Aorta
    European Journal of Pharmacology 612 (2009) 61–68 Contents lists available at ScienceDirect European Journal of Pharmacology journal homepage: www.elsevier.com/locate/ejphar Cardiovascular Pharmacology Time-dependent vascular actions of cannabidiol in the rat aorta Saoirse E. O'Sullivan a,⁎, Yan Sun b, Andrew J. Bennett b, Michael D. Randall b, David A. Kendall b a School of Graduate Entry Medicine and Health, Derby City General Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom b School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom article info abstract Article history: We have shown that the major active agent of Cannabis sativa, Δ9-tetrahydrocannabinol, activates Received 31 October 2008 peroxisome proliferator-activated receptor gamma [PPARγ, O'Sullivan, S.E., Tarling, E.J., Bennett, A.J., Kendall, Received in revised form 18 February 2009 D.A., Randall, M.D., 2005c. Novel time-dependent vascular actions of delta9-tetrahydrocannabinol mediated Accepted 3 March 2009 by peroxisome proliferator-activated receptor gamma. Biochem. Biophys. Res. Commun. 337, 824–831]. The Available online 11 March 2009 aim of the present study was to investigate whether another pharmacologically active phytocannabinoid, cannabidiol, similarly activates PPAR . Functional vascular studies were carried out in rat aortae in vitro by Keywords: γ Cannabinoid myography. PPARγ activation was investigated using reporter gene assays, a PPARγ competition-binding Cannabidiol assay and an adipogenesis assay. Cannabidiol caused time-dependent (over 2 h) vasorelaxation of pre- Aorta constricted aortae, sensitive to PPARγ antagonism (GW9662, 1 µM) and super oxide dismutase inhibition. Vasorelaxation The vascular effects of cannabidiol were not affected by endothelial denudation, nitric oxide synthase Peroxisome proliferator-activated receptor inhibition, pertussis toxin, cannabinoid CB1 or cannabinoid CB2 receptor antagonism, or capsaicin pre- gamma treatment.
    [Show full text]
  • Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor
    www.nature.com/scientificreports OPEN Primary Macrophage Chemotaxis Induced by Cannabinoid Receptor 2 Agonists Occurs Independently Received: 20 March 2015 Accepted: 13 April 2015 of the CB Receptor Published: 02 June 2015 2 Lewis Taylor1, Ivy Christou1, Theodore S. Kapellos1, Alice Buchan1, Maximillian H. Brodermann1, Matteo Gianella-Borradori2, Angela Russell2, Asif J. Iqbal1 & David R. Greaves1 Activation of CB2 has been demonstrated to induce directed immune cell migration. However, the ability of CB2 to act as a chemoattractant receptor in macrophages remains largely unexplored. Using a real-time chemotaxis assay and a panel of chemically diverse and widely used CB2 agonists, we set out to examine whether CB2 modulates primary murine macrophage chemotaxis. We report that of 12 agonists tested, only JWH133, HU308, L-759,656 and L-759,633 acted as macrophage chemoattractants. Surprisingly, neither pharmacological inhibition nor genetic ablation of CB2 had any effect on CB2 agonist-induced macrophage chemotaxis. As chemotaxis was pertussis toxin -/- sensitive in both WT and CB2 macrophages, we concluded that a non-CB1/CB2, Gi/o-coupled GPCR must be responsible for CB2 agonist-induced macrophage migration. The obvious candidate receptors GPR18 and GPR55 could not mediate JWH133 or HU308-induced cytoskeletal rearrangement or JWH133-induced β -arrestin recruitment in cells transfected with either receptor, demonstrating that neither are the unidentified GPCR. Taken together our results conclusively demonstrate that CB2 is not a chemoattractant receptor for murine macrophages. Furthermore we show for the first time that JWH133, HU308, L-759,656 and L-759,633 have off-target effects of functional consequence in primary cells and we believe that our findings have wide ranging implications for the entire cannabinoid field.
    [Show full text]
  • Non-Psychotropic Plant Cannabinoids: New Therapeutic Opportunities from an Ancient Herb
    Review Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb Angelo A. Izzo1,4, Francesca Borrelli1,4, Raffaele Capasso1,4, Vincenzo Di Marzo2,4 and Raphael Mechoulam3 1 Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy 2 Institute of Biomolecular Chemistry, National Research Council, Pozzuoli (NA), Italy 3 Department of Medicinal Chemistry and Natural Products, Hebrew University Medical Faculty, Jerusalem, Israel 4 Endocannabinoid Research Group, Italy 9 D -tetrahydrocannabinol binds cannabinoid (CB1 and system’’. With its ability to modulate several physiological CB2) receptors, which are activated by endogenous com- and pathophysiological processes (e.g. neurotransmitter pounds (endocannabinoids) and are involved in a wide range of physiopathological processes (e.g. modulation of neurotransmitter release, regulation of pain percep- Glossary tion, and of cardiovascular, gastrointestinal and liver Transient receptor potential (TRP): Transient receptor potential (TRP) is a functions). The well-known psychotropic effects of D9- superfamily of non-selective, ligand-gated cation channels. They can be subdivided in six main subfamilies: the TRPC (‘Canonical’), TRPV (’Vanilloid’), tetrahydrocannabinol, which are mediated by activation TRPM (‘Melastatin’), TRPP (‘Polycystin’), TRPML (‘Mucolipin’) and the TRPA of brain CB1 receptors, have greatly limited its clinical (‘Ankyrin’) group. At least six TRPs (TRPV1, TRPV2, TRPV3, TRPV4, TRPM8 and use. However, the plant Cannabis contains many can- TRPA1) have been shown to be expressed in primary afferent nociceptors, where they act as transducers for thermal, chemical and mechanical stimuli. nabinoids with weak or no psychoactivity that, thera- Many TRPs are activated by natural compounds, such as capsaicin (TRPV1), 9 peutically, might be more promising than D - cannabidiol (TRPV2), incensole acetate (TRPV3), menthol (TRPM8) and tetrahydrocannabinol.
    [Show full text]