Lake management : conflict solving governance Summary

Introduction ...... 5

1. Context: silmas and conflicts of use ...... 6

The roles played by those organisations involved in the silmas project, the wp 5.2 mandate, the people/resources principally involved...... 9 Understanding the concept of “conflicts of use”...... 10

2. Description of silmas activities on pilot sites ...... 12

Pilot sites: tested approaches...... 14 Pilot activities on and lake iseo: innovative tools for lake management...... 16

3. Toolbox and knowledge map ...... 16 International working group Development of toolbox...... 17 Maurizio.Siligardi,.Barbara.Zennaro.. (Agenzia.provinciale.per.la.protezione.dell’ambiente) Dissemination aspects for the tool box...... 19 Rossano.Bolpagni.(università.di.Parma,.. Results products in the toolkit and knowledge map...... 21 Regione.Lombardia) Roswitha.Fresner,.Michael.Schönhuber.. (Carinthian.Institute.for.Lake.Research). 5. Reaching a conclusion ...... 24 Liselotte.Schulz.(Government.of.Carinthia,.. Summary of the work accomplished and thanks...... 25 Dep..8.–.Environment). Access to resource documents...... 25 Tina.Leskosek..(National.Institute.of.Biology,.Slovenia) Sustainability of project results...... 25 Coordination Lessons learnt and perspective in view...... 26...... 26 Maurizio.Siligardi,.Barbara.Zennaro.(Agenzia.provinciale.. per.la.protezione.dell’ambiente). ANNEXES ...... 28 Authors ANNEXE 1: Questionnaire about conflict of usage problemsproblems...... 29 Maurizio.Siligardi,.Barbara.Zennaro.(Agenzia.provinciale.. per.la.protezione.dell’ambiente). ANNEXE 2: Ecological surveys on Lake Idro. Rossano.Bolpagni.(Università.di.Parma,.. Limnological research as a support to ecosystem Regione.Lombardia) management and water quality recovery...... 34...... 34 Michael.Schönhuber.(Carinthian.Institute.for.Lake.Research). ANNEXE 3: Lake Iseo: a complex socio-ecological system. Tina.Leskosek,..Irena.Bertoncelj,.Uros.Zibrat,.. Water use and lake contract...... 100 (National.Institute.of.Biology,.Slovenia) ANNEXE 4: The implementation of a mathematical model Acknowledgement for managing qualitative and quantitative aspects of a large Special.thanks.from.APPA.to.all.those.that.hosted.and.. and deep pre-alpine lake: Lake ISEO...... 118...... 118 participated.to.the.SFI.trainings.during.summer.2012.and.. ANNEXE 5: Macro-regional strategy for Alpine Space all.those.that.supported.the.working.group.to.carry.on.the.work.. Roadmap of the Alpine regions...... 148

APPA non è responsabile per l’uso che può essere fatto delle informazioni contenute in questo documento. La riproduzione è autorizzata citando la fonte.

2 . 3

Introduction

The SILMAS project “Sustainable Instruments •..and.on.the.other.hand.by.viewing.the.tools.from.an.interpretive. for Lakes Management in Alpine Space” is the or. functional. point. of. view,. putting. their. use. into. context,. especially. through. the. creation. of. 3. video. clips. broadcast. continuation of a previous “Alplakes” project, during.the.World.Water.Forum.(Annexe.1).and.during.SILMAS. which uses the same partners but includes Final. Conference,. but. also. by. creating. the. “tools-causes- consequences-solutions-limits”. chain.. The. production. of. different geographical areas and new sectional this.work.was.made.possible.because.of.the.inclusion.of.the. approaches with the introduction of “Work toolbox.into.a.“knowledge.map”. packages” (WP). The.tools.described.in.the.final.toolbox.cannot.be.considered. as. exhaustive.. We. would. like. to. apologise. to. collaborators. who. expressed. themselves. at. the. end. of. the. toolbox. project. In. conjunction. with. WP. 4. which. is. scientific. in. approach. and. and.whose.work.was.not.included.in.the.“final”.toolbox,.even. WP.6.which.has.an.educational.bias,.WP.5.brought.together. though.worthy,.for.timetabling.and.financial.reasons.(typology. a. large. number. of. parties. from. the. Regions. with. an. interest. and.toolsheets.produced.by.Asconit.Consultants.in.cooperation. in. lake. management. or. the. protection. of. the. environment.. All. with.SILMAS.Partner.University.of.Salzburg.(WAS)).. parties.share.a.direct.role.in.this.“governance”.of.the.lakes,.a. On.the.other.hand,.we.see.the.strength.of.the.knowledge.map,. management.which.is.complex.because.whilst.taking.care.of. that.we.sometimes.call.the.“Wikipedia.of.the.lakes”,.as.coming. day.to.day.management,.managers.also.have.responsibility.for. from.its.sense.of.ownership..Indeed,.by.necessity.it.is.collective,. the.long.term.future.and.development.of.the.lakes.by.virtue.of. shared.and.jointly.constructed..It.therefore.goes.without.saying. the.tools.at.their.disposal. that. the. onus. is. on. every. member. involved. or. associated. In. this. way,. WP. 5. has. enabled. the. adoption. of. an. approach. with.the.project.to.complete.and.update.it,.in.short.to.make.it. which.is: “live”.for.longer.than.the.designated.time.frame.of.the.3.years. allocated.to.this.European.project. •..cross-cutting,. with. a. typological. dimension. concerning. the. tools. used. and. thoughts. about. the. way. they. can. be. used. outside.their.original.context,. •..thematic,.by.means.of.“pilot.schemes”,.but.also.by.means.of. detailed.thematic.approaches,.in.particular.concerning.fishing. and.the.ports The. WP. 5.2.. mandate. evolved. gradually. towards. a. highly. collaborative.work: •..on.the.one.hand.by.making.the.most.of.tools.or.approaches. considered.useful.for.everyone’s.benefit,.whilst.at.the.same. time.allowing.them.to.evolve.within.the.project,.albeit.as.part.of. a.WP.5.pilot.scheme.or .another.thematic.process.in.a.different. WP.(as.it.was.the.case.of.the.Shorezone.Functionality.Index. or.SFI,.tested.on.several.lakes..This.is.a.concrete.example.of. a.process.which.was.successfully.applied.outside.its.original. context.)

5 This current report will only deal with what is understood by the terms “conflicts of use”, “tools”, toolbox” and “knowledge map”. In fact, the knowledge map, a more detailed description of which will appear in this report, was conceived precisely to elucidate notions and concepts and clarify terms and their associated definitions in order to avoid too great a linguistic or cultural deviation. This in a European “Alpine” context where 5 countries have agreed - in order to make communication easier - to use a language that is not native to any of them, occasionally resulting in “approximate English”, which had to be translated more reliably in the toolsheets and the knowledge map.

Conflicts of Use as.we.use.it.in.this.project,.designate.any.means,.like.initiative,. Concept.of.tools.was.strictly.defined,.but.the.way.in.which.they. studies,.prescription,.manuals,.procedure,.which.was.created.to. could.be.put.to.use,.in.principle,.was.very.varied,.as.any.alteration. solve.or.to.avoid.or.to.reduce.a.problem.about.the.management. is.susceptible.to.have.an.economic,.social.and.environmental. of.the.lakes.or.the.areas.around.them..It.is.important.that.the. impact,.the.range.of.possible.conflicts.of.use.is.unlimited. chosen.tools.in.our.toolbox.have.been.used.on.particular.lakes.in. specific.situation.so.that.there.is.a.practical.experience.available. Producing.video.clips.during.the.first.phase.of.collecting.tools. too..Some.of.the.tools.present.legal.prescriptions.which.are.to. with.the.help.of.a.questionnaire.and.a.“conflict.tree”,.enabled.us. fulfil;.even.in.these.cases.it.was.aimed.to.show.the.impacts.of. to.identify.several.problems.which.would.have.to.be.dealt.with. these.acts.or.ordinances.on.the.lakes.management. as.a.priority. The. construction. of. the. “toolbox”. by. data. gathering. enabled. The.presence.of.“artificial”.reservoirs.provided.an.opportunity.to. the. typology. to. evolve. and. made. it. possible. to. integrate. 1. Context: Silmas take.other.examples.than.a.strictly.environmental.approach.and. “operational”. tools. during. the. course. of. the. project,. such. as. allowed.us.to.capitalise.on.the.issues.of.the.division.of.the.water. an.initiative.to.treat.macrophytes.in.Austria..In.principle,.such. resource. and. the. development. of. the. tourist. industry. on. the. kind.of.instruments.would.not.have.been.thought.of.in.a.more. lakes..These.two.things.have.an.influence.on.more.or.less.all.of. normative.system.of.classification.(legal,.financial,.contractual,. the.lakes.and.enable.to.enlarge.the.scientific.view:.biodiversity. educational.tools…). and.the.effects.of.climate.change.as.seen.from.a.strictly.physio- In. this. way. we. will. have. collected. “tools”. which. are. “texts”,. and conflicts chemical.perspective. others.which.are.“actions”,.“games”.or.“exhibitions”.which.are. For.this.reason.we.will.come.back.to.this.issue.in.the.concluding. educational.in.nature. part.of.the.report.where.we.will.look.at.the.lessons.learnt,.the. complementarity.and.no.doubt.the.added.value.provided.by.the. Toolbox approach.used.by.WP.5 .in.comparison.to.the.other.WPs.in.the. The. term. “Toolbox”,. refers. to. a. set. of. tools. for. stakeholders. of use project..The.WP.5.approach,.which.examined.in.particular.the. which.is.structured.by.a.typology.that.is.thought.to.support.the. question.of.water.level.management,.enabled.us.to.go.beyond. Lakes.manager.to.retrieve.and.apply.available.tools.in.a.simple. the.debate.about.“natural”.and.“artificial”.lakes.and.to.produce. way. a.typology.that.was.more.diverse.and.mixed..It.enabled.us.to. For. the. Project. Manager. (the. Provence-Alpes-Côte. d’Azur. show.that.the.same.pressures,.albeit.in.different.degrees,.were. region).the.objective.behind.the.“toolkit”.was.to.be.able.to.give. exerted. on. artificial. reservoirs. and. masses. of. “natural”. water. project.partner.X.or.any.other.person.in.charge.of.activities.on. (with.regard.to.inward.and.outward.flow),.where.the.lakes.were. the. lake,. enough. information. to. be. able. to. deal. with. any. lake. developed.for.various.sorts.of.human.exploitation.of.the.water. management.issue..involving.a.definite.or.potential.conflict.of. resource... use.. Furthermore,.this.line.of.investigation.shows.that.the.lakes.were. As.Part.5.will.deal.with.the.items.of.this.typology,.this.“definition”. not.just.simple.witnesses.of.climate.change.and.its.effects.but. of.the.box.will.concentrate.on.highlighting.the.differences.which. proper.caretakers.of.the.water.resource.. exist.between.the.“toolbox”.and.the.“knowledge.map”,.as.an. In.order.to.simplify.and.clarify.the.mandate.and.content.of.the. object.and.in.its.primary.function.or.what.it.brings.in.terms.of. thought.processes.contained.in.WP.5.2,.the.“conflicts.of.use”. added.value... taken. into. account. are. grouped. together. under. three. main. In. fact,. it. should. be. pointed. out. that. the. “toolbox”,. produced. headings,.within.which.some.sub-heading.may.be.used: by. Asconit. Consultants. for. the. Provence-Alpes. Côte. d’Azur. •..Conflicts.linked.to.the.way.in.which.the.water as resource.is. Region.is,.first.and.foremost,.a.weighty.“tome”,.a.collection.of. divided. completed.documents,.which.in.its.paper.version.amounted.to. •..Conflicts.linked. to. the. organisation. of. activities on lakes the.equivalent.of.two.10.cm.thick.files,.one.per.language.(French. between.them... and. English);. a. hard. copy. can. be. consulted. in. the. Provence- •..Conflicts.between. alterations. linked. to. activities. and. their. Alpes-Côte.d’Azur.Region. effects.on.the.quality of the water and environment.. One. part. of. the. toolbox. is. a. “classification. table”. of. tools. organised.according.to.a.certain.number.of.different.themes,.5. Tools/Instruments in.total,.and.the.rest.is.made.up.of.very.detailed.“toolsheets”.(up. Even.this.simple.question.“What.is.a.tool?”.coming.from.project. to.7.pages.of.description.and.analysis.for.each.tool.on.top.of.the. partners. was. important. to. define.. A. tool. -. or. an. instrument. -. original.text.when.there.is.one). 6 7 The roles played by those organisations involved in the SILMAS Project, the WP 5.2 mandate, the people/resources principally involved

All.work.of.a.collective.nature.deserves.acknowledgement.and. .The.people-resources.involved.in.this.project.were.the.following: to. avoid. misunderstanding. or. confusion. must. be. based. on. KIS:.Roswitha.FRESNER,.Liselotte.SCHULTZ,.Stéphanie.KLAUS clarity.as.to.who.is.responsible.for.what... WAS:.Michael.FEGERL.(Consultant),.Wilfried.WIEDEN.(University. The.Leader.of.the.SILMAS.Project.is.Rhône-Alpes.Region..The. of.Salzburg),.Christian.JURIC.(Technodat) following.resource.persons.were.involved.at.key.moments.in.the. Pic 01> Toolbox. The.main.results.of.this.part.of.the.task.5.2.in.the.Work.package. development.of.the.toolbox.and.knowledge.map: 5.were: •..François.TRUSSON. and. Cécile. HOLMAN,. responsible. for. •.creation.of.the.toolbox, drawing. up. the. terms. of. reference,. the. choice. of. external. So.that.this.compilation.of.resource.documents.could.be.used. The. digital. system. provided. by. the. SILMAS. project. partner. service. providers,. watching. the. draft. versions. of. the. video. •.creation.of.the.video.clips. by.the.maximum.number.of.partners.the.toolbox.was: University. of. Salzburg. (WAS),. based. on. syneris,. software. set. clips,.overseeing.the.intermediate.stages.of.the.toolbox.and. •..participation.on.the.SILMAS.event.and.presentation.during.the. from.Technodat,.enables.to.create.knowledge.based.structures. •..made.digitally.available.in.two.languages.(French.and.English). knowledge.map. World.Water.Forum.Marseille-March.2012. and.distributed.in.the.form.of.nearly.400.USB.keys.during.the. (categories).to.organize.the.information.in.the.toolbox.and.other. •..Elodie.VIDAL,.who.joined.at.the.end.of.the.project,.was.present. •..co-construction.and.the.structure.of.the.knowledge.map,.were. World. Water. Forum. by. the. company. “Bonne. Réponse”. on. resource.documents.and.to.support.the.collaboration.of.partners. at.the.final.conference.in.Austria,.where.a.review.of.the.work. the. object. of. a. mission. conducted. by. the. Provence-Alpes. behalf.of.the.Provence-Alpes.Côte.d’Azur.Region,.who.wants. on.a.web.based.knowledge.platform. done.was.possible. Côte.d’Azur.region,.a.partner.in.the.project,.working.as.Project. to.put.this.information.on.their.web.site, The. complementarity. and. the. added. value. of. the. knowledge. Manager,. and. were. entrusted. to. a. group. of. outside. service. The.workpackage.“conflict.solving.governance”.is.managed.by. •..completed.with.3.video.clips.produced.by.the.company.Movie. map,.when.compared.to.the.toolbox,.is.a.consequence.of.its.3. providers. Da. on. behalf. of. the. Provence-Alpes. Côte. d’Azur. Region,. dimensions: the.“Carinthian.Institute.for.Lake.Research”.(KIS).on.behalf.of.the. “Competence.Centre.Environment,.Water.and.Nature.Protection. The. people-resources. involved. in. these. projects. are. the. which.give.a.good.explanation.of.the.issues.associated.with. •..it.works.like.Wikipedia,.people.can.contribute.and.it.can.evolve,. (ABT.8).of.the.Carinthian.government”. following: the.Alpine.lakes, which.means.that.it.can.be.corrected.and.updated..Anyone. •..included.as.the.framework.and.main.content.of.the.knowledge. can.complete.the.information.and.find.the.contact.details.of. The.KIS.was.in.charge.of: PACA. Region. (Project. management. and. coordination,. general. map.during.its.co-construction. the.tools’.original.author(s); •..the.general.coordination.of.WP.5,.linked.to.the.other.WPs, preparation.of.the.seminar.relating.to.the.instances.of.the.World. Water. Forum,. interviews. for. the. clips):. Loïc. DAUTREY. and. •..it. uses. a. semantic. concept. structure. for. connections,. •..the.distribution. of. mandates. in. the. run. up. to. WP. 5.2,. pilot. regional.services.. Knowledge map which.enables.you.to .search.by.topics.or.key.words,.to.find. schemes.and.the.thematic.approach.to.fishing.and.ports, information.embedded.in.a.knowledge.structure,.linked.with.a. What.is.meant.by.“knowledge.map”,.a.term.which.is.not.easy. •..the.conduct. and. presentation. involved. in. the. making. of. the. Asconit.Consultants.(toolbox,.validation.of.the.scientific.content. problem,.its.causes,.its.consequences,.possible.solutions.and. to.translate? knowledge. map,. entrusted. to. Technodat.in. partnership. with. of.the.clips,.organisation.of.the.seminar.on.15th.March,.drafting. their.limits.if.known; the.acts):.Anita.SCHARL,.Eglantine.GAVOTY,.Véronique.PASCAL Knowledge.maps.helps.to.visualize.how.specific.knowledge.is. the.University.of.Salzburg. •..it.is. multilingual,. providing. reliable. translations. for. headings. systemically.embedded.in.a.larger.knowledge.domain..They.are. Bonne. Réponse. Agency. (common. themes. for. the. clips. and. and. main. articles. in. all. the. languages. used. in. the. Alpine. The. WAS. (University. of. Salzburg). as. project. partner. was. in. designed.to.provide.better.orientation.and.understanding.where. the. seminar. on. 15th. March,. support. with. communication. and. countries,.in.addition.to.English,.and.offering.original.versions. charge.of: knowledge. has. become. particularly. complex. and. they. allow. production.of.the.acts):.Laëtitia.PRESSON. of. documents. in. the. source. language. if. their. authors. have. •..preparation. of. a. digital. platform. to. present. the. toolbox. and. easy.and.reliable.retrieval.of.stakeholder,.bits.of.information.or. published.them.on.line. other.results.of.the.SILMAS.project. Movie.Da.(production.of.film.clips):.Henry.NOTTURNO,.Pascaline. documents. AUMOND. •..creation. of. a. multilingual. knowledge. map. as. a. mean. of. Multilingual.knowledge.maps.of.the.given.design.are.set.up.with. orientation.for.experts.and.stakeholders.(i.e..Lake.managers. With. regards. to. the. activities. initiated. on. pilot. sites,. the. key. respect. to. a. knowledge-based. approach,. and. in. a. next. step. institutions.and.players.were:. •..use.of.the.knowledge.map.as.a.reference.grid.for.the.developed. enriched.with.representations.in.different.languages..Resort.to. tools. •..RL.(. regional. Government,. «Environment,. Energy. authentic.texts.in.different.languages.and.asymmetric.(needs- and.Public.Utilities».Directorate-General),.Daniele.MAGNI.and. •..creation. of. a. user-friendly. template. for. the. tool. sheets. in. oriented). degrees. of. elaboration. are. preferred. over. standard. Clara.BRAVI. translation.procedures.where.indicated.. cooperation.with.the.Asconit.consultants. •..ERSAF.(Ente.Regionale.per.i.servizi.all’agricoltura.e.alle.foreste. The.multilingual.knowledge.map.as.organised.for.SILMAS.allows. in.Lombardia),.Livio.MALLIA. users.to.navigate.in.the.knowledge.domain.in.the.language.of. •..SILA.(Local. Authority. for. Annecy. Lake. Purification),. Damien. personal. choice,. to. recognise. associative. linkages. between. Zanella. partial.domains,.to.find.documents.in.other.languages.safely.by. using.a.keyword.in.one’s.own.language,.or.to.create.a.glossary. of. terms. for. a. specific. section. of. knowledge. and. for. specific. languages.

8 9 Pic 02> Presentation of the work processes involved in the construction of the toolbox during the mid -term conference. understanding the concept of “conflicts of use”

In.order.to.understand.conflicts.of.use.clearly,.the.toolbox.opted. for.was.a.long-term.approach,.with.a.data.collection.exercise. being. launched. as. a. first. step. during. the. project’s. mid-term. conference,.followed.by.analysis,.publication.and.distribution.of. the.results.. Prior. to. the. external. consultation. exercise. for. the. creation. of. the.toolbox,.a.series.of..questionnaires.were.sent.to.partners.in. the.project.in.order.to.better.identify.the.context.of.“conflicts.of. use”.by.means.of.an.initial.classification.“problems.identified- responses. given-tools. involved. -. limits. observed”.. The. questionnaire.(Annexe.1).shows.the.approach.envisaged,.in.the. form.of.a.“conflict.tree”,.outlined.as.follows: •..In.the.construction.of.the.information.gathering.questionnaires. sent.out.prior.to.the.creation.of.the.toolbox.(presented.below) •..In. the. construction. of. the. connecting. framework. of. the. knowledge.map •..In.the.construction.of.the.framework.of.the.interviews.for.the. video.clips In.spite.of.a.rate.of.return.which.is.unrepresentative.in.statistical. terms,.this.questionnaire.helped.to.expose.the.three.principle. areas.of.concern.when.studying.conflicts.of.use: •.Conflicts.linked.to.the.division.of.the.water.resource. •.Conflicts.linked.to.the.organisation.of.activities.between.them.. •..Conflicts.between. alterations. linked. to. activities. and. their. effects.on.the.quality.of.the.environment...

10 11 Pilot activities are practical measures introduced as part of a transnational project. Their objectives are to test and improve strategies, but also to develop innovative measures in the project’s partnership regions, either on lakes or their catchment areas. Those tested approaches are therefore the best means of transferring theory into practice, ensuring that the project has a greater territorial impact. For the SILMAS project, in cooperation with local and regional authorities, the activities were conducted on 4 sites spread over the 3 regions: • Lake Iseo, Lombardy Region, • Lake Idro, Lombardy Region, Italy • Lake Annecy, France • Lake Serre-Ponçon, France The results of the experiments were written up as toolkit information sheets compatible with the toolbox and the knowledge map; the original toolsheets are provided in an annex of this Report. While the work has concentrated on an assessment of existing tools, one region has been increasingly 2. Description of focusing on the creation of new tools. Pilot sites: tested approaches Silmas activities The. activities. presented. in. this. subchapter. have. been. carried. A.specific.work.group.is.dedicated.to.the.“motorized.activities”.. out.in.order.to.improve.existing.tools. One.of.the.main.subjects.is.the.development.of.a.new.activity.on. ERSAF’s. (Regional. Agency. for. Services. to. Agriculture. and. the.lake,.the.“wakesurf”.(people.surf .on.the.wave.produced.by. Forestry). work. was. centred. on. the. analysis. of. a. local. deal. a.boat),.which.has.been.responsible.at.his.beginning.of.conflicts. process. concerning. the. establishment. of. a. Lake. Contract. on. with.users.of.the.lake.who.need.a.“flat”.lake.for.their.activities. Iseo.Lake.(instrument.set.out.in.Regional.Law.2/2003.and.by.the. (such.as.leisure.fishermen,.rowers…). on pilot sites Lombardy.Regional.Land.Use.Plan).in.order.to.export.at.a.larger. Created.in.2009,.this.work.group.has.found.solutions.to.improve. scale.management.and.conflict.resolution.tool. the.situations.between.all.users.of.the.lake. The. main. characteristics. of. this. process. are. described. in. a. The.final.result.is.a.«.good.practice.charter.».signed.by.all.users. report,. “Lake. Iseo:. a. complex. socio-ecological. system.. Water. and.widely.distributed. use.and.lake.contract”. (Annexe 2). You. can. also. find. the. report. on. SILMAS. webpage.. (www.silmas.eu). and. on. the. Silmas. knowledge. base... (http://silmas.technodat.co.at/Default.aspx?wlk=KMD5|20285| 999999977&id=5|21840|999999976&logonContext=ceanonym. lokaltdv..3620.1348584442 ) SILA.(Local.public.authority.in.charge.of.the.management.and. the.governance.of.the.lake.Annecy).is.responsible.for.following. activity..The.“Lake.and.Prospective.Commission”.gathers.users. and.all.stakeholders.of.an.Alpine.Lake.(Lake.Annecy),.in.order. to. improve. the. information. of. the. different. projects,. to. solve. conflicts.uses.and.to.implement.management.actions.

12 13 Pilot activities on Lake Idro and Lake Iseo: innovative tools for lake management

SILMAS. project. has. supported. activities. on. pilot. sites. aimed. You.can.also.find.the.report.on.SILMAS.webpage:.www.silmas. at.developing.new.approaches.and.methods.for.the.protection. eu..and. the. silmas. knowledge. base. (http://silmas.technodat. and.enhancement.of.our.lakes,.with.a.particular.emphasis.on. co.at/). innovative.tools.and.applications. The report “Lake Iseo:. a. complex. socio-ecological. system.. The report: “Ecological surveys on Lake Idro. Limnological Water.use.and.lake.contract”.(Annexe 3).is.the.analysis.of.a.local. research as a support to ecosystem management and water deal.pr ocess.concerning.the.establishment.of.a.Lake.contract.in. quality recovery” (Annexe 2).has.been.conceived.as.follows: Iseo.Lake.(instrument.set.out.in.Regional.Law.2/2003.and.by.the. •..Implementation.of.new.tools.based.on.ecological.networks.of. Lombardy.Regional.Land.Use.Plan).in.order.to.export.at.a.larger. lakes: scale.management.and.conflict.resolution.tool.. . -..Implementation.of.two.models.(Loop.analysis.and.Ecological. You. can. also. find. the. report. on. SILMAS. webpage. too:.. Network.Analysis).that.has.allowed.an.evaluation.of.different. www.silmas.eu.and.the.silmas.knowledge.base. scenarios. and. management. rules,. in. order. to. choose. the. better. solution. to. improve. the. quality. of. lake. water. and. to. The report “The implementation of a mathematical model help.resolve.conflicts.on.the.lake for managing quantitative and qualitative aspects of a large . -..The.aim.of.this.activity.was.to.implement.conflict.resolution. and deep pre-alpine lake: the. case. of. Lake. Iseo”. (Annexe. 4). tools. contributing. to. land. planning. in. protected. areas. and. has.been.based.on.the.following.objective:.define.the.current. water.uses.regulation:.the.structure.and.mode.of.operation. ecological.status.of.the.lakes,.and.forecast.changes.caused.by. of.these.models.make.them.easily.transferable.to.other.lake. climate. and. biological. variables.. The. development. of. a. virtual. systems.. model.will.then.make.it.possible.to.define.the.current.ecological. status.of.the.lakes.and.forecast.changes.caused.by.climate.and. •..Assess.the.performance.of.the.two.agreements.that.are.the. biological.variables.. legal.basis.on.which.the.models.are.developed.and.define.new. management.strategies,.shared.with.local.actors.. You. can. also. find. the. report. on. SILMAS. webpage. too:.. www.silmas.eu. and. the. silmas. knowledge. base. (http://silmas. technodat.co.at).

14 15 Development of toolbox

The.development.of.the.tools.was.motivated.first.and.foremost. The.term.“Toolbox”.is.used.to.refer.to.the.digital.system.(linked. by. the. objective. to. be. able. to. compare,. analyse. and. bring. to.the.knowledge.map.of.WP.5.5.).or.documentation.(ring-binder. together.the.different.management.policies.concerning.lakes.in. or.similar).created.to.classify.the.means.or.“tools”.used.for.lake. Europe.and.more.specifically.those.in.Alpine.areas,.refering.to. management,. by. status. (document-judicial. status,. financial,. existing.environmental.and.legal.contexts..Moreover,.a.need.was. educational. etc.),. origin. (European,. national,. local),. thematic. recorded.for.highlighting.possibilities.for.decompartmentalisation. (fishing,.ports).etc. and. for. exchange. of. good. practice,. and. experience. and. for. It.has.also.been.necessary.to.analyse.the.material.collected.in. offering. tools. to. be. put. to. further. use. in. pilot. activities. in. any. more.depth.by.means.of: future. European. cross. border. cooperation. for. the. purpose. of. conflict.solution. • An examination of how effectively the tools can be transferred with regard to: The. creation. of. a. “toolbox”,. which. is. made. up. of. European,. . -.Their.more.or.less.unique.nature, national,. regional. and. local. framework. documents. that. are. legal,.financial.or.educational.in.scope.was.designed.at.defining. . -..Whether.the.specificities.of.their.original.context,.particularly. a. governance. of. the. lakes,. taking. into. account. a. legislative. regarding.territorial.knowledge,.can.be.compared.to.those.of. structure.sometimes.common.to.all.but.sometimes.specific.to. other.communities.in.the.partnership. the.countries.implicated.in.the.project,.on.the.basis.of.an.enquiry. . -..The. willingness. of. players. to. prolong. cooperation. by. by.questionnaire.launched.by.the.working.party.concerned.. innovation.and.experimentation.based.on.the.....exchange.of. tools. This.toolbox.has.been.constructed.in.three.stages,.sometimes. likely. to. be. undertaken. simultaneously:. information. sheets- • Evaluation of the capacity of tools, whose characteristics of 3. Toolbox and transferability have been proven, to respond to the problems actions,.typology.and.evaluation.of.the.tools. which arise: On.the.basis.of.a.questionnaire.sent.out.in.2010.to.the.lakes. . -..Relevance.(objectives.suited.or.not.suited.to.the.problem); in.the.SILMAS.Project.partnership,.from.a.first .analysis.of.the. . -..Coherence.(means.suited.or.not.suited.to.the.objectives); responses.and.the.initial.collection.of.tools,.the.Design.Office. . -..Efficiency. (expected. results. linked. or. not. linked. to. the. had. to. establish. a. collection. of. “toolsheets”). describing. the. means); knowledge map management.tools.used.or.available.to.the.States,.Regions.and. . -..Efficiency. (expected. results. linked. or. not. linked. to. the. Local.Communities. objectives); In. parallel. with. the. collection. and. analysis. phase. these. tools. . -..Effectiveness.or.impact.(expected.results.suited.or.not.suited. have.also.been.set.out.as.follows: to.the.problem). • By type:. legislative. tool. (European. directive,. Local. bylaw. Finally. it. was. necessary. to. develop. a. layout. and. structure. ….). financial. and. or/or. contractual. tool. (Territorial. Contract,. template.for.an.standardized.look-out.of.toolsheets.in.order.to. Agreement. between. different. players,. Management. Plan. facilitate.the.reades.of.the.toolbox.to.understand.the.contents. etc.),. operational. tool. (Pilot. scheme. involving. acquisition,. works.etc.),.informative.or.educational.tool.(Awareness.raising. document,.information.about.training.etc.). • By issuing authority: European.Union,.State.(on.a.national.or. departmental.level),.Region.or.Land,.Department.or.Province,. Local.authorities,.Associations. • By scale of application:.administrative.perimeter.(which.one),. operational.perimeter.(banks,.watershed.etc.). • By “similarity” to comparable tools in other contexts, in line with the comparability index -“transferability”. • By evaluation of their capacity to respond to the problem concerned using the following notions and indicators established during the course of phase 3 and bearing in mind the issues at stake, as detailed in the Alpine convention, and the possible implementation of a “water” protocol, specifically concerning notions of sustainable. sharing. of. the. resource. (uses,. players,. solidarity. and. equality),solving. conflicts.of.use.(organisation.and.joint.use.of.public.facilities,. professional. and. recreational. activities),. contribution. to. the. fight. against. climate. change. and. adaption. to. its. actual. or. foreseeable. effects,. contribution. to. the. preservation. of. biodiversity.and.environmental.amenities.(landscape.etc.).

16 17 Development of knowledge map Dissemination aspects for the tool box

Project.partners.have.delivered.an.impressive.amount.of.input.. development. (including. the. SILMAS. project).. To. raise. the. As.stakeholders.are.often.non-experts.and.little.familiar.with.the. The.last.aspect.of.dissemination.concerns.the.design.of.SILMAS. This.input.covers.a.wide.range.of.topics.and.represents.current. proportion.of.explicit.knowledge.special.specific.procedures.for. knowledge. created. in. SILMAS,. provision. for. special. access. to. documents.specially.the.tool.sheet.or.tool.profile. states.of.expertise.from.different.domains..Moreover,.most.of.this. knowledge.representation.were.included,.e.g. expert.knowledge.was.made,.particularly.where.culture.specific. To.facilitate.better.understand.of.experts.knowledge,.the.Asconit. input.represents.culture-specific.findings.since.deriving.from.a. •..a. systematic. and. transparent. form. of. designation. of. topics. knowledge.was.implied. particular.administrative.region..Because.of.culture-specificities,. within.and.across.administrative,.language,.cultural,.regional,. consultants. and. University. of. Salzburg. created. a. template. for. much. of. the. documentation. defies. immediate. translation. into. domain,.….boundaries; It. was. mainly. multilingual. knowledge. communication. methods. tool.sheets.with.a.standardized.layout.and.structure.of.contents.. other.languages. •..a. systematic. embedding. of. all. topics. within. hierarchical. provided.by.WAS.-.University.of.Salzburg,.which.offered.suitable. Thus.the.reader.will.find.in.every.document. knowledge.structures.which.also.includes.explicit.reference.to. solutions.to.achieve.this.goal:.the.created.SILMAS.knowledge. In. order. to. cope. with. this. heterogeneous. set. of. evidence. and. •..on.the.first.page.an.overview.of.the.most.important.information. criteria.of.classification.(explicit.designation.of.logical.and.non- map.ensured.access.for.different.stakeholders. to.produce.something.like.a.systemic.framework.for.making.the. in.this.document.(i.e..summary,.conclusions,.…) logical.relationships.among.topics); The.knowledge.map.opens.different.ways.to.finding.appropriate. contents.broadly.accessible,.specific.procedures.and.tools.for. •..in.the.details.section.same.information.in.elaborate.form.in.a. •..a. systematic. and. transparent. associative. embedding. of. solutions.for.their.problems,.e.g..lakes,.problems.of.water.uses,. cross-cultural. (and. cross-linguistic). knowledge. management. spread.sheet.format. all. topics. within. across. hierarchical. confines,. with. explicit. were. put. to. work.. A. knowledge-based. rather. than. language- water.quality,.as.entry.points. reference. to. the. criterion. of. associative. embedding. to. yield. based. approach. was. taken. to. provide. what. may. be. called. a. Lake.managers.can.resort.to.all.tools.in.the.knowledge.map.in. what.is.commonly.called.a.semantic.network.. corporate. reference. standard. which. all. input. providers. can. the.form.of.so.called.“toolkits”..For.tool.description.a.definition. consult. to. organize. their. content.. This. reference. standard. was. It. should. be. noted. that. systematic. explicitness. of. this. sort. is.offered,.motivation.for.the.tool.development.is.given,.possible. designed. to. facilitate. a. possibly. high-level. achievement. of. the. strongly. facilitates. the. emergence. of. what. may. be. called. fields.of.application.are.indicated,.and.a.short.summary.of.the. following.goals:. corporate.knowledge.standards.. tool.itself.is.given.

Assure broad accessibility to content Assure a high degree of sustainability of knowledge If.further.details.are.needed,.an.exact.documentaion.of.the.tool. evelopment and use (so. called. tool. sheet. or. tool. profile). and. selected. documents. Expert.descriptions.of.treatises.of.specialized.topics.are.typically. are. made. available. for. download.. The. web. based. knowledge. written. in. highly. implicit. form. and. in. a. language. for. specific. The. danger. inherent. in. knowledge-generating. projects. is. that. platform. is. a. sustainable. solution. for. future. communication. purposes,.since.targeted.to.expert.colleagues..As.such.treatises. they.end.in.a.form.of.a.report,.i.e..a.dead-end.product..To.assure. between.stakeholders.and.experts:.at.each.point.of.interest.the. of.this.sort.are.known.to.pose.considerable.problems.to.readers. that.forthcoming.novel.findings.in.SILMAS-related.domains.will. user.may.upload.his.own.experiences,.depending.on.specified. with.different.types.of.expertise.and.familiarity.with.different.types. keep. the. SILMAS. knowledge. base. up-to-date,. the. following. user.roles.and.rights. of. languages. or. language. varieties.. To. overcome. this. specific. provisions.were.made: access. barrier. and. the. relevant. culture-. and. language-related. •..an. interactive. access. to. the. knowledge. base. is. provided. by. problems.indicated.above,.the.following.provisions.were.made.in. a. specific. (web-based). platform. which. allows. continuous. the.design.for.the.SILMAS.knowledge.management.application: updating.of.knowledge.resources •..All. topics. of. discussion. are. embedded. in. a. hierarchy. where. •..unlike.typical.WIKI-applications.input.and.output.is.monitored. a. distinction. is. made. between. superordinate,. corporate. or. by.the.given.conceptual.reference.standard,.so.that.providers. global. topics. (typically. designated. in. general. language),. and. may.safely.allocate.their.input.and.users.may.safely.find.what. subordinate,. culture. specific. topics. (typically. designated. by. they.are.looking.for. resort.to.terms.and.language.for.specific.purposes). This. way. provisions. are. made. that. relevant. knowledge. can. •..Multilingual. representations,. which. include. abstract. versions. develop.continuously,.so.that.users.can.retrieve.the.“latest.sate. for.expert.monolingual.documentations.in.a.shared,.mediating. of.the.art”..Work.with.the.indicated.tools.moreover.may.stimulate. language.(typically.English).. novel.ideas.and.innovative.responses.to.given.issues.of.concern.. •..Different.options.for.the.visualization.of.knowledge.structures. to.facilitate.orientation.in.a.multidimensional.conceptual.space Assure flexible and effective retrieval of knowledge •..A.multilingual.glossary,.which.can.be.generated.by.machine.for. Reliable.access.to.needed.bits.of.content.is.a.familiar.hazard,. selected.languages.and.specific.sub-domains.of.knowledge.. particularly. when. it. comes. to. retrieving. resources. across. •..A. web-based. wiki. platform,. which. facilitates. knowledge. language.boundaries..To.achieve.a.high.level.of.quality.assurance. communication.relative.to.specified.topics.. for.knowledge.retrieval.the.following.forms.of.knowledge.retrieval. •..Specific.slots.for.different.densities.of.representation.(terms,. Picture 03> Search in SILMAS knowledge base - different ways of finding tools by structure Picture 05> Feedback via web based knowledge platform: comments as answers to questions. were.made.available: (left side). phrasal.designations,.comments,.elaborate.explanatory.notes. •..search. for. specific. knowledge. units. is. possible. not. only. via. for.reports,....).which.provide.variant.degrees.of.elaboration.to. key-term.or.full-text.search,.but.also.via.navigation.through.the. accommodate. to. variant. demands,. user. interests. or. level. of. knowledge.map. background.knowledge. •..hierarchical. knowledge. structures. which. allow. topic-based. For. more. information. cf.. http://silmas.technodat.co.at. -. navigation.(different.graphic.displays.are.available). multilingual.knowledge.map •..the. semantic. network,. which. allows. quick. retrieval. of. a. particular.topic.via.different.entry.points. Assure a high degree of explicitness in content •.a. concept-based. multilingual. design. of. the. knowledge. representation resources,.which.allows.reliable.retrieval.e.g..of.French,.Italian…. Picture 04> Search in SILMAS knowledge base - full text retrieval in all languages: topics, terms and documents. Implicit. knowledge,. like. personal. experiential. knowledge,. resources.by.entering.a.German.keyword. is. known. to. be. difficult. to. communicate.. Since. this. type. of. •..A. commitment. to. particular. templates. for. documentation,. knowledge.relates.to.complex.conceptual.units.(e.g.relationships. which.ensure.common.formats .of.knowledge.documentation.

between. issues. of. concern. and. responses. to. these. issues),. it. across.cultural.and.language.boundaries. Picture 06> Interactive knowledge platform: web-log like comments. appears. to. be. a. crucial. variable. for. the. success. of. project.

18 19 Results Products in the toolkit and knowledge map

As. shown. above,. the. toolkit. is. accessible. from. different. entry. points,. depending. on. the. most. relevant. point. of. view. of. lake. managers..

Typology of the conflic to use

The.experiences.from.participating.experts.showed.the.following. the.purposes.of.tourism,.mainly.studied.on.the.natural.French. categories.of.potential.conflicts.or.problem.fields. lakes..(Bourget.and.Annecy).and.the.large.Italian.lakes.(Iséo,. Garda,.Caldonazzo).as.well.as.the.Austrian.lakes.(Wöertherzee,. Conflicts resulting from the division of the water Ossiachersee).and.Lake.Constance resource •..In.general.such.things.as.lake.contracts.are.also.included.in.the. The. main. economic. uses. of. water. will. be. dealt. with. in. this. field.of.investigation.. category;.it.will.be.seen.that.they.give.rise.to.quantitative.and/or. . qualitative.variations.that.are.occasionally.significant: Conflicts resulting from the way various activities are •..Hydroelectric.production,.discharges.reserved.for.agricultural. organized between themselves irrigation,.studied.on.the.artificial.French.lakes.(Serre-Ponçon,. This.category.looks.at.the.question.of.how.compatible.certain. Sainte. Croix. du. Verdon). and. on. the. managed. natural. Italian. activities.are.with.each.other.and.how.they.can.be.regulated: lakes.(Molvéno). •..Professional.fishing.versus.r ecreational.fishing.–.the.subject.of. •..Regulation. of. water. levels. as. natural. disaster. preventative. a.specific.report.drawn.up.by.the.SILA. measures.and/or.the.development.of.tourism,.which.concern. •..Fishing.versus.water.sports,.motorised.or.other... the. barrages. cited. below. and. also. lakes. situated. near. rivers. and.canals.such.as.Lake.Bourget.for.example.. •.. .The. general. regulation. of. motorised. water. activities. which. Picture 07> Toolsheet in the knowledge map: standardized layout and structure. enters.into.conflict.with.all.the.other.issues. •..Measures. taken. to. ensure. the. optimal. quality. of. water. for. human.consumption,.or.more.generally.good.quality.water.for.

Picture 08> Typology of tools.

20 21 Picture 10> An example of an activity which needs to be reconciled with other practices: wakesurfing. Conflicts stemming from the creation of facilities out.by.the.Lombardy.Region,.questions.raised.to.do.with.the. Concerning.the.comparison.of.tools.between.different.sectors,. needed for the activities and the quality of the management. of. sediments,. should. legislation. consider. them. the.typology.of.the.tool.box.is.based.on.3.items: as.waste.or.resources.etc.) environment •.Comparability.index:.does.a.similar.tool.exist.elsewhere? This.category.highlights.several.trends.showing.great.variety.in. •..Problems. linked. to. port. facilities. and/or. relevant. legislative. •..Effectiveness.and.educational.interest.index:.does.it.respond. the.actual.conflicts.or.“risk.factors”.in.the.mid.to.long.term: changes.(ports.and.water.quality,.which.is.the.subject.of.an. to.the.need?.What.are.its.strong.points.and.its.drawbacks? •..Effects.of.climate.change.on.the.management.of.the.lakes.or. information. sheet. and. a. specific. report. carried. out. by. the. on.a.given.activity.(temperature.and.limpidity.of.the.water/size. Lombardy. Region,. questions. to. do. with. the. management. of. •..Transferability.index:.what.is.its .added.value.in.terms.of.solving. of. fish. and. catch,. climate. change. and. the. behaviour. of. the. sediments,.e.g..should.legislation.consider.them.as.waste.or. conflicts.of.use.above.and.beyond.its.immediate.purpose?. mass. of. water,.decrease. in. the. amount. of. oxygen. dissolved. resources.etc.) and.the.development.of.macrophytes.or.algae.liable.to.alter. •..Problems. linked. to. the. urbanisation. of. lake/river. banks,. the.real.or.perceived.quality.of.the.water,.leading.to.questions. public.access.to.the.shoreline,.the.guardianship.of.the.natural. about.the.ecological.chain,.the.compatibility.of.tourism.etc.) landscape. and. an. important. range. of. biodiversity,. is. this. •..Problems. linked. to. port. facilities. and/or. legislative. changes. urbanisation.reversible.or.not.(from.tourist.accommodation.to. connected. with. them. (ports. and. water. quality,. which. is. the. pontoons.etc.). subject.of.an.information.sheet.and.a.specific.report.carried.

Typology of the tools in the toolbox

The.toolbox.provided.by.Asconit.Consultants.enables.the.search. The. spread. sheet. in. annexe. 5. presents. an. earlier. stage. of. amongst.the.107.tools.in.the.project.languages.English,.French,. development.of.the.tool.box. Italian,.German.or.Slovenian.. The.toolkit.refers.to.9.categories: Contents to be included in a toolsheet and notion of . •.Awareness.raising:.. . 4.Tools transposability . •.Climate.change:.. . 2.tools Each. toolsheet. initially. mentions. the. original. text. and. makes. . •.Fishery:.. . . 4.tools reference.to.its.authors. . •.Lake.management:.. . 9.tools The.toolsheet.is.a.wide.ranging.document.of.about.7.PDF.pages,. . •.Leisure.activities:.. 2.tools composed.of.4.main.parts: . •.Navigation:.. . 5.tools . •.Shore.zone:.. . 6.tools •.Context.and.fundamental.purpose.of.the.tool . •.Water.level.management:. 2.tools •..Objective. and. characteristics. (content,. legal. type,. level. of. . •.Water.quality:.. . 24.tools territorial.application.etc.) •..Environment. of. the. tool. and. associated. tools..(associated. texts)

Picture 12> Presentation of the French scheme “clean harbours” to an Italian delegation.

Picture 11> Examples illustrating climate change and its consequences on water in the Alps.

Picture 13> An example of construction on the lakeside in Austria.

22 23 Summary of the work accomplished and thanks

Forming.part.of.a.European.programme.(Alpine.Space).which. Region. but. unfortunately. those. from. another. lake,. Sainte- has.geographical,.linguistic.and.methodological.specificities.all. Croix-du-Verdon,. had. to. be. left. out.. It. was. also. necessary. to. of.its.own.will.always.be.a.tricky.issue.. acknowledge.differences.which.exist.with.regard.to.the.collective. approach. and. understanding. of. sustainable. development. After.Alplakes.and.as.part.of.the.SILMAS.project,.partners.had. between. those. who. took. part. in. the. Alplakes. Project. and. the. to. be. “integrated”. and. accepted. as. new. additions. to. a. new. new.arrivals. region. as. representatives. of. “different”. lakes,. artificial. ones. rather.than.natural.ones..They.had.to.beware.of.trying.to.impose. Any. project. is. a. learning. experience. and. inevitably. leads. to. themselves,.or.over.concentrating.on.the.possible.added.value. tensions.and.disappointments.but.it.is.also.an.opportunity.to.get. of.50.years.of.public.management.in.the.field.of.hydroelectricity. to. know. people,. share. convivial. moments. and. visit. wonderful. and.the.benefits.of.the.marine.operation.transferred.to.Serre- sites.. Ponçon,.known.by.the.term.“Clean.Ports”. May. all. those. who. were. proud. to. trumpet. the. glories. of. their. As.the.number.of.French.partners.had.to.be.limited,.stakeholders. lakes,. their. regions. and. their. contributions. to. the. sustainable. 4. Reaching a in. Lake. Serre-Ponçon. were. invited. under. the. auspices. of. the. development.of.the.Alpine.area.be.warmly.thanked.. Access to resource documents

Most.of.the.partners.in.the.SILMAS.project.received.all.or.part.of. The.two.sites.from.which.documents.can.be.downloaded.are. the.“Toolbox”.and/or.the.knowledge.map.on.a.USB.key.produced. the.following: conclusion in.400.copies.by.the.Provence-Alpes.Côte.d’Azur.Region.and. •.www.regionapaca.fr /.mountains.section given.out.during.the.symposium.in.Marseille.and.during.the.final. •.http://silmas.technodat.co.at . /. Contact:. studio.salzburg@fegerl. Silmas.Project.conference.in.Pörtschach.in.Austria. info Sustainability of project results

The. knowledge. map. with. its. toolbox. contents. prepares. a. 3 steps from Knowledge Refinement to competence major.step.forward.for.future.development:.the.transition.from. development - for crosscultural dissemination: knowledge. resources. to. competence. development,. which. (1)..How.can. we. learn. from. regional. experiences. -. in. regional. implies.application.of.existing.and.knowledge.for.the.solution.of. languages? existing./.forthcoming.problems. (2)..How.can. we. overcome. the. cross-cultural. barriers. -. and. The.particularity.of.the.knowledge.platform,.if.further.operated,. understand? would. assure. continuous. development. at. the. interface. of. (3)..How.can.we.make .cross-cultural.knowledge.accessible.-.for. developers.and.users. local.application?.

24 25 Now,. in. order. to. avoid. a. crisis. or. becoming. the. “dustbin”. of. At. the. moment. when. future. regional. and. inter-regional. the. Alpine. lakes. as. a. result. of. the. practice. of. activities. which. Operational. Programmes. (such. as. the. IOPA),. given. a. new. Lessons learnt and perspective in view are.not.tolerated.elsewhere,.choices.should.be.democratically. brief. for. 2014-2020. concerning. the. envelopes. of. European.. made.from.a.rich.arsenal.of.solutions.dealing.with.the.motorised. co-financing.of.cross-border.programmes.(such.as.ALCOTRA). leisure. pursuits. on. the. lakes.. These. solutions. reflect. different. and. inter-regional. ones. (such. as. Alpine. Space). are. currently. The. work. and. thought. that. has. gone. into. the. 3. years. of. the. Without. claiming. it. to. be. an. exhaustive. list,. with. regard. to. approaches. used. throughout. the. Alpine. lakes. area. and. allow. under.development.after.the.period.2007-2013,.it.is.important. SILMAS. Project. have. provided. a. rich. learning. experience.. conflicts.of.use,.3.major.conclusions.can.be.drawn.. activities.to.be.spread.out.over.time.and.space.and.to.reconcile. to. note. the. existence. of. “convergences”. and. “divergences”.. different.sorts.of.use..They.also.allow.the.quality.and.evolution.of. or. “missing. links”. which. create. contradictions. and. lead. us. to. the.environment.of.the.lake.and.its.surroundings.to.be.measured. suppose.that..there.will.be.work.still.to .be.carried.out.beyond.the. Artificial lakes, natural lakes… and hybrids… by.means.of.an.observatory. conclusion.of.SILMAS.project. On.this.subject,.suffice.it.to.say.that.common.models.exist.and. One. of. the. characteristics. of. the. current. thought. processes,. First. and. foremost,. the. previously. accepted. hypothesis. that. •..Lake.Bourget.is.connected.to.the.Rhône,.to.wetland.areas.and. some.have.“cultural”.nuances: summed.up.by.this.slogan,.“the.Alps.are.Europe’s.water.tower”,. canals.which.allows.for.human.intervention.to.control.water. and. the. reality. that. water. is. a. major. issue. in. Alpine. regions,. the. environment. of. artificial. lakes. which. were. subject. to. a. •..those.educational.in.nature.(Charter.of.Good.Practice).seem. levels,.whether.it.be.to.prevent.flooding,.respond.to.the.needs. related.mountain.territories.and.their.foothills,.seems.today.to. considerable.change.in.water.levels,.differed.greatly.from.that.of. common.to.many.lakes, natural.lakes,.has.not.stood.up.to.close.scrutiny..It.is,.however,. of. agriculturalists,. industrialists. or. the. tourist. industry,. with. be.largely.admitted.and.given.priority.status.. •..the. spatial. approach. (Shoreline. Laws,. Navigational. bylaws,. true.to.say.that.the.aquatic.vegetation.and.the.circulation.of.the. research.done.into.ways.of.minimising.large.variations.in.the. Whether.they’ll.be.part.of.the.Alpine.Convention,.the.Regions,. quiet. areas. or. protected. natural. areas. etc.). seems. more. water.are .affected.by.the.rhythm.and.quantity.of.water.drawn.off. level.of.the.lake. or. Europe,. every. stakeholder. is. examining. this. high. priority. for.human.consumption.. common.in.western.and/or.southern.locations. .... theme,. be. it. from. the. point. of. view. of. massively. reviewing. However,. there. is. no. “frontier”. between. “artificial”/”natural”. •..a. culture. of. accreditation. (rulings. by. lists. of. entitlement),. hydroelectric.strategy.and/or.underlining.the.absolute.necessity. •..Lake.Caldonnazzo.(Italy).has.installed.equipment.to.reinforce. lakes.when.it.comes.to.the.effects.of.climate.change.or.human. is. perhaps. more. eastern. in. origin. although. questions. of. of.economising.water.as.a.resource. oxygen.levels.in.its.waters. whether. access. should. be. free. or. fee-paying,. controlled. or. pressure.. All. the. lakes. have. a. similar. environment. in. terms. of. This.reality.is.formulated.in.the.text.of.the.macro-region.policy. •..Lake. Idro. (Italy),. natural. in. origin,. has. been. dammed. and. is. not. controlled,. down. to. the. sorts. of. bathing. trunks. worn,. use.-.tourism,.agriculture,.energy.resource.and.they.are.subject. statement.included.at.the.end.of.this.report..This.policy.statement. used. to. produce. hydroelectricity. and. water. is. drawn. off. for. would.indicate.that.there.has.been.a.dialogue.with.those .who. to. the. same. ecological. engineering. and. human. interference. will.be.the.subject.of.debate.during.Alpine.Week.in.September. irrigation.purposes. practice.the.activities. (especially. for. limiting. macrophytes. and. the. proliferation. of. 2012. in. Poschiavo. and. during. a. convention. dedicated. to. the. algae)..And.all.the.lakes.are.subject.to.changes.in.water.levels. •..Drawing.off.water.in.the.summer.from.Lake.Serre-Ponçon.enables. Whatever.the.case,.the.only.real.“limit”.observed.as.to.the.use. issue.in.Innsbruck.in.October..It.should.incite.the.Regions,.at.the. are.used.as.ways.of.preventing.natural.disasters. 150,000.hectares.of.agricultural.land.to.be.irrigated.and.provides. of.these.tools.on.a.massive.scale.is.the.notion.of.“stakeholder. very.least,.if.not.all.the.partners.engaged.in..SILMAS.project,.to. Perhaps,.in.fact,.this.dichotomy.established.in.principle.at.the. water.for.the.surrounding.large.towns..A.few.years.ago.a.project. games. “which. demonstrates. that. an. issue. can. remain. locally. pursue.their.relations,.even.if.it.is.only.by.means.of.half.yearly. start.of.the.project,.was.groundless;.however,.whether.it.was.in. to.export.water.to.Spain.highlighted.to.a.most.remarkable.extent. taboo. or. insoluble. even. when. tools. exist. for. its. solution. meetings.of.the.network.designed.to.prioritize.areas.in.line.for. the.course.of.WP.4.which.looked.at.the.physio-chemical.nature.of. the.issues.and.pressures.involved.in.upstream-downstream.and. elsewhere..This.is.why.the.tools.indexed.will.always.be.looking. European.funding.. downstream-upstream.cooperation.. for.potential.users! the.lakes.using.data.collected.principally.from.natural.lakes.or.at. On.the.French.side,.in.the.absence.of .any.representative.of.State. the.beginning.of.the.serious.game.session.in.WP.6,.the.question. It.is.important.today.to.show,.by.the.use.of.these.examples,.that. Water,.tomorrow.more.than.today,.will.be.one.of.the.principle. Agencies.on.the.“water”.platform.of.the.Alpine.Convention,.it. of. the. ecological. dimension. and. the. water. quality. seemed. to. the.toolbox.is.designed.for.all.lakes.and.that.it.is.paramount: issues. of. Alpine. Space. Programme.. The. last. year. of. SILMAS. would.be.interesting.to.suggest.the.participation.of.a.regional. be.related.exclusively.to.natural.lakes,.which.at.the.same.time. Project. coincided. with. the. developmental. stages. of. a. macro- or.inter-regional.association.with.an.interest.in.these.questions. •..that.managers.of.“natural.”.lakes.be.aware.of.the.pressures. did.not.seem.to.be.concerned.by.issues.of.the.division.of.water. regional.strategic.project.and.thoughts.on.the.development.of.a. that. could. be. exerted. on. them. to. a. greater. extent. in. the. resources,.seen.as.the.sole.prerogative.of.artificial.lakes. Macro-Region.capable.of.defining.transversal.and.inter-regional. future.(demands.for.huge.quantities.of.water.to.be.drawn.off. But,.information.gathered.during.the.making.of.the.video.clips,. issues. in. Alpine. Space.. This. initiative. was. set. up. under. the. for.agriculture,.or.for.industrial.and.commercial.use.in.areas. the.questionnaire.and.the .toolbox.showed.that.the.reality.was.in. auspices.of.the.Alpine.regions..(Annexe.5) situated. outside. the. Alps,. such. as. has. been. observed. in. fact.quite.different..It.was.revealed.as.being.more.complex,.less. the. Languedoc-Roussillon. and. Provence-Alpes. Côte. d’Azur. black.and.white,.showing.the.lakes.as.being.not.only.witnesses. regions, of. climate. change. and. its. effects. but. caretakers. of. the. water. resource. •..that.managers.of.artificial.reservoirs.be.aware.of.the.natural. movement.of.water.and.the.need.to.understand.how.it.functions.. In. fact,. below. are. some. examples. which. testify. to. this. actual. Observation.equipment.and.other.installations.should.be.put. state.of.affairs: in.place.in.order.to.recreate.a.globally.functioning.ecosystem,. •..Water.from.Lake.Annecy.is.purified.and.used.as.drinking.water. making.sure.that.areas.are.kept.under.water.all.year.round.. in.the.local.area;.at.present.there.is.no.demand.for.its.export. It.is.also .important.not.to.use.the.non-natural.nature.of.the. but.what.will.the.situation.be.tomorrow? reservoirs.as.an.excuse.to.allow.the.use.of.non-sustainable. development,.something.which.is.not.permitted.in.the.case.of. •..The.depth.and.natural.temperature.of.the.water.in.Lake.Léman. natural.lakes.. (not.included.in..SILMAS.project).is.used.to.cool.down.heating- air.conditioning.circuits.in.certain.buildings..

Tools in search of users…

When.the.question.of.rises.and.falls.in.water.levels.was.evoked. Conversely,.certain.stakeholders,.particularly.at.Serre-Ponçon,. with.our.Italian.partners.it.was.quite.evident.that.a.taboo.subject. seem.reticent.to.admit.that.the.“natural.sedimentation.caused. had. been. broached.. And. yet. tools. such. as. the. agreement. by. activities”. cannot. be. classed. as. a. model. of. sustainable. between.EDF.and.the.SMADESEP.could.be.used.to.show.that. development.for.the.lake.in.a.way.which.balances.economic.gain. solutions.exist.for.such.subjects,.particularly.such.delicate.ones,. with.the.preservation.of.an.exceptional.environment.accessible. and.they.are.exportable. to.all,.as.it.engenders.environmental,.social.and.safety.risks.

26 27 ANNEXE 1: Questionnaire about conflict of usage problems

ANNEXES: Reports

Summary

ANNEXE 1: Questionnaire about conflict of usage problems...... 29

ANNEXE 2: Ecological surveys on Lake Idro. Limnological research as a support to ecosystem management and water quality recovery...... 34

ANNEXE 3: Lake Iseo: a complex socio-ecological system. Water use and lake contract ...... 100

ANNEXE 4: The implementation of a mathematical model for managing qualitative and quantitative aspects of a large and deep pre-alpine lake: Lake ISEO...... 118

ANNEXE 5: Macro-regional strategy for Alpine Space Roadmap of the Alpine regions...... 148

28 29 30 31 32 33 Preamble

Background 1 Conflict solving tools: the two Agreements Lake.Idro.(also.Eridio.from.Latin).is.a.prealpine.lake.of.glacial. The. worst. environmental. quality. and. the. inherent. impacts. on. origin. situated. in. Northern. Italy. at. 368. m. a.s.l.,. largely. within. the.local.economy.caused.conflicts.between.citizens.and.policy. the.Province.of..(Lombardia.Region).and.partially.in.the. makers,.which.prompted.the.Lombardia.Region.to.commit.itself. Autonomous.Province.of.Trento.(.–.Alto.Adige.Region).. to.implement.RID.provisions.in.order.to.solve.hydraulic.safety. Its.surface.area.is.~11.km2,.the.maximum.depth.is.124.m..The. problems. and,. consequently,. remove. restrictions. on. storage.. shoreline. of. 27. km. belongs. to. four. Municipalities:. Idro,. Anfo,. The.Lombardia.Region.undertook.the.following.measures: .(Province.of.Brescia).and..(Province.of.Trento). •..the.establishment.of.a.working.group.which,.together.with.the. The.lake.is.fed.principally.by.the..River,.whose.watershed. Municipalities,.the.Prefecture.and.the.Province.of.Brescia.has. entirely.falls.in.the.Province.of.Trento;.it.is.also.the.only.emissary. been.in.charge.of.drawing.up.an.emergency.plan.for.the.hydro- of.the.lake. geological.and.hydraulic.risk.of.Lake.Idro, •..entrusting.the.monitoring.activities.regarding.the.landslide.to. Lake. Idro. is. regulated. by. an. artificial. dam. since. 1920s,. for. the.Regional.Environmental.Protection.Agency, supplying. waters. to. irrigation. and. for. hydropower. generation.. The.upstream.Chiese.river.is.dammed.with.two.main.reservoirs. •..entrusting.characterization.activities.and.preliminary.design.of. ANNEXE 2: Ecological surveys on Lake which. feed. hydropower. plants.. The. management. of. such. the.new.water.regulation.structures, systems. greatly. influences. quantity. and. frequency. of. water. •..signing.an. Agreement with the Autonomous Province of inflows..and. outflows. from. the. lake,. with. cascade. effects. on. Trento (December,.14th,.2006).in.order.to.harmonize.programs. Idro. Limnological research as a support to water.level.fluctuations.(WLF). for.the.water.protection.in.Lake.Idro.and.in.the.Chiese.River.. This. Agreement,. still. in. force,. establishes. many. intervention. From.1995,.the.northern.part.of.the.lake.is.a.Site.of.Community. programs. for. the. protection. of. this. environmental. heritage.. Importance.(called.“Lago.d’Idro”). ecosystem management and water quality The. Agreement. provides. for. various. joint. actions. for. the. The. management. of. water. resources. in. the. Lake. Idro. and. its. management.of.water.property,.such.as.the.release,.renewal. watershed. has. led. to. conflicts. among. stakeholders. for. water. and.management.of.concessions.for.hydropower.production. recovery uses,.as.well .as.severe.environmental.threats.have.emerged.in.the. in. the. upstream. Chiese. river. basin. and. for. irrigation. and. last.two.decades..Since.the.early.2000s.the.policy.and.decision. hydropower.production.in.the.river.basin.downstream.of.lake.. makers. have. pursued. suitable. solutions. in. order. to. guarantee. Furthermore,.it.provides.for.the.release.and.renewal.of.trading. the.fulfillment.of.industrial,.agricultural.and.tourist.requirement. concessions.and.maintenance.work.related.to.the.regulation. and,.at.the.same.time,.preserve.the.natural.environment. of. Lake. Idro;. it. sets. out. the. procedures. for. the. adjustment. of. the. minimum. required. flow. in. the. River. Chiese. basin;. it. Coordination Group: Daniele.Nizzoli The.lake.management.is.an.open.question.since.1933,.when.a. provides.for.the.implementation.of.several.studies.and.surveys. Prof..Pierluigi.Viaroli.(Department.. Giampaolo.Rossetti first.management.rule.was.enforced.in.order.to.control.WLF.by. on. lake. water. quality. and. of. action. plans. for. water. quality. of.Environmental.Sciences,.Parma.University) Pierluigi.Viaroli fixing.maximum.WLF.=.7.m,.between.363.and.370.m.a.s.l. improvement..The.implementation.of.all.the.measures.set.out. Daniele.Magni,.Clara.Bravi,.Viviane.Iacone.(Regione.Lombardia) Over.the.years,.the.water.quality.and.the.ecological.status.of. in.the.agreement.are.supervised.by.a.coordination.committee,. Preamble by: the.lake.ecosystem.have.progressively.deteriorated,.which.was. comprising. delegates. from. Regione. Lombardia,. from. the. Authors: Clara.Bravi,.Daniele.Magni.(Regione.Lombardia) imputed.due.to.the.very.wide.WLF..Furthermore,.the.perception. Province.of.Trento.and.from.the..Municipalities.located.along. Chapters.from.2.to.8.by: Pierluigi.Viaroli.(Department.of.Environmental.. of.the.worst.conditions.of.the.lake.has.gradually.increased.the. the.coast.of.Lombardia.region. conflicts.between.users,.stakeholders,.and,.especially,.citizens. Department.of.Environmental.Sciences,.. Sciences,.Parma.University) In.April.2007,.because.of.the.Regione.Lombardia.had.fulfilled. living.around.the.lake. Parma.University: the.major.commitments.undertaken.in.the.Agreement.of.2006,. Roberta.Azzoni Credits: The.WLF.rules.established.in.1933.were.no.longer.applied.after. the.RID.partially.removed.the.limits.on.the.storage.volume.and. Marco.Bartoli 1992.on,.because.the.Registro.Italiano.Dighe.(RID.-.the.Authority. set.the.new.ordinary.operational.level.at.368,50.m.a.s.l..The.first. For.providing.data.and.information: Antonio.Bodini for.the.dam.safety.in.Italy).imposed.a.reduction.of.the.maximum. immediate. consequence. was. the. restoration. of. the. minimum. Carlo.Enrico.Cassani.(Regione.Lombardia) Rossano.Bolpagni operational.level.of.the.lake.for.hydraulic.safety.reasons:.several. required.flow.in.the.Chiese.River,.discharged.from.the.spillway. Cristina.Bondavalli Nico.Salmaso.(Fondazione.E..Mach,.S..Michele.all’Adige,.TN) geological. inspections. showed. that. there. is. a. persistent. and. on.the.dam. Gianmarco.Giordani Luca.Mondinelli.(Consorzio.del.Chiese.. slowly.developing.landslide.above.the.dam,.which.reduces.its. In. order. to. provide. for. the. construction. of. new. regulation. Daniele.Longhi di.Bonifica.di.Secondo.Grado) functionality..Thereafter,.several.restrictions.have.been.imposed. structures.(new.dam.and.new.bottom.outlet,.that.could.regulate. Mariachiara.Naldi up.to. reach. 367. m. a.s.l.. as. maximum. operational. level. (RID,. the.water.level.without.being.affected.by.the.landslide),.and,.at. 2003),.and.3.25.m.as.maximum.WLF..The.Authority.of.the.. the.same.time,.in.order.to.reduce.conflicts.between.institutions. River.Basin.(AdBPo).implemented.new.operational.rules.in.2001,. and. population. and. to. enhance. lake. water. quality,. a. new. in.order.to.limit.the.impact.of.the.WLF.on.lacustrine.ecosystem.. Agreement.was.signed.in.August.2008. Furthermore,.the.bottom.outlet.of.the.dam.was.declared.outlaw. by.RID,.due.to.the.lack.of.sufficient.safety.standards. The Agreement “For Lake Idro valorization” was. signed. by. Regione.Lombardia,.the.Municipalities.of.Idro,.Anfo.and.Bagolino. The.water.level.reduction.at.367.m.a.s.l..prevented.the.natural. located.along.the.lake.shore,.and.the.Municipality.belonging.to. water. outflow,. which. was. possible. only. through. an. artificial. the.Chiese.River.watershed.downstream.of.lake.().in. diversion.. Nonetheless,. water. and. ecosystem. quality. did. not. which.territory.part.of.the.structures.will.be.built..The.agreement. improve.and.the.lake.management.was.perceived.by.citizens.as. has.four.main.goals: still.unsatisfactory..

1 34 Reference documents: Alpine Convention, 2009. Alpine Signals - Special Edition 2. Water and Water Management Issues. Report on the State of the Alps. Regione Lombardia, di Anfo, 35 Comune di Bagolino, Comune di Idro, Comune di Lavenone, 2008 “Accordo di Programma per la Valorizzazione del Lago d’Idro”. Regione Lombardia, Provincia Autonoma di Trento, 2006. “Accordo tra la Regione Lombardia e la Provincia Autonoma di Trento per l’armonizzazione delle azioni di salvaguardia delle acque del Lago d’Idro e del Fiume Chiese”. •..to.restore. standard. hydrogeological. safety. conditions. in. the. Two .of.the.four.local.municipalities.involved.in.the.Agreement. lake.area.and.in.the.watershed.of.Chiese.river.in.Lombardia. asked.for.operational.rules.establishing.a.maximum.WLF.lower. region; than.3.25.m.and,.referring.to.this.request,.demand.for.technic. •..to.enhance.the.environmental.status.and.the.economy.of.the. characteristics. of. the. regulation. structures,. that. were. not. lake.area; considered.compliant.with.existing.laws.on.hydraulic.security.. Due. to. this. disagreement,. the. two. municipalities. decided. to. •.to.protect.and.restore.the.water.quality; drop. out. their. involvement. in. the. Agreement.. As. a. result,. if. •..to.identify.and.enforce.management.and.operational.rules.for. Regione. Lombardia. will. proceed. with. building. the. new. dam,. water.resource.management,.namely.to.define.the.maximum. the. two. municipalities. would. be. excluded. from. fundings. for. amount.of.water.that.can.be.supplied.from.the.lake. environmental. and. development. projects,. unless. new. a. new. This.agreement.provided.for.~32.Million.€.for.the.construction.of. agreement.would.be.signed.among.parties. the.dam.and.hydraulic.structures.and.for.the.restoration.of.safety. condition.(actions.to.be.carried.out.by.Regione.Lombardia);.it. SILMAS activities in WP 5, action 2 provided. also. ~10. Million. €. for. restoration. and. development. Due. to. their. common. contents. and. prescriptions. (the. projects,.to.be.planned.and.implemented.by.local.Municipalities.. implementation. of. surveys. for. water. quality. recovery),. the. This. Agreement. provided. also. for. the. implementation. of. a. Agreements. with. the. Province. of. Trento. and. with. local. complete. survey. of. the. water. and. lake. ecosystem. quality,. as. municipalities. were. the. basis. from. which. Regione. Lombardia. scientific. support. for. planning. and. decision. making. of. water. promoted.the.implementation.of.the.tool.“Ecological.Surveys.on. quality.improvement. Lake. Idro. -. Limnological. research. as. a. support. to. ecosystem. management.and.water.quality.recovery”.(Action.2.of.WP.5.of. Figure 1> Organization of the research activity. Effectiveness of the tools SILMAS.Project)..This.tool.has.been.aimed.at.evaluating.different. It.is.difficult.to.evaluate.the.transferability.of.these.Agreement. scenarios.and.management.rules,.in.order.to.choose.the.better. assessment.of.lake’s.characteristics,.but.were.also.a.prerequisite. inorganic. substances,. producers. and. consumers. in. order. to. in. other. alpine. contexts,. because. the. different. legislative. solution.to.improve.the.quality.of.lake.water.and.to.help.resolve. for.the.development.and.calibration.of..ecological.models.. understand.how.the.ecosystem.function.and.to.analyze.possible. framework. among. different. states.. Moreover. the. particular. conflicts.on.the.lake. The.two.modelling.analysis.exemplify.how.different.approaches. responses.to.management.strategies.such.as.variations.imposed. can.help.public.administration.to.answer.management.issues.of. to.the.nutrient.external.loading. and. unique. situation. of. Lake. Idro. implies. the. implementation. Only.few.and.fragmented.limnological.studies.were.performed. aquatic.environments..A.detailed.description.of.the.two.modelling. Qualitative.modeling.has.as.main.objective.the.comprehension. of.very.specific.and.site-specific.tools.for.conflict.solving..The. on.Lake.Idro..Therefore,.the.Lombardia.region.decided.to.co- approaches. is. given. in. the. corresponding. chapters;. here. we. of. the. mechanisms. at. work. in. a. system. rather. than. numeric. added.value.of.these.tools.is.the.fact.that .different.institutions,. fund.this.action.aiming.at.performing.a.basic.limnological.study. provide.only.a.brief.explanation.of.the.main.characteristics.. precision..This.approach.graphically.describes.the.interactions. holders.of.different.interests,.accepted.to.cooperate.in.order.to. of.the.lake.to.be.used.as.a.support.for.developing.ecological. between.the.populations.in.a.community.and.with.the.a-biotic. achieve.the.final.goals.of.restoring.and.ameliorating.water.and. models.and.the.decision.making.tool... The. first. modelling. effort. (Ecosystem. Network. Analysis;. ENA). environment. that. make. up. an. ecosystem. and,. in. particular,. it. ecosystem.quality.and.the.local.economic.of.the.lake.district. is. based. upon. a. tropho-dynamical. approach,. that. describes. Two .main.objectives.have.been.pursued: considers.how.variables.affect.each.other’s.growth.rate,.but.it. all. trophic. interactions. among. ecosystem. components,. and. The. Agreement. between. Lombardia. Region. and. Province. of. retains.only.the.qualitative.nature.of.this.effect..Therefore.it.allow. •..Objective. 1. (task. 1).. Determination. of. lake. morphometry,. quantifies.the.flows.(in.terms.of.matter/energy.transfer).between. Trento.is.still.into.force.and.over.the.years.it.has.demonstrated.an. a. preliminary. assessment. of. different. management. strategies. quantification. of. external. nutrients. loads. and. evaluation. species,. abiotic. compartments. and. the. outside. environment.. appreciable.effectiveness,.because.it.allowed.to.achieve.several. and.it.is.particularly.useful.when.there.is.uncertainty.about.many. of. seasonal. evolution. of. physical,. chemical. and. biological. This.approach.follows.the.recognition.that.any.effort.to.preserve. goals.(i.e..the.minimum.required.flow.of.Chiese.River)..However,.. of. the. parameters. and. dynamics. that. would. be. necessary. for. characteristics. of. the. water. column.. These. activities. were. and.manage.natural.resources.can.be.effective.only.if.the.entire. there. are. problems. and. conflicts. remaining. between. the. two. implementing.a.quantitative.approach...In.this.second.modeling. funded. exclusively. by. Regione. Lombardia;. the. main. results. ecosystem.is.considered.as.the.unit.of.management,.instead.of. institutions,.mainly.due.to.disagreements.on.water.regulation.of. effort.the.loop.analysis.technique.was.applied.in.order.to.evaluate. are,.in.any.case,.briefly.summarized.in.this.report. single. plant,. animal. specie. or. target. chemical. compound.. For. the.reservoirs.in.the.upper.reaches.of.the.river.upstream.the.lake. how.water.level.regulation.influence.macrophyte.community.in. •..Objective.2.(task.2,.3,.4):.Ecological.status.of.lake.ecosystem. lake.Idro.network.models.have.been.constructed.to .explore.the. and.the.management.options.of.the.SCI.“Lago.d’Idro”.. the.littoral.zone. and.definition.of.management.strategies.for.quality.recovery.. pathways.followed.by.nutrients.and.their.distribution.between. . The. Agreement. between. Lombardia. Region. and. local. These.tasks.were.developed.as.part.of.the.SILMAS.project:. Municipalities.lapsed.in.2012.. all.the.activities.and.their.results.are.detailed.and.described.in. this.report... Limnological analysis

This.activity.aimed.at.the.acquisition.of.background.information. loads,.to.assess.the.water.quality.and.the.ecological.status.of. Introduction and.at.updating.the.existing.knowledge.about.morphology.and. the.lake,.to.evaluate.phytoplankton.biomass.and.diversity,.and. water.physical,.chemical.and.biological.properties.of.Lake.Idro.. to.provide.a.detailed.account.of.the.rotifer.and.microcrustacean. This. report. describes. the. main. results. of. the. research. project. development.of.ecological.network.and.loop.analysis.models,. All. these. data. are. needed. to. conduct. a. first,. comprehensive. diversity.and.seasonal.patterns. “Limnological.researches.on.Lake.Idro.for.water.quality.recovery”. as.follow:.1).determination.of.lake.morphometry,.quantification. assessment. of. the. structural. and. functional. characteristics. of. carried. out. by. the. Department. of. Environmental. Science. of. of.external.nutrients.loads.and.evaluation.of.seasonal.evolution. the. lake,. but. also. to. develop. and. calibate. ecological.. models. Methods Parma. University. and. funded. by. Regione. Lombardia. whitin. of.physical,.chemical.and.biological.characteristics.of.the.water. In. fact,. for. Lake. Idro. much. less. information. is. available. Lake.Morphometry the.frame.of.the.Silmas.Project..The.aims.of.the.research.were. column,.2).analysis.of.the.structure.and.ecological.functionality. about. limnological. characteristics,. and. in. particular. plankton. The. bathymetry. of. Lake. Idro. was. modeled. according. to. the. threefold:.a).to.evaluate.the.ecological.and.environmental.status. of.the.littoral.zone,.3).analyses.of.biogeochemical.processes.of. composition. and. dynamics,. than. for. other. deep,. south. of. the. method.described.in.Kvernevik.et.al..(2002).by.means.of.field. of.the.lake,.b).to.study.processes.that.influence.water.quality. nitrogen.and.phosphorous.in.the.littoral.and.pelagic.subsystems,. Alps..Italian. lakes.. The. only. data. published. so. far. are. from. data. collection,. remote. sensing. and. interpolation. techniques.. and.c).to.analyze.different.management.options.for.recovering. 4). assessment. of. ecosystem. structure,. processes. and. health. Barbato. (1975),. de. Bernardi. et. al.. (1985),. Barbato. (1990). and. Georeferenced.depth.data.(about.9600.points).were.collected. water.quality.and.restoring.lake.functionality.. status. by. ecological. network. and. exploration. of. impacts. of. Garibaldi. et. al.,. (1997).. More. recently,. Osservatorio. dei. Laghi. along. a. grid. of. measuring. points. using. a. portable. fathometer. These. aims. were. pursued. within. a. logical. framework. that. management.options.by.loop.analysis.qualitative.models. Lombardi.(2005),.reported.a.summary.of.the.main.limnological. (Garmin.421s).from.April.21.to.May .20,.2010..The.echo.sounder. considers. as. first. step. a. limnological. and..ecological. analysis. Because. for. Lake. Idro. few. information. is. available. about. characteristics.of.the.lake,.in.which.a.list.of.zooplankton.species. was. equipped. with. a. dual. frequency. transducer. (50/200. kHz,. of. the. lake. ecosystem. (Chapters. 2,. 3. and. 4),. followed. by. the. limnological. and. ecological. characteristics,. the. first. three. and.their.density.maxima.in.the.period.April.1982.-.April.1983. vertical. error. <5%),. a. GPS. system. for. horizontal. position. implementation.and.application.of.both.quantitative.ecological. activities. aimed. at. the. acquisition. of. background. information. are.also.given. detection,.and.it.was.connected.to.a.portable.PC.equipped.with. network. (Chapter. 5). and. qualitative. loop. analysis. models. and. at. updating. the. existing. knowledge. about. structural. and. Research.activities.were.conducted.from.July.26,.2010.to.March. Windmill®.data.logger..Lake.shoreline.was.obtained.by.remote. (Chapter.6)..The.research.activity.has.been.organized.into.4.tasks.. functional. properties. of. pelagic. and. benthic. compartments. of. 26,. 2012. in. order. to. calculate. external. and. internal. nutrient. sensing,.analyzing.the.image.of.the.airborne.MIVIS.(Multispectral. (Figure 1),.comprising.monitoring.activities,.field.experiments.and. the.lake..All.these.data.allowed.to.conduct.a.first,.comprehensive.

36 37 Zooplankton. density. was. estimated. from. quantitative. Infrared.and.Visible.Imaging.Spectrometer).sensor.acquired.on. L. of. water. was. transferred. to. the. laboratory. for. Chlorophyll-a. subsamples.using.a.Hensen-Stempel.pipette.following.Bottrell. December.2,.2009.from.the.CGR-Bloom.and.analyzed.by.CNR- (Chl-a).and.suspended.solids.(SS).determination..Sampling.and. et.al..(1976)..Taxonomic.identification.was.conducted.under.an. IREA.(Milan)..Morphometric.information.were.extracted.following. analyses.were.performed.following.standard.methods.(A.P.H.A. optical. microscope. at. 40×. and. 100×. magnifications.. Rotifers. bathymetric.map.creation.(Surfer.Pro.9®.by.Golden.Software).. 1998;.APAT-IRSA.CNR.2004). (except.for.bdelloids).and.microcrustaceans.were.identified.and. The.accuracy.of.the.bathymetric.model.was.evaluated.analyzing. External. daily. nitrogen,. phosphorous. and. dissolved. reactive. enumerated. to. the. lowest. possible. taxonomic. level. using. the. the. differences. (residuals). between. measured. and. calculated. silica. loads. and. exports. were. computed. as. the. product. of. keys. by. Dussart. (1969),. Ruttner-Kolisko. (1974),. Einsle. (1996),. depths..The.error.resulted.low.(less.than.30.cm.in.the.95%.of. average. daily. flow. and. concentration. of. the. target. chemical. Koste.(1978),.Braioni.&.Gelmini.(1983).and.Margaritora.(1985).. the. measurements),. and. a. highly. significative. correlation. (r. =. species. measured. in. each. of. the. lake’s. inlets. and. outlets.. Among. cyclopoid. copepods,. only. adults. were. identified. at. 0,99.,.P<.0.0001).between.measured.and.calculated.data.was. Incoming.and.outcoming.average.daily.flows.were.provided.by. species. or. genus. level,. while. immature. stages. were. grouped. achieved. the. Chiese. Consortium. (the. Idro. lake. Management. Authority). into.two.categories.(nauplii.and.copepodites)..For.each.taxon. and. the. Autonomous. Province. of. Trent.. Discharge. of. minor. and.each.sampling.date,.zooplankton.density.was.calculated.by. Physical. and. chemical. characteristics. of. in-. and. outflowing. tributaries.(Vesta,.Re,.Aquaculture,.Liperone,.Vantone.and.Neco). averaging.densities.over.the.two.replicates..Samples.collected. waters.and.nutrient.external.loads was.calculated.from.measurements.of.water.speed.and.cross. on. July. 2010. were. not. considered. for. quantitative. analysis. Physical.and.chemical.characteristics.of.in-.and.outflowing.waters. sectional.area.collected.during.sampling.for.water.physical.and. because.of.problems.occurred.during.the.sampling.activities. were.measured.from.June.2010.to.March.2012,.as.reported.in. chemical.characteristics. Table.1.and.Figure.2..At.each.sampling.date.water.temperature. Result (T),. dissolved. oxygen. (DO),. pH. and. electrical. conductivity. at. Physical,.chemical.biological.characteristics.of.lake.waters Lake.Morphometry 20°C. (EC). were. measured. with. a. multiparameter. probe. (YSI,. Water.samples.were.collected.monthly.from.June.2010.to.March. The.total.lake.volume.calculated.at.368.5.m.above.sea.level.is. 556. MPS).. Water. samples. were. collected. for. alkalinity. (Alk),. 2012.(in.the.same.dates.when.tributaries.were.sampled).in.two. 8.5.x.108.m3,.slightly.higher.compared.to.values.reported.in.the. dissolved. reactive. silica. (DRSi),. soluble. reactive. phosphorus. stations,. one. located. close. to. the. point. of. maximum. depth.. literature.(Barbato.et.al.,.1990.and.Garibaldi.et.al.,.1997).probably. (SRP),.total.dissolved.phosphorus.(TDP),.total.phosphorus.(TP),. (St.. A). and. the. other. representative. of. the. southern,. relatively. because. of. different. measuring. and. calculation. techniques.. + - - ammonium.(NH4 ),.nitrite.(NO2 ).and.nitrate.(NO3 ),.total.dissolved. shallow.part.of.the.lake.(St..B, Figure 2).. Maximum.depth,.measured.in.the.central.part.of.the.basin,.is. nitrogen. (TDN). and. total. nitrogen. (TN). determination.. About. 1. 124.m..The.littoral.zone.(<10.m.depth).accounts.for.a.maximum. of.11%.of.the.total.lake.surface;.shores.are.gently.sloping.on.the. northern.and.southern.sides,.and.rather.steep.on.the.western. Figure 2> Map showing the sampling stations. and.eastern.sides.(Table 2).

In. each. sampling. date. T,. DO,. EC. and. pH. were. measured. on. Chiese Vesta Re Aqua- Liperone Vantone Neco Centrale Chiese Physical. and. chemical. characteristics. of. in-. and. out. flowing. in colture out site. at. 0.5. m. depth. intervals. with. a. multiparameter. probe. waters.and.nutrient.external.loads (Idronaut,. 316).. Water. transparency. was. determined. as. depth. 24/06/2010 X X XXXX XX Total. water. inflow. into. the. lake. ranged. between. a. minimum. of. Secchi. disk. disappearance.. Water. samples. were. collected. of.0.4.x.106.m3.d-1.(March.2012).and.a.maximum.of..21x106.. 27/07/2010 X X XXX XX with. a. Ruttner. bottle. at. surface,. 1,. 2.5,. 5,. 10,. 20,. 30,. 40,. 50,. m3. d-1. (Fall. 2010),. coming. for. about. 95%. from. rivers. Chiese. 26/08/2010 X X XXXX XX 60,.90.m.depths.and.close.(c..1.m).to.the.sediment.surface.for. (45%). and. Caffaro. (41%).. Theoretical. renewal. time. resulted. Alk,.methane,.total.iron,.total.manganese,.dissolved.sulphides,. comprised. between. 0.4. and. 0.9. years,. considering. the. whole. 15/09/2010 X X XXX X nitrous.oxide,.DRSi,.SRP,.TDP,.T P, .NH4+,.NO2-.and.NO3-,.TDN. lake.volume.or.only.the.mixolimnion,.respectively..A.summary.of. 20/10/2010 X X X X X X X XX and. TN. determination.. About. 1. L. of. water. was. transferred. to. the.main.physical.and.chemical.characteristics.of.the.inflowing. the. laboratory. for. Chl-a. and. SS. determination.. Sampling. and. 24/11/2010 X X X X X X X XX and. outflowing. waters. is. reported. in. Table 3.. Water. T. in. the. analyses.were.performed.following.standar d.methods.(A.P.H.A. inflowing.water.ranged.from.a.minimum.of.1.3.to.a.maximum.of. 16/12/2010 X X X X X X X XX 1998;.APAT-.IRSA.CNR.2004). 17.8°C,.with.the.highest.values.measured.in.July.of.both.years. 24/01/2011 X X X X X X X XX At. the. same. sampling. dates,. phytoplankton. and. zooplankton. and.minima.recorded.between.December.and.January.. samples. were. also. collected. at. St.. A.. Phytoplankton. samples. In.the.two.outlets,.T.was.slightly.higher,.comprised.between.4.4. 21/02/2011 X X X X X X X XX were.taken.with.a.Ruttner.bottle.at.surface,.1,.2.5,.5,.7.and.10. and.23.1°C,.due.to.summer.warming.of.epilimnetic.waters.and. 21/03/2011 X X X X X X X XX m. depths.. Each. phytoplankton. sample. was. immediately. fixed. lower.cooling.in.winter. with. Lugol’s. iodine. solution. and. subsequently. an. integrated. 18/04/2011 X X X X X X X XX sample. was. obtained. by. combining. equal. proportions. of. 24/05/2011 X X X XX samples. collected. at. different. depths.. Phytoplankton. was. Maximum.lenght.(m) 8333 identified. and. counted. with. an. inverted. microscope. using. the. 20/06/2011 X X X XX Maximum widht (m) 1850 Utermöhl. method. (Utermöhl. 1931).. Cell. biovolume. of. each. Area (m2) 11.03.x.106 25/07/2011 X X X XX taxon.was.calculated.approximating.the.cell.shapes.to.simple. 3 8 29/08/2011 X X X XX geometrical. solids. (Hillebrand,. 1999).. Counts. were. made. for. Volume (m ) 8.5.x.10 both. determinable. and. non. determinable. fractions,. the. latter. Z max (m) 124 28/09/2011 X X X XX almost. exclusively. represented. by. ultraplankton. (naked. or. 24/10/2011 X X X XX flagellate.cells.of.maximum.linear.dimension.around.4.μm).and. Z mean (m) 77 undetermined. nanoplankton. (both. naked. and. flagellates. up. 28/11/2011 X X X XX Perimeter.(m) 27700 to. 8. μm).. Species. identification. was. carried. out. using. Huber- 19/12/2011 X X X XX Pestalozzi.(1938,.1961,.1962,.1968,.1969,.1982,.1983),.although. Shoreline development 2.4 30/01/2011 X X X XX major.groups.were.identified.considering.other.specific.keys,.i.e.. Littoral.area.(Z.<10.m).(%).* 11 Krammer.&.Lange-Bertalot.(1991,.1997).for.diatoms;.Komárek. Monimolimnion area (%) * 71 27/02/2012 X X X XX &. Anagnostidis. (1999). for. Chroococcales;. Anagnostidis. &. 26/03/2012 X X X XX Komárek. (1988). for. Oscillatoriales;. Popovskì. &. Pfiester. (1990). Mixolimnion.volume.(%).** 53 for.Dinophyceae;.Ettl.(1978).for.Xanthophyceae. Monimolimnion.volume.(%).** 47 Table 1> Sampling dates on inlets (Caffaro, Chiese in, Vesta Re Aquaculture, Liperone, Vantone, Neco) and outlets (ENEL and Chiese out). Zooplankton. was. sampled. with. a. vertical. haul. (0-30.m). of. a. 50.μm.conical.net.having.a.diameter.of.24.cm..Two .replicates. Table 2> Main morphometric data of Lake Idro. were. collected. at. each. sampling. date. and. the. samples. were. * Calculated as % of the total lake area. ** Calculated as % of the total lake volume. 38 immediately. preserved. in. a. 4%. buffered. formalin. solution.. 39 Oxygen.content.(between.6.and.15.mg.O2.L-1).was.high.both. values. generally. detected. in. minor. creeks.. The. TN. pool. was. T EC O2 pH Alk SS Chl-a SRP TDP TP NH4 NO2 NO3 TDN TN DRSi in. the. tributaries. and. in. the. two. outlets;. the. lowest. oxygen. mainly.constituted.by.nitrate.(up.to.the.80%),.with.the.exception. concentrations.(6-9.mg.O2.L-1).were.measured.in.the.aquaculture. of.the.aquaculture.discharge.where.ammonium.accounted.for. min 3,8 102 9 7,0 1032 0,4 0,0 4 <5 8 <15 <1 510 617 617 575 discharge,. corresponding. to. an. average. oxygen. saturation. of. about.50%.(300-956.μg.N.L-1).of.TN..In.the.investigated.period,. 25° 6,3 128 10 7,8 1416 1,1 0,7 8 8 13 44 2 623 830 848 1064 about. 75%.. EC. (100-377.μS. cm-1). was. positively. correlated. the. average. TN. daily. load. was. 2000±1000. kg. N. d-1. (of. which. Chiese 50° 8,6 174 11 8,0 2065 1,5 0,9 9 11 19 61 6 860 1016 1067 1310 with.total.dissolved.Alk.(1.0.to.3.9.meq.L-1)..These.values.are. 1700±928.kg.N.d-1.as.inorganic.nitrogen),.with.more.than.90%. in 75° 12,8 232 11 8,1 2572 1,9 1,9 15 18 27 113 11 1074 1340 1382 1799 typical.of.well-buffered.water,.characterized.by.a.dominance.of. of. the. total. load. delivered. by. the. Caffaro. and. Chiese. rivers.. bicarbonate. among. anions. (data. not. shown).. pH. of. the. water. (Figure 3).. TN. concentration. in. outflowing. water. (485-1020.. max 16,2 315 13 8,6 3642 7,9 6,1 33 40 47 160 22 1337 1493 1547 1980 ranged.between.6.9.and.9.3;.in.all.sampling.dates,.the.lowest. μg.N.L-1).resulted.slightly.lower.compared.to.inflowing.waters. min 2,1 100 9 7,7 1120 0,1 0,2 5 6 10 <15 <1 381 493 499 741 values. ..(6.5.to.7.5).were.measured.in.the.aquaculture.discharge. and. the. average. N. load. exported. from. the. lake. was. 1600±. 25° 5,3 133 10 8,0 1453 0,4 0,2 7 7 12 22 1 596 675 751 1261 Total. SS. content. was. on. average. less. than. 3. mg. L-1. in. inlet. 700.kg.N.d-1. Caffaro 50° 7,8 157 11 8,2 1582 0,9 0,6 9 12 15 27 2 628 763 804 1782 waters,.with.the.exception.of.the.aquaculture.discharge.where. DRSi. concentration..measured. in. the. inlets. ranged. between. values..up.to.28.mg.L-1.were.found..SS.were.significantly.higher. 75° 12,4 172 13 8,3 1690 1,4 1,3 11 16 18 35 4 687 841 891 2143 350.and.4500.μg.Si.L-1..These.values.were.significantly.higher. in. outflowing. waters..(up. to. 15. mg. L-1),. as. a. consequence. of. max 14,3 216 13 9,0 2136 2,8 6,9 16 18 26 48 7 798 1201 1201 3006 compared. to. those. measured. in. the. two. emissaries. (between. phytoplankton. growth. (up. to. 24.μg. Chl-a. L-1. measured. on. min 8,9 223 5 6,5 2102 0,7 0,0 41 43 80 301 11 734 1362 1623 973 98.and.1962.μg.Si.L-1),.where.the.lowest.concentrations.were. September. 2010).. TP. concentration. was. low. (<5.μg. P. L-1). in. measured.in.spring.(both.in.2011.and.2012)..In.the.investigated. 25° 9,7 231 7 7,0 2317 1,6 0,2 55 66 94 384 13 968 1623 1821 2069 minor.inlets,.whilst.higher.values.(between.8.and.47.μg.P.L-1). period,. average. DRSi. load. to. the. lake. was. 3600±2300. kg.. Aqua 50° 10,7 274 8 7,3 2355 2,4 0,8 63 74 112 472 17 1050 1776 1941 2905 were.measured.in.the.Caffaro.and.Chiese.rivers;.at.all.sampling. DRSi. d-1,. whilst. outflowing. load. was. on. average. 2000±1500. 75° 12,5 305 9 7,4 2410 3,4 1,8 68 85 145 542 23 1143 1900 2074 3169 dates,. the. highest. TP. concentrations. were. detected. in. the. kg. DRSi. d-1.. As. a. consequence,. the. lake. accumulates. some.. aquaculture. facility. discharge. (between. 80. and. 823.μg. P. L-1).. max 14,3 319 10 7,5 2542 28,1 3,2 207 219 823 956 36 1336 2312 3469 4523 1500.kg.DRSi.d-1,.corresponding.to.about.40%.of.the.external. Average.daily.TP.load.was.40±15.kg.P.d-1.(of.which.24±8.kg.P. min 2,1 251 9 8,1 3216 0,0 0,0 <1 <5 <5 <15 <1 921 1233 1309 480 load. d-1.as.SRP) (Figure 3)..About.85%.of.the.load.was.delivered.by. 25° 5,8 266 10 8,3 3298 0,1 0,0 <1 <5 <5 <15 <1 1114 1309 1359 543 the.Caffaro.and.Chiese.rivers..However,.it.must.be.noted.that.the. Annual. nutrient. loads. (calculated. from. average. daily. loads). Liperone 50° 8,9 302 10 8,4 3414 1,1 0,1 <1 <5 <5 <15 <1 1316 1359 1435 811 aquaculture. discharge. contributed. on. average. for. 12%. of. the. resulted.to.be.14.5±5.4.t.for.P.(about.8.6±3.2.t.as.inorganic.P),. 75° 15,2 326 11 8,6 3438 2,1 0,2 1 <5 <5 17 <1 1439 1471 1487 1208 total.daily.load,.whereas.the.hydraulic.load.accounted.only.for. 745±366. tons. for. N. (about. 591±322. t. as. nitrates). and. 1326±. max 17,8 336 14 8,6 3761 2,8 0,2 2 <5 6 27 <1 1746 1764 1764 2123 2%.of.the.total.water.inflow..On.average,.TP.daily.load.resulted. 857. t. for. DRSi.. DIN:TDP. and. TDP:DRSI. molar. ratios. were. comprised.between.77.to.254.and.0.003.to.0.02,.respectively.. min 4,1 257 9 8,1 3319 0,2 0,0 <1 <5 <5 <15 <1 1019 1021 1134 693 significantly. higher. compared. to. outflowing. load. (27±17. kg.. P. d-1),. meaning. that. the. lake. accumulates. about. 12. kg. P. d-1. These. ratios. indicate. that. P. is.present. in. limiting. conditions. 25° 6,5 283 10 8,3 3478 0,3 0,2 1 <5 <5 <15 <1 1266 1354 1363 871 (Figure 4). compared. to. the. other. two. macronutrients,. and. that. any. Re 50° 7,8 306 10 8,3 3514 1,9 0,2 1 <5 <5 <15 <1 1357 1409 1442 1009 processes. changing. P. availability. in. the. photic. zone. may. TN.concentrations.(499-3469.μg.N.L-1).showed.great.variability. 75° 15,8 329 11 8,6 3607 3,9 0,3 2 <5 <5 <15 <1 1382 1569 1569 1174 therefore.influence.the.structure.of.primary.producers.and.the. both. among. sampling. dates. and. different. inlets,. with. highest. max 17,7 339 13 9,2 3609 8,8 0,7 3 <5 8 36 <1 1534 1579 1691 3007 lake.productivity... min 1,8 280 9 8,1 3157 0,0 0,0 <1 <5 <5 <15 <1 806 910 964 774 25° 1,8 280 9 8,1 3157 0,0 0,0 <1 <5 <5 <15 <1 806 910 964 774 50° 5,9 314 10 8,3 3432 0,0 0,0 <1 <5 <5 <15 <1 916 964 983 1121 Vantone 75° 7,1 335 10 8,5 3769 0,5 0,1 1 <5 <5 <15 <1 921 1105 1200 1295 max 8,2 372 11 8,6 3895 0,6 0,1 1 <5 <5 <15 <1 1037 1469 1469 1598 n 17,1 377 15 9,1 3991 1,6 0,2 4 <5 5 16 1 1417 2156 2156 1925 min 1,3 248 9 8,2 3341 0,0 0,0 <1 <5 <5 <15 <1 1327 1462 1462 350 25° 1,3 250 10 8,3 3363 0,0 0,0 <1 <5 <5 <15 <1 1512 1573 1573 423 Vesta 50° 7,2 296 11 8,5 3401 0,0 0,0 <1 <5 <5 <15 <1 1628 1639 1728 563 75° 8,6 303 13 8,7 3418 0,1 0,2 1 <5 7 <15 <1 1661 1741 1751 602 max 9,0 319 15 9,1 3533 0,3 0,4 53 53 54 <15 <1 1718 1809 1813 618 min 4,4 139 8 7,6 1494 0,7 0,2 <1 <5 <5 <15 1 253 416 485 98 Chiese 25° 7,0 175 11 8,0 1626 1,2 2,1 1 <5 8 <15 4 464 544 683 522 out 50° 11,5 205 11 8,4 2024 2,4 4,0 2 5 10 21 5 581 731 790 868 75° 19,3 250 13 8,5 2255 3,6 7,6 3 7 14 25 6 745 897 915 1193 max 23,1 305 15 8,9 3453 8,8 12,6 9 10 29 123 9 901 1141 1202 1705 min 4,4 129 6 7,6 1458 0,4 0,1 <1 <5 <5 <15 2 218 353 485 35 PB visuel 25° 6,4 154 9 7,9 1650 1,2 3,5 1 <5 8 <15 3 450 544 646 426 Centrale 50° 11,3 180 11 8,2 1902 1,8 5,4 2 <5 10 <15 5 572 716 756 860 Figure 3> Average phosphorous (P), nitrogen (N) and dissolved reactive silica (DRSi) daily loads from the different tributaries. Light portion of the bars represent the dissolved inorganic fraction. 75° 19,1 231 11 8,7 2205 2,8 7,6 3 7 17 25 7 691 810 829 1145 max 21,9 279 14 9,1 2777 15,6 23,8 12 14 24 39 10 829 903 910 1962

-1 -1 -1 -1 -1 Table 3> Temperature (T), specific conductivity (20°C; µS cm ; EC), oxygen (mg L ; O2), alkalinity (µeq L ; Alk), pH, total suspended solids (mg L ; SS), chlorophyll-a (µg L ; Chl-a), soluble reactive -1 -1 -1 -1 phosphorous (µg P L ; SRP), total phosphorous (µg P L-1; TP), ammonium (µg N L ; NH4), nitrates (µg N L ; NO3) e dissolved reactive silica (µg Si L ; DRSi) measured in the two main (Chiese in and Caffaro measured from 24 June 2010 to 26 March 2012) and minor tributaries (Aquaculture, Liperone, Re, Vantone and Vesta measured from 24 June 2010 to 18 April 2011) and in the two emissaries (Chiese out and central measured from 24 June 2010 to 26 March 2012).

40 41 Figure 5> Vertical profiles of temperature (T), electrical conductivity (EC, 20 ° C), oxygen (percentage of relative saturation, O2) and pH measured in the lake at the point of maximum depth during the sampling dates.

Figure 4> Average daily total phosphorous, total dissolved nitrogen, and reactive silica in inflowing (IN) and outflowing (OUT) waters.

Physical.and.chemical.features.of.lake.water Water.physical.and.chemical.features.of.the.mixolimnion.exhibit. During.the.two.year.study,.isothermic.conditions.along.the.whole. seasonal. changes. similar. to. those. expected. in. a. temperate. water.mass.were.never.observed..Water.temperature.resulted. lake. (Figure 6).. T. reached. its. maximum. value. in. summer. relatively.constant.(between.5.6.and.7.2.°C).below.50.m.depth,. (August). and. the. lowest. in. late. winter. (February),. while. EC. and.ranged.between.4.3.to.21.9.°C.above.50.m.depth..During. followed.an.opposite.trend.with.mean.highest.values.measured. periods.of.maximum.mixing..water.chemical.features.resulted. in. winter. (about. 249.μS. cm-1). and. lowest. in. summer. (about.. relatively.constant.down.to.40.(2011).and.30.(2012).meters.and. 144.μS. cm-1).. Methane,. sulphides,. Fe. and. Mn. were. never. evidenced.a.steep.gradient.located.between.40.to.60.m.depth. detected. in. significant. amounts.. Both. in. summer. 2010. and. (Figure 5 and Figure 6).. 2011,.the.mixolimnion.had.high.oxygen.content.(up.to.14.2.mg. L-1).and.pH.values.(up.to.9.3),.with.low.to.undetectable.NH4+and. The. observed. thermal. and. chemical. structure. indicate. TP.concentrations..In.this.period,.TP.(mean.value.11.μg.N.L-1). incomplete. mixing. of. the. water. column. and. suggest. that. the. was.mainly.constituted.by.particulate.and.organic.forms.(about. lake.is.a.permanently.stratified.basin.with.a.monimolimnion.that. 60%),.and.SRP.was.detected.in.significant.concentrations.(up. account.for.approximately.the.50%.of.the.lake.volume.. -1 to. 250.μg. P. L ). only. below. 30. m. depth.. NO3-. concentrations. Water. characteristics. in. the. monimolimnion. resulted. relatively. were. also. lowest. in. summer. with. minimum. values. (down. to.. constant. over. time. and. with. a. relatively. high. content. of. -1 150.μg.N.L ).measured.on.September.2010..DRSi.concentration. dissolved. ions,. as. shown. by. proportionately. high. values. of. followed.a.slightly .different.temporal.pattern,.characterized.by. EC. (between. 297. to. 439.μS. cm-1),. and. devoid. of. oxygen two.spring.minima.(<50.μg.Si.L-1.and.about.100.μg.Si.L-1.in.May. (Figure 5).. Concurrently,. reduced. compounds. produced. by. 2011. and. March. 2012,. respectively). and. an. autumn. minimum. anaerobic. redox. reactions,. like. methane. (up. to. 3,0. mg. C. L-1),. measured. in. September. 2011. (80.μg. Si. L-1).. From. autumn. to. sulphides.(up.to.4,8.mg.S.L-1),.Fe.(up.to.50.μg.L-1).and.Mn.(up. winter,.a.general.decrease.in.oxygen.content.(down.to.8.8.mg. to.600.μg.L-1).accumulate.in.the.bottom.layers,.as.well .as.NH4+. -1 O2.L ,.which.corresponds.to.about.75%.of.saturation).and.water. (up.to.1000.μg.N.L-1),.SRP.(up.to.240.μg.P.L-1).and.DRSi.(up.to.. pH.(7.8).was.observed,.with.a.concurrent.increase.in.SRP.(up.to. 3000.μg.Si.L-1).(Figure 6).. about.19.μg.P.L-1),.nitrate.(up.to.about.880.μg.N.L-1).and.DRSi. (up.to.about.2000.μg.Si.L-1)..

42 Figure 6> Vertical profiles of dissolved sulphides (DS), methane (CH4), total iron (Fe), total manganese (Mn), total phosphorous (P), reactive 43 + - dissolved silica (DRSi), ammonium (NH4 ) and nitrate (NO3 ) measured in the lake at the point of maximum depth during the sampling dates. These. results. indicate. that. the. monimolimnion. is. a. significant. 3000.and.6200.tons.of.O2).is.very.high.compared.to.the .total. (15. taxa),. contributed. the. largest. proportion. of. the. total. Other. rotifer. taxa. occasionally. reaching. high. abundances. are. reserve. of. inorganic. nutrients,. and. in. particular. phosphorus.. content.of.oxygen.in.the.lake.(approximately.between.2000.and. biovolume.. Cryptophytes. showed. the. lowest. biomass. in. July. Keratella.cochlearis.var..tecta.and.Pompholyx.sulcata.(30.and.. -1 (Table 4).. The. total. amount. of. P. contained. in. this. lake. 4300.t.O2.).(Figure 7)..The.difference.between.the.amount.of.O2. and.August.likely.due.to.the.grazing.effect.of.zooplankton..In. 16. ind.L . in. August. 2010,. respectively),. and. Synchaeta. gr.. compartment,.estimated.between.56.to.80.tons,.resulted.to.be. equivalent.to.the.reducing.power,.that.in.the.lake.is.negative.for. the. same. period,. Bacillariophyceae. were. mainly. represented. tremula-oblonga.(27.ind.L-1.in.May.2011)..Among.cladocerans,. 8-23.times.higher.than.that.present.in.the.mixolimnion. most.of.the.year.(between.235.and.-4100.t.DO.eq),.represents. by.small.centric.diatoms.(likely.Cyclotella.spp.).that.apparently. only. Daphnia. spp.. was. found. throughout. the. study. period,. a.potential.risk.for.the.entire.basin..In.fact,.in.case.of.sudden,. tolerate.stratification,.probably.because.of.their.reduced.sinking. although.with.low.densities.(maximum.of.1.3.ind.L-1.in.April.2011). DRSi.also.accumulated.in.the.monimolimnion.compared.to.the. complete.mixing.of.the.whole.water.mass,.as.a.matter.of.fact. rates.. (Figure 9)..Rare.males.were.observed.from.April.to.June.2011.and. mixed.layer,.albeit.differences..resulted.lower.compared.to.those. extremely. unlikely. in. this. meromictic. lake,. the. oxidation. of. again.in.February.2012,.and.a.single.ephippial.female.was.present. measured.for.P. .On.the.contrary,.the.role.of.the.monimolimnion. Overall,.41.zooplankton.taxa.(31.of.rotifers,.8.of.cladocerans.and. reduced.compounds.would.induce.a.remarkable.consumption. in. the. sample. collected. in. June. 2011.. The. other. herbivorous. as.a.nitrogen.reserve.is.less.evident.because.of.the.contrasting. 2. of. copepods). were. identified. in. the. samples. collected. from. of. oxygen. with. a. subsequent. significant,. though. transient,. cladoceran. species. showed. neglegible. abundance. and. were. distribution. of. nitrogen. forms. with. different. oxidation. state.. In. June.2010.to.March.2012 (Table 5)..The.zooplankton.community. oxygen.deficit.in.the.water.column. collected.mainly.in.summer..Also.the.predator.Leptodora.kindtii. fact,.NO -.accumulates.in.the.upper.part.of.the.water.column. was.mainly.dominated.by.rotifers.and,.to.a.lesser.extent,.by.other. 3 occurred.exclusively.in.the.warmer.months,.with.a.peak.of.0.05.. (from.200.to.300.tons).,.and.NH +.in.the.monimolimnion.(from. microfilter.feeders.like.cyclopoid.nauplii..Rotifers.accounted.for. 4 Phytoplankton.and.zooplankton.communities ind.L-1.in.July.2011..Copepods.were.predominantly.represented. 200.to.288.tons). 52.to.94%.of.total.density.over.the.study.period,.with.the.lower. Water.transparency,.measured.as.the.depth.of.disappearance. by.cyclopoid.nauplii.and.copepodites,.with.abundance.maxima. percentages.observed.in .winter.months..The.rotifer.taxa.present. The.P.in .the.monimolimnion.is.more.than.the.90%.of.all.the.P. of. the. Secchi. disk,. peaked. (10.3. m). on. December. 19,. 2011. during. the. summer.. Adults. of. Cyclops. spp.. were. found. at. all. in.all.the.samples.were.Kellicottia.longispina.(maximum.density. present.in.the.lake,.and.it.is.mainly.composed.by.SRP..Winter. and. reached. its. minimum. (0.9. m). on. September. 15,. 2010.. sampling.dates.and.had.similar.temporal.trend,.but.with.lower. of.13.ind.L-1.in.June.2010.and.again.in.June.2011),.Polyarthra. mixing. of. the. upper. layer. of. the. monimolimnion. and. eddy. (Figure 8).. The. observed. seasonal. evolution. reflects. changes. densities.(maximum.of.1.ind.L-1.in.September.2010).(Figure 9).. spp.. (maximum. density. of. 37. ind.L-1. in. August. 2011). and. diffusion. determine. a. flux. of. P. to. the. mixolimnion. comprised. in.SS.and.Chl-a.concentrations.measured.in.the.0-20.m.layer.. Adults.of.Mesocyclops.leuckarti.attained.relatively.high.densities. Keratella.gr..cochlearis,.this.latter.with.density.peaks.of.91.and. between.1.2.to.3.4.mg.P.m-2d-1,.which.corresponds.to.about.0.8. Chl-a. concentration. followed. a. well. defined. seasonal. pattern:. in.summer.(up.to.1.7.ind.L-1.in.August.2010.and.0.5.ind.L-1.in.July. 79.ind.L-1.in.August.2010.and.July.2011,.respectively.(Figure 9). g.P.m-2.y-1..Considering.that.the.interface.between.mixolimnion. depth.integrated.(0-20.m).volume.weighted.mean.values. ..ranged. and.August.2011),.but.disappeared.from.Juanuary.to.March.in. and. monimolimnion. is. about. 8.2*106. m2,. it. can. be. estimated. between. 0.8. and. 9.8.μg. L-1,. with. the. highest. concentrations. 2011.and.2012..No.calanoid.copepods.were.found. that. P. diffusion. to. surface. waters..through. the. chemocline. detected.in.summer.2010.(from.15.5.to.29.0.μg.L-1).at.a.depth. accounts.for.about.6.5.t.P.y-1..This.flux.represents.a.significant. comprised. between.-2.5. and. -5. m.. Thereafter. the. values.... internal.P.load.that.can.explain.the.increase.in.P.concentration. progressively. decreased. down. to. a. minimum. measured. in. during. winter.. Moreover,. because. of. the. more. balanced. ratio. January.2011.(0.8.μg.L-1)..In.summer.2011,.Chl-a.concentrations. between.N,.P.and.Si.in.deep.waters.compared.to.surface.waters were. on. average. lower. compared. to. 2010,. and. mean. values. (Figure 7),. this. flux. determines. a. net. P. enrichment. of. the. never.exceeded.6.8.μg.L-1. epilimnion.compared.to.the.other.nutrients.. About. 100. species. of. phytoplankton. were. identified.. Accumulation. of. methane. and. reduced. ions. in. deep. waters. Dinoflagellates. and. chlorophytes. showed. the. highest. represents. a. potential. demand. of. oxygen,. required. for. their. densities. even. though. their. contribution. to. the. total. biomass. oxidation.(Matzinger.et.al.,.2010)..The.accumulation.of.reducing. was. significant. only. in. July. and. August.. In. the. other. months,. power. in. deep. waters. (which. is. equivalent. to. approximately. cryptophytes.and.cyanophytes.(15.taxa),.together.with.diatoms.

Figure 8> Vertical profiles of chlorophyll-a measured in the lake at St. A during the sampling period.

Volume TP DRSi DRSi ROTIFERA m3 x 108 tons tons tons Bdelloidea Anuraeopsis.fissa min max min max min max Ascomorpha.ecaudis Ascomorpha.ovalis Mixolimnion 3.73 3 9 263 344 153 733 Ascomorpha.saltans Asplanchna.priodonta Monimolimnion 4.56 56 80 346 482 629 1705 Cephalodella.gibba Collotheca.spp. Table 4> Total phosphorus (TP), dissolved inorganic nitrogen (DIN) e dissolved reactive silica (DRSi) accumulated in the mixolimnion and in the monimolimnion of lake Idro. Colurella.colurus CLADOCERA Colurella.uncinata Conochilus.gr..unicornis-. Bosmina.. hippocrepis longirostris Euchlanis.sp. Eubosmina.coregoni Filinia.gr..longiseta-terminalis COPEPODA Eubosmina.longispina Gastropus.stylifer Kellicottia.longispina Chydorus.sphaericus Cyclops.spp. Keratella.gr..cochlearis Daphnia.spp. Mesocyclops.. Keratella.cochlearis.var..tecta Diaphanosoma.. leuckarti Keratella.gr..quadrata brachyurum Lecane.closterocerca Leptodora.kindtii Lecane.gr..lunaris Sida.crystallina Lecane.luna Lepadella.ovalis Notholca.gr..acuminata-labis Notholca.gr..squamula Polyarthra.spp. Figure 9> Density of Kellicottia longispina, Keratella gr. cochlearis, and Polyarthra spp. from June 2010 to March 2012 (upper panel), .density of nauplii and Pompholyx.sulcata copepodites of cyclopoids from June 2010 to March 2012 (middle panel); Synchaeta.gr..stylata-pectinata density of adults of Cyclops spp. and Daphnia spp. from June 2010 to Synchaeta.gr..tremula-oblonga March 2012 (lower panel). Figure 7> Seasonal evolution of total oxygen content in the lake and the potential oxygen demand for required for oxidation of reduced compounds accumulated in the monimolimnion (left). In the Testudinella.caeca right panel average molar ratios between total nitrogen (N), total phosphorus (P) and soluble reactive silica (Si) measured at different sampling dates are reported for the mixolimnion (blue Trichocerca.porcellus triangles) and monimolimnion (red circles). The oblique line represents the situation when N and P are balanced, the horizontal line indicates the situation in which N: Si are balanced, while the vertical one represents the situation in which P: Si are balanced. Trichocerca.pusilla Table 5> List of zooplankton taxa found in Lake Idro.

44 45 This.study.led.to.the.identification.of.a.number.of.zooplankton. For.these.reasons,.we.preferred.to.keep.the.identification.at.the. 2000/60/EC,. and. two. different. functional. multimetric. indices:. shorezone.stretch”.is.a.shorezone.sector.that.displays.similar. taxa.sensibly.higher.than.in.previous.investigations:.in.fact,.only. generic.level.and.to.indicate.the.possibility.of.different.coexisting. the. SFI. (Shorezone. Functional. Index;. Siligardi. et. al.,. 2011). ecological,. morphological. and. functional. characteristics.. Data. seven.species.were.listed.by.de.Bernardi.et.al..(1985),.and.19. species. and.the.LHS.indices.(Lake.Habitat.Survey;.Rowan.et.al.,.2006;. matrix.was.then.processed.using.dedicated.software.(SFINX02). by. Osservatorio. dei. Laghi. Lombardi. (2005).. This. latter. work. Ciampittiello,. 2011).. The. plant. functional. data. were. collected. that.generated.a.classification.tree.that.will.lead.to.the.evaluation. The.zooplankton.community.of.the.Lake.Idro.is.characterised.by. also. report. zooplankton. maxima. that. are. roughly. comparable. along.transects.(n.=.46),.identified.on.the.basis.of.information. of.shorezone.functionality;.for.more.information.see.Siligardi.et. a.complex.organization.in.which.are.present.the.different.trophic. to.those.found.in.the.present.study.for.rotifers.and.cyclopoids,. collected.in.the.recent.past.by.Galanti.(from.1997.to.1999).and. al..(2011). levels. typical. of. pelagic. food. web. in. deep. lakes:. microfilter. notwithstanding. the. different. methods. employed. (e.g.,. the. Roberti.(2004). Several. methods. are. under. research. and. development. to. feeders.(most.of.the.rotifer.species,.cyclopoid.nauplii.and.small. height.of.the.sampled.water.column). understand.and.describe.the.hydro-morphological.characteristics. copepodites,. small-bodied. cladocerans),. macrofilter. feeders. During. the. first. year. of. investigation. (2010),. we. limited. our. of. water. bodies. as. a. support. for. biological. investigations,. as. On. the. contrary,. we. found. abundance. peaks. for. two. species. (large-bodied.cladocerans).and.species.that.are.mostly.or.truly. surveys. to. the. southern. portion. of. the. basin.. Overall,. we. set. required.by.the.Water.Framework.Directive..On.the.whole,.with. of.cladocerans,.Eubosmina.longispina.and.Daphnia.spp.,.that. predaceous.(e.g.,.the.polyphagous.rotifer Asplanchna priodonta,. up. 18. vegetation. transects. (June. 30th,. August. 4th-5th. and. respect.to.the.central.role.of.human.activities.in.the.evolutionary. are.of.an.order.of.magnitude.lower.than.those.estimated.in.the. large. copepodites. and. adults. of. cyclopoids,. the. raptorial. 23th-25th) (Figure 13) and. carried. out. 4. field. campaigns. for. processes.of.catchments.and.watersheds,.hydro-morphological. period. 1982-1983.. The. most. relevant. differences. are. found. cladoceran Leptodora kindtii)..It.must.be.remarked.the.absence. the. application. of. SFI. and. a. preliminary. evaluation. of. LHS. data. become. essential. to. define. the. relationships. between. in. the. structure. of. the. rotifer. assemblage,. with. 11. additional. of.calanoid.copepods,.as.already.reported.in.previous.studies.. applicability.to.our.study.area..In.2011,.we.provided.a.complete. environmental.quality.and.human.impacts.at.water.body.level. genera. reported. here (Anuraeopsis, Ascomorpha, Euchlanis, The.low.densities.of.macrofilter.feeders,.in.particular.Daphnia. characterization.of.the.aquatic.plant.stands.setting.up.further.28. (Ciampittiello,. 2011).. In. this. frame,. the. LHS. index. provides. Colurella, Collotheca, Conochilus, Lecane, Lepadella, Notholca, spp.,.likely.accounts.for.a.limited.control.of.microalgal.biomass. transects.(for.a.total.number.of.46.transects).(August.17th-26th).. information.about.the.morphological.alterations.and.the.hydro- Pompholyx, and Testudinella)..Moreover,.we.found.a.pronounced. through.grazing.(see.results.on.chlorophyll.concentrations).. At.the.same.time,.we.have.completed.the.collection.of.data.for. morphological.quality.of.a.lake..The.LHS.requires.data.from.10. morphological. variability. in. Daphnia. (previously. identified. as. the.calculation.of.SFI.(June.30th.–.July.3rd).and.the.application. In. this. lake,. microzooplankton. (i.e.,. heterotrophic. organisms. Hab-Plot = Habitat.Plot Observation Station.(for.basins.with.an. D.. hyalina),. indicating. the. presence. in. this. lake. of. a. Daphnia of.LHS.protocol.(August.28th). with. body. size. in. the. range. 20-200. μm). is. consistently. more. area.ranging.from.0.3.to.14.km2),.that.included.three.different. galeata/hyalina/cucullata.complex,.as.assessed.by.Wolinska.et. represented. than. macrozooplankton. (body. size. >200. μm),. in. Functional.evaluation.of.littoral.and.shore.zones.of.Lake.Idro sectors:.a.riparian.and.a.littoral.ones.and.an.in-between.sector. al..(2007).through.allozyme.analyses. terms.of.adundance.and.most.likely.also.of.biomass.(absence .of. Riparian. ecotones. play. a. central. role. in. the. conservation. of. that.corresponded.to.the.beache.zone..Specifically,.the.method. This. view. is. further. supported. by. the. absence. of. mictic. data.on.ciliates.and.problems.in.the.estimation.of.zooplankton. species.diversity.and.ecological.functions.of.littoral.belts.of.inland. requires.the.characterization.of:.1).the.structural.features,.2).the. reproduction,. as. a. possible. consequence. of. the. intrageneric. biomass.do.not.allow.to.accurately.quantify.this.parameter)..This. water.ecosystems..The.shore.zones.of.a.lake.that.include.the. composition.of.vegetation,.3).the.human-induced.alteration.of. hybridization..Also.for.Cyclops.spp.,.identified.as.C..abyssorum. result.can.be.related.to.the.high.trophic.state.of.the.lake,.following. water.level.fluctuation.zones.represent.a.fundamental.element. each.plot,.and.a.4).general.evaluation.of.the.alterations.at.the. in. the. samples. collected. in. 1982-1983,. we. found. different. the.model.that.an.increase.of.microzooplankton.relative.to.total. for.the.hydromorphological.classification.of.a.lentic.basin.–.as. basin.scale;.several.additional.information.is.collected.regarding. morphotypes,. some. of. them. tentatively. attributable. to. the. zooplankton.biomass.is.expected.as.lake.trophy.increases.(e.g.,. requested.by.the.EU.Water.Framework.Directive.(2000/60/EC). the.predominant.human.activities,.the.hydrology.and.the.water. abyssorum-group..The.identification.of.species.within.this.genus. Bays. and. Crisman,. 1983).. On. the. other. hand,. other. empirical. (Ciampittiello,. 2011).. With. the. aim. to. integrate. the. classical. quality.of.the.basin.at.the.Index.site.(IS;.corresponding.to.the. relies.on.tiny.and.often.contrasting.characters.(e.g.,.see.Einsle,. studies.(e.g.,.Pace,.1986).contradict.these.findings,.indicating.a. approaches. for. the. characterization. of. the. lacustrine. littoral. maximum.depth.site). 1996;. Brandl. and. Lavická,. 2002;. Hołińska. and. Dahms,. 2004).. wide.variability.among.lakes. and.riparian.vegetation.and.to.facilitate.the.identification.of.the. dominant. human-derived. pressures. affecting. Lake. Idro,. we. Results applied.two.different.multimetric.functional.indices.to.the.basin:. Composition. and. structure. of. hydro-hygrophilous. plant. Characterization of vegetation structure and functionality in the littoral zone the.SFI.=.Shorezone.Functional.Index.(Siligardi.et.al.,.2011),.and. communities the.LHS.=.Lake.habitat.Survey.(Rowan.et.al.,.2006)..Both.these. Overall,.we.identified.21.macrophyte.species,.16.phanerogams. In. relatively. undisturbed. natural. lacustrine. settings,. hydro- the. application. of. three. multimetric. indices. (MacroIMMI,. SFI,. two. indices. have. the. purpose. of. evaluating. the. conservation. (Ceratophyllum. demersum,. Eleocharis. acicularis,. Elodea. hygrophilous. vegetation. plays. a. central. role. in. modulating. and.LHS).and.5).the.verification.of.the.accuracy.of.the.plant.and. status.of.riparian.and.littoral.contexts.of.a.lake;.the.first.one.is. nuttallii,. E.. canadensis,. Lagarosiphon. major,. Lemna. minor,. nutrient. cycles. and. controlling. trophic. status. of. waters.. Food. macro-algae.taxonomical.determinations.using.microscopes.in. especially.devoted.to.investigate.the.functional.and.metabolic. Myriophyllum. spicatum,. Persicaria. amphibia,. Potamogeton. webs.of.lakes.are.thus.strictly.influenced.by.the.diversity.and. laboratory. efficiency.of.riparian.belts;.while.the.second.one.is.dedicated.to. crispus,. P. . lucens,. P. . perfoliatus,. P. . pectinatus,. P. . pusillus,. complexity. of. macrophyte. communities. (plants. that. include. The. macrophyte. vegetation. analysis. was. performed. at. two. the.analysis.of.the.lake’s.hydromorphological.integrity. Ranunculus. trichophyllus. subsp.. trichophyllus,. R.. reptans,. exclusively. macroscopic. colonies. or. organisms. with. a. tissue. different. levels:. 1). phytosociological. classification. of. plant. The.SFI.application.requests.the.evaluation.of.both.biotic.and. Zannichellia. palustris. subsp.. polycarpa),. 4. algal. taxa. (Chara. level. organization).. Therefore,. in. order. to. assess. structure,. communities. taking. the. cover-abundance. of. species. into. abiotic. factors. able. to. describe:. 1). the. buffering. capacity. of. globularis,. C.. vulgaris,. Cladophora. aegagrophyla. e. Spirogyra. ecological. quality. and. functional. organization. of. the. littoral. account. and. 2). functional. analysis. and. comparison. of. the. the.riparian.vegetation,.2).the.complexity.and.artificiality.of.the. sp.). and. only. one. bryophyte. (Fontinalis. antipyretica) (Table 6) vegetation,.an.accurate.analysis.of.the.structure.and.diversity. functional. outcomes. obtained. after. the. application. of. three. shoreline,.3).the.anthropogenic.use.of.the.surrounding.contexts,. in. agreement. with. the. results. from. previous. floristic. surveys. of. the. hydro-hygrophilous. vegetation. was. carried. out. with:. 1). different.ecological.quality.indices. and.4).the.morphological.structure.of.the.watershed..The.data. (Roberti,. 2004;. Bolpagni. &. Tomaselli,. 2005;. Bolpagni,. 2010).. a. descriptive. analysis. of. aquatic. plant. communities. (following. The. structural. characterization. of. aquatic. vegetation. was. were.collected.within.homogeneous.stretches.identified.on.the. For.the.syntaxonomical.analysis.a.total.number.of.49.“original”. the. phytosociological. approach),. 2). an. ecological. quality. performed.applying .the.classical.“phytosociological”.approach. basis.of.a.“similar.ecology”;.in.other.words,.a.“homogeneous. relevés.were.collected. assessment. of. the. macrophyte. contingent. of. the. Lake. Idro. (Braun-Blanquet,.1964)..This.method.is.based.on.two.distinct. calculating.the.MacroIMMI.index.(in.agreement.with.the.requests. phases:. the. first. one. require. a. detailed. field. survey. with. the. Lag_ Car_ of.the.Water.Framework.Directive).and.3).a .specific.functional. DI Cha_glo Elo_nut Fon_ant Pot_pus Zan_pla Cha_vul Myr_spi Pot_per Pot_luc Ran_tri Cla_aeg Spi SD DI collection. of. floristic. inventories. (floristic. relevés);. the. second. maj dem characterization. of. the. riparian. and. littoral. zones. of. the. lake. one. performs. the. classification. of. the. relevés. in. terms. of. 0-1 17.4 45.7 2.2 28.3 45.7 28.3 2.2 2.2 8 applying. two. different. multimetric. indices:. the. SFI. (Shorezone. compositional.similarity.and.species.cover-abundance.values.by. 1-2 50.0 2.2 37.0 4.3 21.7 84.8 73.9 2.2 8 Functional.Index).and.the.LHS.indices.(Lake.Habitat.Survey). numerical.analysis.(multivariate.cluster.analysis)..Subsequently,. 2-3 2.2 58.7 2.2 17.4 4.3 13.0 73.9 84.8 4.3 4.3 10 the.results.obtained.were.used.for.the.creation.of.cartographic. Methods 3-4 15.2 60.9 8.7 76.1 80.4 8.7 2.2 2.2 4.3 9 outputs. (vegetation. map).. The. syntaxonomical. scheme. of. the. 9 During.the.two-years.of.investigation.(from.July.2010.to.October. vegetation. units. described. was. mainly. derived. from. Grabherr. 4-5 28.3 71.7 2.2 71.7 65.2 6.5 2.2 13.0 10.9 2011),.we.performed.a.complete.analysis.of.hydro-hygrophilous. &.Mucina.(1993)..In.general,.the.species.nomenclature.follows. 5-6 41.3 69.6 47.8 45.7 2.2 2.2 26.1 21.7 8 vegetation. of. Lake. Idro. which. consisted. of:. 1). a. preliminary. Conti.et.al..(2005)..For.each.unit.of.vegetation.we.reported.the. 6-7 65.2 43.5 23.9 30.4 32.6 19.6 6 assessment. of. the. efficiency. of. the. Italian. macrophyte. survey. Corine. Biotopes. code. and. the. correspondent. Habitat. code. in. 7-8 78.3 32.6 19.6 19.6 41.3 23.9 6 method.as.proposed.by.Oggioni.et.al..(2011);.2).a.preliminary. agreement.with.the.Annex.I.of.the.EU.Habitat.Directive.92/43/ 8-9 52.2 13.0 2.2 8.7 10.9 19.6 6.5 7 evaluation. of. the. applicability. of. this. standardized. method. ECC. (following.the.suggestions.of.Oggioni.&.Bolpagni,.2010).according. 9-10 2.2 The. functional. analysis. of. riparian. and. littoral. zones. of. Lake. to. the. EU. Directive. 2000/60;. 3). the. choice. of. an. appropriate. F.mean 28.5 41.7 0.7 11.1 1.1 6.3 45.2 43.9 2.4 0.2 0.2 0.7 13.5 9.1 7.2 Idro.was.performed.applying.the.Italian.macrophytic.index.for. number. of. lacustrine. transects. for. the. characterization. of. 2.5 lacustrine.environments.as.defined.by.Oggioni.&.Bolpagni.(2010). SD.mean 29.3 25.0 1.1 17.0 1.8 10.8 30.8 30.6 3.2 0.7 0.7 1.1 15.6 9.4 structure. and. diversity. of. aquatic. vegetation;. subsequently,.4). and.Oggioni.et.al..(2011),.following.the.requests.of.EU.Directive. Table 6> Detection frequencies (F.mean = mean frequency) of the most widespread macrophytes of the Lake Idro. 46 LEGEND – DI: Depth intervals; SD DI: species diversity at DI scale; Cha_glo = Chara globularis; Elo_nut = Elodea nuttallii; Fon_ant = Fontinalis antipyretica; Pot_pus = Potamogeton pusillus; 47 Zan_pal = Zannichellia palustris subsp. polycarpa; Cha_vul = Chara vulgaris; Lag_maj = Lagarosiphon major; Myr_spi = Myriophyllum spicatum; Pot_per = Potamogeton perfoliatus; Pot_luc = Potamogeton lucens; Ran_tri = Ranunculus trichophyllus subsp. trichophyllus; Cer_dem = Ceratophyllum demersum; Cla_aeg = Cladophora aegagrophila; Spi = Spirogyra sp. The. structural. analysis. of. macrophyte. stands. reveals. a. clear. Subsequently,. the. upper. sector. could. be. divided. in. turn. into. zonation.of.the.littoral.vegetation.and.three.different.layers.can. a.superficial.(0.- .1.m.of.depth).and.an.intermediate.layer.(1.-.. Cha_ Elo_. Fon_ Pot_ Zan_ Cha_ Lag_ Myr_ Pot_ Pot_. Ran_. Cer_ Cla_ T Spi NS Tr be. recognized:. 1). a. superficial. layer,. ranging. from. the. water- 6.m.of.depth)..The.superficial.one.is.characterized.by.relatively. glo nut ant pus pla vul maj spi per luc tri dem aeg atmosphere.interface.to.1.m.of.depth;.2).an.intermediate.layer. widespread. stands. of. P. . pusillus. and. Z.. palustris. subsp.. 9''' 70 30 10 0 0 0 0 0 0 0 0 0 0 0 3 between.1.and.6.meter.depth;.and.3).a.lower.layer.with.depths. polycarpa;. the. intermediate. one. is. dominated. by. two. elodeis. 8 60 30 0 10 20 20 30 10 0 0 0 0 0 0 7 below.6.m..The.superficial.one.is.very.poorly.colonized.by.plants,. (E.. nuttallii. and. L.. major). and. M.. spicatum. that. is. the. most. 7 6 here.only.P. pusillus,.C. vulgaris.and.M. spicatum.are.present.with. abundant.companion.species;.also.P. .lucens.and.P. .perfoliatus. 60 40 0 0 0 20 40 30 20 0 0 0 0 0 extremely.low.cover-abundance.values..The.intermediate.layer. are.detected.in.this.vegetation.sector.but.less.frequently. 3 0 50 20 10 0 0 60 30 0 10 0 0 0 0 6 displays.considerable.plant.diversity.and.structural.complexity. 5 60 30 0 10 0 20 30 10 30 0 0 0 0 0 7 On. the. basis. of. the. 49. “original”. phytosociological. relevés. (with.a.peak.of.10.species.and.cover-abundances.between.75%. taken,. we. have. identified. 8. vegetation. types. that. correspond. 6 60 40 0 0 0 30 10 20 20 0 0 0 0 0 6 and.100%). to. three. different. habitats. of. conservation. interest. sensu. EU. F1 40 70 0 30 0 0 80 60 0 0 0 0 0 0 5 In. this. zone. the. most. widespread. species. are. E. nuttallii, L. Habitat. Directive. 92/43/ECC. (3130,. 3140,. and. 3150. Nature. F 30 80 0 50 0 0 20 90 0 0 0 0 0 0 5 major e M. spicatum,.and.in.general.we.observed.a.progressive. 2000. codes).. These. results. are. in. agreement. with. previous. E 30 70 0 30 0 0 60 90 0 0 0 0 0 0 5 reduction.in.species.diversity.with.depth..On.the.contrary,.the. investigations. –. in. particular. with. Bolpagni. (2010). data.. The. E1 30 90 0 40 0 20 50 90 0 0 0 0 0 0 6 lower. layer. is. almost. exclusively. colonized. by. C. globularis. following.syntaxonomical.scheme.was.elaborated.in.agreement. D 5 This. algal. species. usually. forms. dense. stands. but. it. was. not. with. the. “Synsystème. de. la. France. au. niveau. sous-alliance”. 30 60 0 20 0 0 10 60 0 0 0 0 0 0 detected.at.a.depth.beyond.9-10.m..On.the.whole,.we.detected. (Bardat.et.al.,.2004):. D1 40 80 0 20 0 0 20 70 0 0 0 0 0 0 5 an.average.species.richness.equal.to.7.2.±.2.5.species.(mean. A 40 20 0 0 0 0 40 60 0 0 0 0 0 0 4 ±. St.dev). (considering. data. grouped. by. 1. m. depth. intervals),. A1 30 40 0 10 0 0 70 60 0 0 0 0 0 0 5 and. an. average. species. richness. per. transect. of. 5.7. ±. 1.6. B 30 70 0 20 0 0 80 70 0 0 0 0 0 0 5 species.. On. the. basis. of. structural. data,. it. is. not. possible. to. B1 40 70 0 30 0 0 60 70 0 0 0 0 0 0 5 classify. the . structural. typology. of. aquatic. vegetation. in. the. superficial. layer. of. the. Lake. Idro.. Exclusively. in. the. presence. C 40 10 0 10 0 0 90 80 0 0 0 0 0 0 5 of.natural.or.semi-natural.lacustrine.littoral.sectors,.with.sandy. C1 40 70 0 20 0 10 80 80 0 0 10 0 0 0 7 superficial. sediments. or. silt. deposits. characterized. by. rather. AN1 20 40 0 0 0 0 70 30 0 0 0 0 0 0 4 elevated. organic. matter. contents,. we. observed. quite. well- AN2 20 20 0 0 0 0 60 40 0 0 0 0 20 0 5 structured. vegetation. mosaics. dominated. by. C.. vulgaris. and. AN3 40 20 0 0 0 0 50 30 0 0 0 0 10 0 5 P. pusillus.. From. these. observations. we. can. hypothesize. that. AN4 5 these. vegetation. typologies. could. represent. the. typical. plant. 20 50 0 0 0 0 70 30 0 0 0 0 30 0 community. of. the. superficial. layer.. In. particulr,. C.. vulgaris. 4B 50 80 0 40 0 30 60 50 0 0 0 0 0 30 7 seems.to.prefer.fine.substrates.(transects.No..5,.6,.7,.and.8),. 4C 60 50 0 20 0 20 60 60 0 0 0 20 30 20 9 while.P. .pusillus.was.detected.in.sites.with.more.coarse.grained. 4D 40 80 0 10 0 0 40 50 0 0 0 0 40 0 6 sediments. (transects. No.. E1,. F). (Table.7).. The. outputs. of. the. 7A 20 50 0 0 0 0 60 50 0 0 0 0 10 30 6 structural.analysis.of.macrophyte.populations.are.in.agreement. 7B 0 70 0 0 0 0 40 40 0 0 0 0 40 0 4 with.the.results.of.the.syntaxonomical.investigation..In.general,. the. euphotic. zone. of. Lake. Idro. colonized. by. aquatic. plants. 7C 20 80 0 10 0 0 70 50 0 0 0 0 20 0 6 (between. 0. and. 10. m. of. depth). could. be. split. into. two. main. 10A 20 80 0 10 0 10 60 50 0 0 0 0 20 20 8 macro-sectors:.a.lower.sector.(between.6.and.10.m.of.depth). 10B 20 0 0 0 30 20 10 0 0 0 0 0 20 0 5 dominated.by.C. globularis.and.an.upper.layer.(between.6.m.of. 10C 0 0 0 0 0 0 0 30 0 0 0 0 20 20 3 depth.and.the.water-atmosphere.interface).mostly.colonized.by. 10D 0 30 0 0 0 0 40 30 20 0 0 0 50 0 5 elodeids.(mainly.E..nuttallii.and.L..major).(Figure 10).. 14A 0 30 0 0 0 0 40 30 20 0 0 0 50 0 5 14B 30 20 0 0 0 0 50 50 0 0 0 0 0 0 4 14C 0 0 0 0 0 0 0 0 0 0 0 0 30 0 1 14D 40 0 0 0 0 0 40 40 0 0 0 0 40 20 5 18A 20 30 0 0 0 0 40 30 0 0 0 0 20 20 6 18B 0 10 0 10 0 0 60 50 0 0 0 10 30 10 7 20 0 10 0 10 0 10 50 40 0 0 0 0 30 30 7 21 40 20 0 10 0 10 50 40 0 0 0 0 30 40 8 22 20 20 0 0 0 0 40 30 0 0 0 0 40 40 6 23 30 20 0 10 0 10 40 40 0 0 0 0 30 40 8 24 40 40 0 20 0 20 40 30 0 0 0 0 30 30 8 25 10 50 0 20 0 20 40 30 0 0 0 0 20 20 8 26 20 60 0 20 0 20 40 40 0 0 0 0 10 10 8 27 0 40 0 0 0 0 50 40 20 0 0 0 0 0 4 Figure 10> Scheme of a typical transect of Lake Idro. F. mean 40.6 52.8 1.7 17.2 1.1 6.7 46.1 54.4 3.9 0.6 0.6 5.7 SD 16.6 23.5 5.1 14.5 4.7 10.3 27.9 29.9 9.2 2.4 2.4 1.6 mean

Table 7> Relative detection frequencies of the macrophytes revealed along the vegetation transect (T); NS Tr = total species diversity at transect scale; in pale gray we highlighted mean and standard deviation.

48 49 Macroalgal vegetation (Charetea class)..Below.5.-.6.m.of.depth,. Rhizophytic vegetation (Potametea class)..The.littorals.of.the. The.communities.of.M..spicatum.are.extremely.poor.in.species. The. remnant. two. rhizophytic. communities. are. dominated. by. a.major.part.of.the.littoral.euphotic.zone.of.the.Lake.Idro.(with. Lake. Idro. are. prevalently. colonized. by. submerged. rhizophytic. diversity.as.are,.in.general,.all.plant.aquatic.populations.described. extremely.aggressive.alien.taxa:.E..nuttallii.and.L..major,.native. the.exception.of.the.riparian.sector.delimited.by.Liperone.stream. communities,. in. other. words. by. aquatic. plants. with. well- in.the.present.investigation;.the.number.of.companion.species. of. North. America. and. Southern. Africa,. respectively.. Within. mouth.and.the.village.of.Ponte.Caffaro).is.widely.colonized.by.C.. developed.root-rhizome.systems.that.grew.within.the.superficial. does. not. exceed. five.. Among. the. most. frequent. ones,. we. the.studied.basin,.these.two.exotic.communities.are.the.most. globularis.dense.stands.(Cf).down.to.9.m.depth.(Table 8). sediments.fulfilling.the.function.of.anchorage.and.nutrient.uptake.. remember.E..nuttallii,.L..major.e.P. .perfoliatus,.all.characteristic. widespread. and. represented. in. the. elodeid. facies.. Among. Generally,. these. communities. are. placed. into. the. Potametea. species.of.order.and.class..These.communities.are.prevalently. the. companion. species,. only. M.. spicatum. and. Potamogeton. C. globularis is. the. only. constant. species. of. this. community,. class.and.the.Potametalia.order,.to.which.belong.three.different. distributed.in.the.middle.and.northern.portions.of.the.basin,.and. species.have.a.high.presence;.generally,.the.two.alien.species. while. vascular. taxa. are. few. in. number. with. rather. low. cover- alliances;.of.these,.exclusively.one.is.found.in.the.Lake.Idro:.the. are. composed. of. sparse. populations. within. the. intermediate. tend.to.form.almost.monophytic.populations..Locally,.E..nuttallii. abundance. values. (e.g.,. E. nuttallii, L. major e M. spicatum).. Potamion.pectinati.alliance..This.syntaxonomic.unit.includes.the. layer.dominated.by.elodeids,.that.cover.a.major.portion.of.the. appears.to.be.more.resistant.to.light.extinction.than.L..major;. From.6.m.to.9.m.of.depth,.relative.high-frequency.occurrences. aquatic.plant.communities.dominated.by.species.of.the.genus. euphotic.littoral.zone.of.the.Lake.Idro..In.the.southern.sector.of. as. a. consequence,. frequently,. E.. nuttallii. occurs. as. the. only. were.detected.for.the.macro-algae.C..aegagrophila.that.often. Potamogeton.and,.usually,.by.anchored.submerged.plants.(e.g., the.basin,.the.elodeid.facies.is.extremely.varied..In.particular,.we. companion.species.within.the.beds.of.C. globularis. forms. dense. mats. in. association. with. the. filamentous. algae. M. spicatum, elodeids)..The.numerical.classification.of.relevés. described.three.communities.dominated.by.species.of.the.genus. Spirogyra. sp... The. fragmented. and. sparse. populations. of. The.community.of.L..major.(Table 10; Figure 11) is.characterized,. of. Potamion. pectinati. allows. us. to. identify. six. different. plant. Potamogeton:. P. lucens, P. perfoliatus, and P. pusillus. Many C.. vulgaris,. especially. found. along. the. shoreline. between. the. instead,. by. very. high. densities. of L. major. that. reach. cover- communities.dominated.by.M. spicatum, P. lucens, P. perfoliatus, populations of P. lucens (Pl) and P. perfuliatus (Pp).are.described. locality. “Grotta”. and. the. village. of. “Tre. Capitelli”,. assume. a. abundance. values. almost. close. to. the. 100%.. Similarly. to. E. P. pusillus, E. nuttallii, and L. major,. respectively. (Table 9; with.a.compositional.structure.very.similar.to.that.of.M. spicatum not. comprehensive. expression. that. is. insufficient. to. allow. its. nuttallii,. L.. major. is. prevalently. found. between. 2. and. 6. m. of. Figure 11). from. which. differ. exclusively. in. terms. of. preferred. depths. of. phytosociological.placement. depth,.with.a.very.variable.number.of.companion.species.that. colonization.(3.-.5.m.compared.to.1.–.3.m,.respectively)..On.the. usually.display.rather.negligible.cover-abundance.values. other.hand,.the.populations.of.P. pusillus.are.mainly.restricted.to. Transect 5 5 5 6 D 9''' 9''' 9''' A 6 5 8 7 E1 D D1 9''' the.centre-north.portion.of.the.lake,.in.presence.of.very.coarse. Due. to. the. weak. diagnostic. power. of. dominant. taxa,. all. the. Depth interval 6-7 7-8 8-9 7-8 7-8 4-5 5-6 6-7 7-8 6-7 5-6 4-5 8-9 8-9 6-7 6-7 2-3 sediments. with. low. silt. and. organic. matter. content.. Normally,. communities.of.Potamion.pectinati.described.within.the.study. area. cannot. be. assigned. to. specific. plant. associations. but. Relevé area (sq m) 44444444444444444 these.communities.prefer.depths.of.about.1.-.2.m;.considering. that.the.most.recurrent.companion.species.is.E. nuttallii. referred. exclusively. to. basal. phytocoena. (Gerdol. &. Tomaselli,. Plant cover (%) 100 100 100 100 70 70 70 75 45 100 100 80 75 65 60 100 55 1993;.Sarika-Hatzinikolaou.et.al.,.2003;.Tomaselli.et.al.,.2003,. N. of species 11111111124324332 2006)...

Charetum fragilis 55554444355443333 Chara globularis

Companions Potametalia and Potametea Elodea nuttallii 2 1 1 + 1 1 2 r Myriophyllum spicatum 1 + 1 Lagarosiphon major 1 Potamogeton perfoliatus 1

Other companions + + 1 Cladophora aegagrophila Table 9> Myriophillum spicatum community (3140 Natura 2000 code; A), Potamogeton lucens community (B), Potamogeton perfoliatus community (C), and Potamogeton pusillus community (D). Table 8> Charetum fragilis (3140 Natura 2000 code).

A B C D Transect F ECC 3 3 7 5 14A F E E1 D Depth interval 2-3 3-4 2-3 3-4 3-4 3-4 2-3 4-5 4-5 0-1 1-2 1-2 1-2 A B Relevé area (sq m) 5455255554444 Transect EE B1 B1 E1 F1 B1 C1 F C C 7 3 F1 Plant cover (%) 65 80 60 75 80 65 85 90 95 65 80 85 90 Depth interval 3-4 4-5 4-5 3-4 3-4 1-2 2-3 1-2 7-8 1-2 2-3 3-4 1-2 8-9 Relevé area (sq m) 44444444444444 N. of species 4255244243454 Plant cover (%) 90 95 100 95 75 100 100 65 65 100 95 100 70 85 Myriophyllum spicatum community Myriophyllum spicatum 4 4 3 3 + + 1 1 1 1 N. of species 22334444332432 Elodea nuttallii community Potamogeton lucens community 1 + + 4 5 5 5 5 5 4 4 4 3 3 + 1 3 Potamogeton lucens Elodea nuttallii Potamogeton perfoliatus community Lagarosiphon major community Potamogeton perfoliatus + 1 4 4 5 Lagarosiphon major + 1 1 + 2 1 5 5 5 4 4 Potamogeton pusillus community Potamogeton pusillus + 3 3 4 3 Potametalia and Potametea Myriophyllum spicatum 112111+11111 Potametalia and Potametea Potamogeton pusillus + 2 1 1 Elodea nuttallii 1 2 1 + 1 1 2 1 2 Potamogeton perfoliatus 3 Lagarosiphon major + 1 + 1 + + + + + + + Fontinalis antipyretica +

Companions Companions + 1 + 1 + + + + + + + 1 1 2 Chara globularis Cladophora aegagrophila

Table 9> Myriophillum spicatum community (3140 Natura 2000 code; A), Potamogeton lucens community (B), Potamogeton perfoliatus community (C), and Potamogeton pusillus community (D). Table 10> Elodea nuttallii community (A), Lagarosiphon major community (B).

50 51 Amphibian vegetation (Littorelletea class) - In.the.upper.part.of. Natura 2000 code 3140: (Ch)..This.code.groups.oligotrophic.to. In. other. words,. the. major. part. of. the. vegetation. specialists. Ecological.assessment.of.macrophytic.communities.in.the.Lake. the.euphotic.zone.associated.with.shallow.waters.on.average. mesotrophic.calcareous.waters.of.all.zones.hosting.submerse. considers. the. plant. populations. of. the. invalid. Parvopotamion. Idro:. application. of. the. Italian. multimetric. macrophytic. index. about. 1. -. 3. m. deep,. we. collected. data. on. amphibian. plant. stonewort. communities. (Charetalia order).. The. vegetation. is. and. Magnopotamion. alliances. included. into. the. Potamion. MacroIMMI communities. dominated. by. species. of. the. Ciperaceae. family,. mostly. species-poor. and. strongly. dependent. on. the. water. one. (Goodwillie. 1992;. Bardat. et. al.. 2004;. De. Mera. &. Vicente. The. Lake. Idro. is. a. south-Alpine. basin. characterized. by:. 1). an. in.our.case.dominated.by E. acicularis..This.species.is.able.to. chemistry.and.nutrient.content.(from.oxygen-rich.substrates.to. Orellana. 2006).. Initially,. these. two. invalid. alliances. have. been. altitude.lower.than.800.m.a.s.l.,.2).a.maximum.depth.of.about. form.basic.and.sparse.submerged.perennial.stands.belonging.to. sapropel.formation,.or.saline.influence)..In.Northern.Italy.these. codified. with. the. major. objective. to. separate. the. vegetation. 124.m,.and.3).a.mean.depth.greater.than.15.m;.consequently,. the.Littorelletea.class.(Figure 12; Table 11),.a.phytosociological. communities.are.scarcely.investigated,.as.a.consequence.little. communities.dominated.by.submerged.aquatic.plants.of.deep. the.lake.could.be.considered.belonging.to.the.lacustrine.type. unit. included. in. the. Natura. 2000. Code. 3130. (such. as. plant. empirical. data. are. available. to. clarify. the. phytosociological. waters (Magnopotamion alliance).from.those.typical.of.shallow. AL-6.. Therefore,. the. MacroIMMI. is. the. macrophytic. index. communities. of. conservation. interest. sensu. EU. Habitat. placement.of.Chara-dominated.populations. environments.characterized.by.frequent.drought.events.during. requested.for.the.ecological.evaluation.of.lacustrine.macrophytic. Directive).. summer.months.(Den.Hartog.&.Segal,.1964)..Conversely,.other. vegetation.(following.Oggioni.et.al.,.2011)..Figure 13.illustrates. Natura 2000 code 3150: (Ms).. The. 3150. code. gathers. both. authors.recognize.a.typical.floristic.composition.and.a.distinctive. the. spatial. distribution. of. vegetation. transects. from. which. we. E. acicularis. is. a. very. small. species. well-adapted. to. water- natural. eutrophic. lakes. and. ponds. including. their. shoreline. ecological.character.to.these.alliances.(Murphy,.2002;.Chýtrý.&. derived.data.to.use.in.the.multimetric.index.application.while.in. submersion.but.also.with.an.intrinsic.capability.to.change.growth. vegetation. with. floating. and. submerged. aquatic. vegetation;. Tichý,.2003)..On.the.basis.of.such.considerations,.in.spite.of.the. Table 12,.we.reported.the.values.of.metrics.needed.for.the.index. form.to.survive.in.waterlogged.exposed.sediments. e.g.. with. duckweed. communities. (Lemnetea),. pondweed. uncertain.syntaxonomical.placement.of.the.elodeid.vegetations. calculation..Overall,.the.basin.is.classified.in.a.good.ecological. communities. (Potamogetonetea pectinati),. Water-soldier. Very. few. companion. species. are. detected. in. the. populations. in.terms.of.phytosociological.diagnostic.power.of.dominant.taxa,. status. (MacroIMMI. =. 0.76);. especially. because. to. the. high. (Stratiotes aloides). or. Bladderworts (Utricularia ssp.).. Up. to. monitored;. exclusively. E.. acicularis. reaches. cover-abundance. we.believe.that.enough.relevant.ecological.divergences.subsist. “frequency.of.the.submerged.plant.species”..But.if.we.consider. now,. the. correspondence. between. 3150. habitat. description. values. higher. than. 1.. The. populations. of. E. acicularis. are. among.the.different.aquatic.vegetation.macro-typologies.(free- exclusively.the.lake’s.“trophic.score”.value.(sk),.as.requested.for. and. syntaxonomical. categories. has. not. been. completely. widespread.along.the.entire.lake.shoreline.(cfr..Roberti,.2004),. floating,.submersed.or.emergent,.etc.).to.sustain.the.hypothesis. basins.with.maximum.depths.greater.than.125.m,.it.would.be. investigated.and.clarified..In.general,.there.are.several.aquatic. but. these. communities. are. not. easily. to. identify. due. to. the. to. report. exclusively. the. populations. of. Magnopotamion. and. classified.as.scarce.(0.35). plant. communities. that. cannot. be. referred. unambiguously. to. ephemeral. character. and. the. extremely. reduced. dimensions. Hydrocharition. (the. two. nominal. alliances). to. the. Nature. 2000. this. code. (e.g., Parvopotamion and Nymphaeion vegetation These. results. suggest. reconsidering. the. weight. of. the. metric. of.the.dominant.species..These.considerations.can.explain.the. 3150.code.(in.accordance.with.the.habitat.description.reported. types)..Considering.the.exceptional.conservation.value.of.these. “total.cover.of.submersed.species”.for.the.index.calculation,.for. fact. that. E. acicluaris. was. not. identified. within. the. vegetation. by.the.EUR/27.version.of.the.Interpretation.Manual.of.Habitats)... last.communities,.recently.an.integrative.habitat.list.was.drawn. example.excluding.the.contribution.of.alien.species.in.the “som” transects. set. up. for. the. lake. ecological. quality. assessment.. (named.“Lista.Mariotti”).with.the.aim.to.provide.them.an.adequate. The.evaluation.of.the.conservation.importance.of.aquatic.plant. metric. computation.. In. the. present. case,. the. exclusion. of. the. Consequently,. we. have. to. consider. this. species. as. the. most. level.of.protection.at.regional.scale.(Mariotti.&.Margiocco,.2002).. communities.of.the.Lake.Idro.has.clarified.the.high.value.of.this. contribution.of.E..nuttallii.and.L..major.from.the.calculation.of. neglected.one.in.our.study.area. lake. for. the. maintenance. of. many. habitats.. Despite. the. lake’s. som.determines.a.notable.reduction.in.the.value.of.MacroIMMI. Parvopotamion. communities. (CORINE. Biotopes. code. 22.422:. relevant. internal. nutrient. loading,. the. major. portions. of. its. from.good.to.scarce.ecological.status.(from.0.76.to.0.47),.a.result. Analysis.of.the.habitats.of.conservation.interest2. En,. Lm,. and. Pp).. Many. authors. (AA.VV.,. 2006;. Biondi. et. al.,. aquatic.vegetation.are.to.be.regarded.as.of.high.conservation. that. seems. to. be. more. consistent. with. the. current. physico- Natura.2000.code.3130:.(Ea)..This.habitat.includes.oligotrophic. 2009),.not.only.at.a.national.scale,.consider.the.Parvopotamion. interest;.as.a.consequence,.the.major.portions.of.littoral.areas. chemical.conservation.status.of.the.basin. to.mesotrophic.standing.waters.hosting.amphibious.shoreweed. communities. included. in. the. Natura. 2000. 3150. code,. even. of.the.Lake.Idro.(between.0.and.10.m.of .depth).are.colonized. communities (Littorelletea).as.well.as.-.if.waters.dry.out.in.late. though. the. correspondence. between. this. habitat. code. and. by.habitats.of.conservation.interest.(in.accordance.with.the.EU. summer.-.annual.dwarf.rush.communities.(Isoëto-Nanojuncetea).. the. corresponding. syntaxonomical. categories. is. not. clear.. Directive.Habitat.and.the.“Lista.Mariotti”). These. two. units. can. grow. together. in. close. association. or. Furthermore,.the.Parvopotamion.alliance.is.considered.currently. separately.. This. habitat. also. includes. oligotrophic,. muddy,. an. invalid. syntaxonomical. category. that. is. in. synonymy. with. ephemeral. ox-bows. and. pond. shores.. Characteristic. plant. the.Potamion.alliance.that.in.turn.includes.the.Magnopotamion. species.are.generally.ephemerophytes.and.small.(mostly.<.10. alliance,. another. invalid. category. that. is,. however,.considered. cm).plants. a. characteristic. phytosociological. unit. of. the. code. 3150..

Transect E1 9’’’ 8 8 7 metrics Vm V min V max V normal V normal Depth interval 1-2 2-3 2-3 1-2 2-3 0.35 0.30 sk 0.2 0.7 Relevé area (sq m) 0.5 0.25 0.25 0.5 0.25 som 100.00 43 72 1.97 57.49* 0.50 Plant cover (%) 80 85 90 65 70 exot 57.49 55 99 0.06 N. of species 3 3 2 3 3 S 83.36 70 90 0.67 Eleocharis acicularis com- d 10.00 munity 4 4 5 3 3 Zc-max 2 12 0.80 Eleocharis acicularis Macro 0.76 0.47 IMMI Companions Table 12> Metrics for MacroIMMI computation; Class limits of ecological quality (Vmin and Vmax) are in agreement with the DM 260/2010 (sk = trophic score; som = relative frequency Carex gracilis + r + of submerged macrophytes; exot = relative frequency of alien species; Sd = Diversity; Figure 12> Basic population of Eleocharis acicularis, associated with the Zc-max = maximum depth of growth); V normal = normalized values. Gratiola officinalis . + presence of the companion Gratiola officinalis. *value of som excluding the alien species contribution.

Ranunculus trichophyllus r + subsp. trichophyllus

Carex elata subsp. elata + Figure 13> Spatial arrangement of the vegetation transects from which were derived data to Salix alba (pl.) r use in the multimetric index application.

Table 11> Amphibian vegetation; Eleocharis acicularis community.

52 53 2 The definitions of habitats are mainly derived from the web site of BFN Federal Agency for Nature Conservation. Functional.evaluation.of.littoral.and.shore.zones.of.the.Lake.Idro littoral. and. hydro-hygrophilous. vegetations. (e.g.,. periodical. is. differentiated. by. the. irregular. presence. of. paths. and. not- these.sectors.are.characterized.by.beaches.that.are.periodically. On.the.whole,.Lake.Idro.has.26,670.m.of.shoreline.divided.into. cutting. of. riparian. belts,. installation. of. quays. or. buoys).. The. paved.sidewalks.used.as.approaches.to.the.lake.shore,.sparse. repaired. using. allochthonous. materials.. The. SFI. results. seem. 44. distinct. stretches (Table 13; Figure 14),. few. of. which. are. remnant. stretches. (21. lake. sectors. with. a. length. of. 13,180. m. residential. settlements. or. not-intensive. agricultural. areas.. sufficiently. representative. of. the. current. conservation. status. submitted.to.intense.anthropogenic.perturbations.that.resulted. equal.to.50%.of.total.shoreline.extension).display.a.very.good. Generally,. these. stretches. display. a. near-natural. condition. of.the.shorezones.of.the.basin;.although.not.negligible.critical. in.a.localized.alteration.of.the.lake.shores.and/or.beaches.. or.excellent.conservation.status.in.presence.of.natural.and.near- with. good. conservation. status. characterized. by,. in. the. main,. aspects. regarding. its. application. are. revealed.. First. of. all,. the. natural.conditions. continuous. riparian. and. littoral. vegetation. stands. and. only. “non.excellent”.evaluation.of.natural.typologies.as.cliffs.or.reefs.is. Consequently,.a.poor.SFI.value.is.exclusively.associated.to.the. sporadic.presence.of.artificial.substrates. an.essential.aspect..Generally,.the.present.method.emphasizes. 16%. of. the. total. length. of. the. shoreline. (about. 4,340. m). that. The. categories. 1. and. 2. together. represent. half. of. the.. lake all. aspects. connected. to. the. presence. and. heterogeneity. of. comprises. the. littoral. sector. of. the. lakeside. towns. and. built- perimeter.with.a.clear.predominance.of.the.“good”.conditions. The. third. category. (SFI. =. 3). includes. the. stretches. that. are. vegetation. but. overlooks. other. aspects. as. native. shorezone. up.areas,.split.into.8.distinct.stretches.with.very.low.values.of. (equal.to.the.41%)..To.the.excellent.class.belong.4.lake.sectors. characterized. by. non-negligible. levels. of. anthropogenic. typologies. that. naturally. are. scarcely. colonised. by. grasses. functionality..No.shoreline.sectors.with.a.fair.evaluation.(4,.SFI. that.include.stretches.in.natural.conditions,.not.easily.reachable. pressures;.however.in.presence.of.several.natural.attributes.as. or. other. primary. producer. community. types.. The. index. gives. value). have. been. identified;. on. the. other. hand,. 15. stretches. by. humans. if. not. by. boats.. These. sectors. are. characterized. well.as.wet.fringe.vegetations.or.littoral.ecotones,.the.expected. also. the. impression. to. overestimate. the. metabolic. activities. show. a. moderate/good. level. of. shorezone. functionality. with. by. well-developed. fringes. of. hydro-hygrophilous. vegetation,. helophytic.communities.are.frequently.replaced.by.invasive.or. of. herbaceous. plant. species. not. distinguishing,. for. example,. a. total. length. of. about. 9,150. m,. in. presence. of. slight. levels. although. in. general. the. water-terrestrial. ecotones. are. mostly. less.exigent.species..Nevertheless,.these.sectors.are.included. between.annual.or.perennial.grass.vegetation..In.addition,.the. of. human. pressure. that. resulted. into. a. moderate. alteration. of. reduced.to.a.thin.belt.of.about.5-10.m..The.second.category. into. not-intensive. agricultural. lands. and. neighbourhoods.. species. lists. of. the. manual. are. extremely. poor. and. need. an. Category. 5. includes. the. artificial. shorelines. (in. presence. of. urgent.revision.and.integration..All.these.considerations.suggest. retaining.walls,.piers,.docks,.etc.).that.are.classified.in.the.worst. the. necessity. of. revising. several. methodological. aspects. of. functional.status..This.typology.is.prevalently.found.in.the.urban. Stretch PS GF Score the.SFI.index,.even.though.our.results.highlight.how.this.index. contexts,.especially.in.the.southern.and.northern.sectors.of.the. ERID01.-.(Ponte.Neco.-.Loc..Lombard) 4 5 4.73 illustrates. rather. efficiently. the. structural. conservation. of. the. basin..Natural.vegetation.is.scarcely.represented.and.frequently. ERID02.-.(Loc..Lombard.-.Loc..Calchere) 2 3 3.15 investigated.shorelines. ERID03.-..(Loc..Calchere.–.Vantone) 1 1 1.15 ERID04.-.(Vantone.1) 2 3 3.15 ERID05.-.(Vantone.2) 2 3 3.21 ERID06.-.(Vantone.–.1st.tunnel) 4 2 2.14 ERID07.-.(two.tunnels) 1 2 2.00 ERID08.-.(2nd.tunnel) 2 2 2.14 ERID09.-.(tunnels.–.Loc..Parole) 3 1 1.15 ERID10.-.(Loc..Parole.–.Massicciata) 3 3 3.15 ERID11.-.(Massicciata) 1 3 3.21 ERID12.-.(Massicciata.–.Vesta) 3 1 1.15 ERID13.-.Vesta.(1st.sector) 1 3 3.21 ERID14.-.Vesta.(2nd.sector) 3 3 3.15 ERID15.-.Vesta.(3rd.sector) 1 5 4.73 ERID16.-.(Vesta.–.Loc..Corna.di.Faner) 2 2 2.00 ERID17.-.(Corna.di.Faner) 3 2 2.00 ERID18.-.(Corna.di.Faner.-.Pra.della.Fame) 4 1 1.15 ERID19.-.(Pra.della.Fame.-.falesie.di.Baitoni) 2 2 2.00 ERID20.-.(falesie.di.Baitoni.-.passerella.di.Baitoni) 5 2 2.00 ERID21.-.(falesia.-.porto.Baitoni) 2 2 2.00 ERID22.-.(Lido.di.Baitoni) 4 5 4.73 ERID23.-.(SIC.di.Baitoni) 4 2 2.21 ERID24.-.(SIC.di.Baitoni.-.foce.Chiese-Caffaro) 4 2 2.14 ERID25.-.(foce.Chiese-Caffaro) 2 3 3.21 ERID26.-.(Lido.Porto.Ponte.Caffaro) 4 5 4.73 ERID27.-.(Lido.Porto.di.Ponte.Caffaro.-.Loc..villaggio.S..Antonio) 5 2 2.00 ERID28.-.(Loc..villaggio.S..Antonio) 2 3 3.21 ERID29.-.(Loc..villaggio.S..Antonio.-.Loc..villaggio.Liperone) 1 2 2.00

ERID30.-.(Loc..villaggio.Liperone) 2 3 3.21 Figure 14> SFI results of Lake Idro. ERID31.–.(Loc..primo.-.Loc..villaggio.Delta.Liperone) 1 2 2.00 ERID32.-.(Loc..villaggio.Delta.Liperone.-.Rocca.d'Anfo) 2 3 2.78 ERID33.-.(Rocca.d'Anfo) 2 2 2.00 ERID34.-.(Delta.di.Anfo) 4 3 3.21 ERID35.-.(Delta.di.Anfo.-.Loc..villaggio.Tre.Capitelli) 1 2 2.00 ERID36.-.tratto.in.sponda.destra.Loc..villaggio.Tre.Capitelli 2 5 4.73 ERID37.-.(Loc..villaggio.Tre.Capitelli.-.Loc..Grotta) 3 3 2.78 ERID38.-.(Loc..Grotta) 3 5 4.73 ERID39.-.(Loc..Grotta.-.Galleria.di.fondo) 1 5 4.73 ERID40.-.(Galleria.di.fondo.-.incile.fiume.Chiese) 3 3 3.21 ERID41.-.(Ponte.di.Pieve.Vecchia.-.Loc..Coren) 1 3 2.78 ERID42.-.(Loc..Lido.Porto.di.Lemprato) 3 2 2.14 ERID43.-.(Loc..Canale.Enel) 1 5 4.73 ERID44.-.(Loc..Canale.Enel.-.Ponte.Neco) 2 2 2.00 54 55 Table 13> SFI results for the Lake Idro; PS = Personal evaluation, GF = Functional assessment (in pale gray we reported the stretches in poor conditions). Figure 15> Localization of the Hab-Plot and of the IS = Index site. The.localization.of.the.10.Hab-Plot.and.the.Index.site.for.LHS. is.characterized.by.a.considerable.level.of.hydromorphological. Biogeochemical processes in benthic and pelagic lake compartments, calculation.is.reported.in.Figure 15;.the.results.of.the.application. alteration.and.a.rather.high.level.of.habitat.diversity,.probably. of. the. LHS. to. the. Lake. Idro. are. shown. in. Figure 16.. On. the. as.an.effect.of.the.diffuse.colonization.of.macrophytes.of.littoral. biomass and potential nutrient uptake of macrophytes in the littoral zone whole,.the.lake.is.characterized.by.high.levels.of.morphological. belts.due.to.the.high.availability.of.most.nutrients.in.the.water. alteration.(expressed.by.a.low.value.of.LHMS.index,.equal.to.14). and.the.presence.of.broad.sectors.of.the.lake’s.shorelines.in.a. The. study. of. biogeochemical. processes. taking. place. in. the. Quantification. of. net. inorganic. nitrogen. fluxes. and. nitrate. and.habitat.diversity.(expressed.by.a.high.value.of.LHQA.index,. natural.condition. pelagic.and.benthic.compartments.of.lake.ecosystems.allow.to. reduction.rates.in.the.chemocline equal.to.66)..In.spite.of.the.intense.alterations.associated.with. fulfill.several.aims..First.of.all,.the.analysis.of.macrodescriptor. Net. inorganic. nitrogen. fluxes. and. nitrate. reduction. rates. The. LHS. results. seem. to. represent. in. a. correct. way. the. the.artificial.regulation.of.water.level.fluctuations,.the.Lake.Idro. profiles. within. sediments. allows. to. reconstruct. the. recent. (denitrification. and. ANAMMOX. rates). in. the. chemocline. were. status. of. alteration. of. the. lake’s. morphology. and. the. hydro- displays. a. rather. good. hydro-morphological. quality..There. are. story.of.the.basin.and.to.evaluate.the.internal.load.of.nitrogen,. quantified.on.11/4/2011,.20/6/2011,.13/9/2011.and.28/11/2011.. morphological. quality. expressed. as. habitat. complexity. level.. few.comparative.data.to.allow.a.detailed.analysis.of.the.index. phosphorus. and. silica.. The. sediment. of. lakes. represents. in. The. water. was. collected. from. 40,. 50,. 60,. and. 70. m. using. a. These. considerations. appear. similar. to. those. reported. for. the. outputs;. currently. we. can. compare. present. results. with. data. fact. an. important. reserve. of. nutrients. and. biogeochemical. Ruttner. bottle. and. immediately. dispensed. in. incubation. vials. SFI.index;.in.particular,.no.critical.aspects.are.recognized.about. relative.to.the.Lakes.Mergozzo.(ME),.Viverone.(VI),.and.Sirio.(SI). processes,.taking.place.at.the.sediment.surface,.can.contribute. (Exetainer.®.Labco)..The.water.was.carefully.transferred.in.the. methodology.although.several.descriptors.need.to.be.adapted.in. to. their. permanent. loss. or. recycling. to. the. water. column.. In. vials.using.a.tygon.tube,.in.order.to.avoid.oxygen.contamination. Comparing. our. data. with. values. from. the. LIFE+. 2008/ENV/ order.to.agree.with.the.peculiarities.of.the.Italian.lake-types.and. phosphorous. limited. environments. it. is. particularly. important. Immediately. after. filling,. the. vials. were. capped,. submerged. in. IT/000413. INHABIT. project. (kindly. provided. by. Ciampittiello. surrounding.areas.(e.g.,.in.terms.of.land.covers,.alien.species).. to. analyze. the. forms. in. which. P. accumulates. in. the. sediment. anoxic.water.collected.at.the.same.depth.and.maintained.at.the. M.,.CNR-ISE.Pallanza,.Italy).(Figure.17),.the.Lake.Idro.exhibits. Lastly,.we.consider.necessary.to.deepen.the.functional.analysis. and.their.reactivity,.as.well.as.the.availability.of.compounds.(like. same.temperature.measured.in.the.field.(about.7.5.°C).in.order.to. among.the.highest.values.for.the.LHQA.index.(66).and.the.lowest. of.the.structure.of.aquatic.vegetation.and.to.update.the.lists.of. Fe). which. can. bind. phosphorous. in. insoluble. mineral. forms.. simulate.in.situ.conditions..For.each.depth.a.total.of.12.vials.were. for. the. LHMS. index. (14);. these. results. indicate. that. the. basin. dominant.species.. Under.particular.pH.and.redox.conditions.in.fact,.the.sediment. incubated.for.oxygen.consumption,.12.for.net.inorganic.nitrogen. can. turn. into. a. significant. internal. P. source. releasing. large. fluxes.(NH +,.NO -.and.NO -),.12.for.net.N O.fluxes.and.12.for.net. amounts.of.this.nutrient.to.the.deeper.water.layers,.which.can. 4 2 3 2 dissolved.sulphide.fluxes..Net.production.or.consumption.of.the. then.reach.surface.water.masses.through.turbulent.diffusion.or. target.compound.was.calculated.as.the.slope.of.the.regression. partial. mixing,. thus. contributing. to. eutrophication.. Secondly,. line.of.the.concentration.(determined.after.24, .48.and.72.hours). quantification. of. primary. production,. respiratory. processes,. vs..time;.only.significant.slopes.were.considered. net. nutrient. fluxes. in. the. water. column. and. at. the. sediment- water.interface.allows.to.perform.mass.balances.at.the.whole. Rates.of.microbial.processes.responsible.for.the.loss.of.fixed. ecosystem.level.as.it.enables .to.estimate.the.amount.of.electron. nitrogen. were. quantified. measuring. the. production. of. 15N. 15 acceptors.consumed.by.sediments.as.well.as.the.amounts.of. labeled. N2. during. incubations. with. added. NO3. following. the. regenerated.nutrients. method.proposed.by.Jensen.et.al..(2009)..At.each.sampling.date. and. depth. 4. Exetainer. tubes. were. filled. with. water,. following. Methods the. same. procedure. previously. described,. and. added. with. 100.μL. of. stock. solutions. of. K15NO . in. order. to. achieve. final. Net. primary. production. and. respiration. rates. of. the. pelagic. 3 community concentrations.of.4,.10,.20.e.40.μM..Immediately.after.labeled. Pelagic. net. community. primary. production. and. respiration. nitrate. addition,. the. Exetainer. were. capped. and. incubated. in. rates.were.quantified.on.7/26,.8/25,.11/3.and.12/15.2010,.and. anoxic.water.collected.at.the.same.depth.and.maintained.at.the. on.4/11,.6/20,.9/13.and.11/28/2011.following.well.established. same.temperature.measured.in.the.field.(about.7.5.°C).in.order. methods.(Wetzel.&.Likens,.1990).consisting.in.the.incubation.of. to. simulate. in. situ. conditions.. After. 70. hours. the. incubations. water.parcels.under.light.and.dark.conditions.using.glass.bottles. were. terminated. adding. 100.μL. of. ZnCl2. in. order. to. stop. Figure 16> LHS Report. 14 15 15 15 suspended. at. -1. m,. -2,5. m,. -5. m,. -10. m,. -20. m. e. -30. m. (at. bacterial. activity.. The. abundance. of. N N. and. N N. in. the. dissolved.N .pool.was.determined.by.mass.spectrometry.at.the. -20.e.-30.m.only.respiration.rates.were.measured)..Water.was. 2 collected.from.each.depth.using.a.Ruttner.bottle.and.immediately. National.Environmental.Research.Agency,.Silkeborg,.Denmark.. dispensed.in.2.dark.and.2.light.bottles..In.parallel.60.ml.of.water. Denitrification. and. ANAMMOX. rates. were. quantified. following. were. immediately. fixed. (APHA,. 1998). for. initial. time. oxygen. Thamdrup.&.Dalsgaard.(2002).e.Thamdrup.et.al.,.(2006). quantification.. Once. filled,. the. bottles. were. submerged. at. the. same.depth.from.which.the.water.was.collected.and.incubated. Sedimentation.rates. for.6-7.hours..At.the.end.of.the.incubation.60.ml.of.water.were. Sedimentation. rates. were. quantified. on. several. occasions. withdrawn.from.each.bottle.and.immediately.fixed.for.oxygen. from. 11/24/2010. to. 12/19/2011. using. 6. sedimentation. traps. measurements. (APHA,. 1998).. Net. community. production. and. (PVC.tubes.80.cm.length.and.8.cm.internal.diameter).deployed. respiration. rates. were. calculated. as. difference. between. initial. at.80.m.depth.at.the.site.of.maximum.depth..The.traps.were. and.final.oxygen.concentrations.and.incubation.time.(Wetzel.&. maintained.in.situ.for.about.30.days.each.time..At.the.end.of. Likens,.1990).according.to: each.period.the.material.collected.in.the.traps.was.transferred. in.the.lab.where.it.was.weighed.for.quantification.of.sedimented. material. and. then. analyzed. for. total. nitrogen. and. phosphorus. content.quantification.

where: Cf.=.final.oxygen.concentration.(μM) Figure 17> Comparison among the results of LHS of Lake Idro and data from LIFE+ 2008/ENV/IT/000413 Ci.=.initial.oxygen.concentration.(μM) INHABIT project (with black squares we highlighted the four lakes of the AL-6 typology: ID = Lake Idro, ME = Lake Mergozzo, VI = Lake Viverone, SI = Lake Sirio). tf.–.ti.=.incubation.time.(hours)

56 57 Benthic.metabolism,.nutrient.fluxes.and.sediment.features according. to. an. isotopic. procedure. described. by. Nielsen. where.it.was.fixed.as.ZnS..The.nitrogen.flowed.for.1.hour.in.order. and.26th.October.2010,.25th.February.and.17.June.2011)..We. Sediment. samples. from. different. areas. of. the. lake. (n=4). were. (1992)..This.method.is.based.on.the.addition.of.labeled.nitrate.. to.remove.completely.the.AVS.from.the.sample,.after.which.the. sampled.all.transects.exclusively.in.2010,.for.February.2011.we. 15 - collected. with. seasonal. frequency (Figure 18).. A. total. of. 4. ( NO3 ).to.the.water.phase.of.each.core.and.on.the.measurements. trap.of.zinc.acetate.was.replaced.by.a.new.one..Then.10.ml.of. have.data.for.three.transects.(TR1,.TR3.e.TR4),.whilst.in.June.

sampling.campaigns.were.performed.in.August.and.November. of. labeled. molecular. nitrogen. produced. by. the. denitrification. 1M. CrCl2. in. 0.5M. HCl. were. added. to. the. sample. maintaining. 2011.we.collected.biomass.from.4.transects.(TR1,.TR3,.TR4.e. 2010. and. in. January. and. May. 2011.. In. these. months. surface. process..At.the.end.of.the.incubation.all.cores.were.extruded. anoxic.conditions..The.distillation.was.carried.out.for.20.minutes. TR5). Figure 20 reports.the.localization.of.sampled.transects. sediments. were. collected,. transferred. to. the. laboratory. and. and.sectioned.in.2.layers.with.thickness.2.and.3.cm..Obtained. at.room.temperature.and.for.40.minutes.at.boiling.temperature..

incubated.according.to.the.methods.detailed.below.in.order.to. sediments. were. analyzed. for. density,. porosity,. percentage. of. The.H2S,.which.is.released.at.this.stage.(after.weak.oxidation. Potential. assimilation. of. nitrogen. and. phosphorus. by. measure.solute.exchange.between.the.substrate.and.the.bottom. water.and.organic.matter. by.Cr(II)).constitutes.the.CRS.and.was.fixed.in.the.second.trap.. macrophytes water.reproducing.in.situ.conditions. The. sulphides. fixed. in. the. traps. were. spectrophotometrically. We. studied. the. potential. assimilation. of. nitrogen. and. Analysis.of.inorganic.phosphorus,.sulphur.and.iron.pools.in.the. determined.using.the.methylene.blue.method.(Cline,.1969). phosphorus.in.two.of.the.most.abundant.macrophytes.of.Lake. At.the.shallower.stations.(3.and.4).sediments.were.collected.by. monimolimnion.sediment. Idro,. Elodea. nuttallii. and. Lagarosiphon. major..Lake. water. and. hand.using.transparent.plexiglas.cores.with.an.inner.diameter.of. In. the. sediment. of. Lake. Idro,. the. iron. extractable. with. 0.5M. plants.were.collected.in.April.–.May.2011..Before.the.start.of.the. 8.cm.and.height.30.cm;.at.the.deeper.stations.(1.and.2).a.gravity. On. 8/12/2010. and. 8/9/2011. intact. sediment. cores. were. HCl.was.measured..This.pool.is.named.labile.iron.(FeL).and.is. experiments,.plants.were.maintained.in.aquaria.with.filtered.lake. corer.was.employed.together.with.4.cm.i.d..cores.with.a.height. collected.using.a.gravity.corer.from.the.point.of.maximum.depth. considered.microbiologically.reactive.by.Lovley.&.Phillips.(1987).. water.for.two.days;.water.was.filtered.on.GF/F.filters.and.kept.at. of.20.cm.(Figure 19). (Station.1,.Figure 18)..For.each.sampling,.three.40.cm.long.(8.cm. In.fact,.with.0.5M.HCl.pyrite.and.other.rather.inert.iron.minerals. i.d.).plexiglas.core.tubes.were.used..The.sediment.cores.were. are.not.extracted..The.ferric.iron.(Fe.(III)L).present.in.this.pool. 7°C.until.the.start.of.the.incubations..Apical.fragments.of.the.two. Together.with.sediment,.bottom.water.samples.were.collected. kept.cool.and.in.the.laboratory.they.were.sectioned.every.2.cm. and. reduced. with. 0.3M. hydroxylamine-HCl. is. considered. the. macrophytes.(about.1g.fresh.weight).were.separately.cultured. from.each.station.for.pre-incubation.and.incubation.procedures;. from.the.interfacial.layer.to.a.depth.of.25.cm..The.slicing.was. most.reactive.Fe(III).pool.in .the.sediment.and.can.be.reduced. in.6.flasks.filled.with .500.ml.filtered.lake.water..Nitrate.nitrogen. 50.l.were.collected.at.stations.3.and.4.while.10.l.were.collected. conducted.in.a.glove.bag.under.nitrogen.in.order.to.maintain.the. by. the. bacterial. population.. The. labile. ferrous. iron. (Fe. (II)L). uptake. was. determined. in. all. flasks. at. natural. concentrations. from. stations. 1. and. 2.. Special. care. was. taken. for. water. and. anoxic.conditions.of.the.sediment..Each.layer.was.homogenized. was. measured. after. 12. hours. extraction. with. HCl. 0.5M.. After. (40-48.μM.NO3-N),.while.three.of.the.six.flasks.were.enriched. sediment.samples.collected.from.the.maximum.depth.station,.in. and. three. aliquots. of. 1. g. were. immediately. collected. for. the. centrifugation,.the.iron.was.determined.spectrophotometrically. with. KH2PO4. to. a. final. concentration. of. 10.μM. P, . to. test. the. order.to.avoid.or.minimize.the.exposure.to.atmospheric.oxygen.. analysis.of.inorganic.sediment.pools.of.P, .Fe.and.S.in.the.more. on.the.supernatant.with.the.ferrozine.method.(Lovley.&.Phillips,. hypothesis. that. nitrate. uptake. would. be. stimulated. by. the. We.will.discuss.below.this.central.aspect.in.order.to.reproduce. significant. layers.. The. first. aliquot. was. added. to. 20. ml. of. 1M. 1987)..Total.FeL.was.determined.after.adding.hydroxylamine-HCl. availability. of. orthophosphate,. that. was. undetectable. in. lake. accurately. those. processes. occurring. in. strictly. anoxic. deep. MgCl2. for. the. analysis. of. P, . the. second. was. fixed. with. 10. ml. to.obtain.a.final.concentration.of.0.3M..After.1.hour.extraction,. sediments..Once.collected,.all.cores.were.maintained.in.the.dark. of. 20%. zinc. acetate. for. analysis. of. reduced. sulphur. and. the. the. Fe(III)L. has. been. completely. reduced. by. hydroxylamine- and.at.the.temperature.of.bottom.water.of.the.different.sampling. third.with.20.ml.of.0.5M.HCl.in.glass.vessels.with.a.screw.cap. HCl.and.the.total.FeL.was.determined.as.Fe2+.with.the.ferrozine. sites.. The. temperature. of. the. water. in. shallower. sites. varied. for.the.analysis.of.Fe..The.remaining.part.of.the.sediment.was. method.. The. Fe. (III)L. was. then. calculated. as. the. difference. considerably.in.the.different.sampling.seasons.(from.above.20°. centrifuged. for. the. analysis. of. dissolved. Fe. (Fepw),. dissolved. between. total. FeL. and. Fe(II)L.. The. concentration. of. total. Fe. C.in.summer.to.6-7°.C.in.winter).while.at.deeper.sites.bottom. inorganic. phosphate. (DIP). and. dissolved. sulfides. (DS). in. the. dissolved.in.interstitial.water.has.been.measured.using.atomic. water.temperature.variations.were.much.more.limited.(6-8°C). porewater. absorption. The.day.following.the.sampling.the.cores.were.incubated.in.the. The.sulphur.pools.analyzed.in.the.sediment.of.Lake.Idro.were. dark.in.rooms.with.controlled.temperature.in.order.to.measure. AVS. (Acid. Volatile. sulphide). and. CRS. (Chromium. Reducible. Biomass.of.macrophytes.in.the.littoral.zone oxygen,. dissolved. inorganic. carbon,. methane,. molecular. Sulphur).. AVS. includes. the. more. reduced. forms. of. sulphur,. Estimations.of.biomass.of.macrophyte.were.produced.by.scuba. 2 nitrogen,.inorganic.nitrogen,.reactive.phosphorus.and.dissolved. - 2- divers.using.a.quadrate.of.2500.cm .randomly.positioned.along. mainly. dissolved. sulphides. (DS. =. H2S. +. HS +. S ). and. iron. reactive.silica.according.to.a.standardized.method.described.in. monosulphide. (FeS).. CRS. includes. the. less. reduced. forms. five. transects..(Anfo-TR1,. Ca’. Ider-TR2,. Suss-TR3,. Lombard- detail.by.Dalsgaard.et.al..(2000)..Basically,.sediment.incubation. (pyrite.and.elemental.S).that.have.already.undergone.a.partial. TR4,. and. Rio-TR5). into. three. different. reference. depth. zones:. consists.in.the.temporal.evaluation.of.how.solute.concentrations. diagenesis..They.were.determined.on.the.same.aliquot.through. 0-3.m.(upper.layer),.4-6.m.(intermediate.layer).and.7-9.m.(deep. in.overlaying.water.vary..Such.variations.are.due.to.the.microbial. two.sequential.distillations.under.anoxic.conditions.(Fossing.&. layer). (three. replicates. per. each. depth. zone).. All. macrophytes. activity. in. the. more. reactive. surface. sediment. horizons.. In. Jorgensen,.1989)..One.gram.of.sediment.fixed.with.zinc.acetate. within.the.sampling.quadrate.were.collected,.gentle.washed.in. order.to.perform.accurate.measurements,.water.samples.were. was. placed. in. a. distiller. where. nitrogen. gas. was. flowing.. At. lake.water.to.remove.epiphytic.material.and.then.divided.into. collected.from.the.incubation.tank.and.inside.each.core.at.time. the.exit.of.the.distiller,.nitrogen.bubbled.into.a.trap.containing.. species.and.weighted.in.situ.after.a.manual .robust.centrifugation.. intervals.varying.between.3.and.8.hours.and.analyzed.for.the. 100.ml.of.2%..zinc.acetate..In.the.reactor.10.ml.of.6M.HCl.were. A.subsample.of.each.replicate.was.transferred.to.the.laboratory. above. mentioned. parameters.. After. measurements. of. benthic. then.added;.the.H2S.that.is.released.in.such.conditions.(without. and.dried.to.a.constant.weigh;.subsequently.dried.samples.were. fluxes.all.cores.were.incubated.for.denitrification.measurements. powered.and.analysed.to.determine.the.amount.of.C,.total.N,. any.oxidation).is.the.AVS..Nitrogen.carried.this.gas.into.the.trap. Figure 20> The map shows the 5 sampling sites for and.total.P. quantification of macrophytes biomass (1 = TR1; 2 = TR2; 3 = TR3; 4 = TR4; 5 = During.the.two-year.investigation,.four.seasonal.field.campaigns. TR5). were.carried.out.from.August.2010.to.June.2011.(26th.August.

Step symbol Extractant and exctraction time Main characteristics of the extracted pool

1M.MgCl .(pH=8) 1 ads-PO4 2 Reactive.P.weakly.adsorbed.on.sediment.particle.* 2h

CDB.(pH=7)** P.bound.to.particulate.Fe 2 Fe-PO4 6h It.is.redox.sensitive. pb visuel 3 Auth.Ca-PO4 1M.Acetate.buffer.(pH=4).2h P.bound.to.particulate.Ca.generated.in.the.sediment..It.is.pH.sensitive. Figure 19> Gravity corer for the simultaneous collection of 4 intact sediment cores. In the right part of the picture a core collected from station HCl.1N.(pH=1) Allocthonus.P.bound.to.particulate.Ca.of.geological.origin..It.is.practically. 4 Detr.Ca-PO4 2 is shown. It is evident the presence of a surficial horizon 3-4 16h inert.at.the.condition.reported.for.the.sediment. cm thick which is light brown and overlaying a deeper layer which is dark brown/black. Typically this suggests the presence of oxidized surface sediments, containing some oxygen, nitrate Table 14> Sequential extraction procedure and main characteristics of the extracted pool. and above all metals as FeIII and MnIV. * in this step also porewater DIP was extracted. ads-PO4 was calculated as difference. **CDB: 0.22M Sodium citrate + 0.033M Sodium dithionite + 1M Sodium bicarbonate. Figure 18> The map shows the 4 sampling sites for sediments.

58 59 water.. All. macrophyte. cultures. were. maintained. at. constant. between. 54. and. 288. mg. N. m-2. d-1. (average. 159±72). and. temperature.(18°C).and.light.(270.–.290.μE.m-2s-1).for.five.hours;. between.8.and.40.mg.P.m-2.d-1.(average.22±10).are.necessary.in. In. April. and. June,. Dtot. was. similar. at. 60. and. 70. m,. while. in. Oxygen. and. dissolved. sulphide. consumption. and. dissolved. every.30-45.minutes.10.ml.of.water.were.sampled.from.each. order.to.sustain.such.organic.carbon.production..These.values,. September. and. November. higher. values. ..were. measured. at.. inorganic.nitrogen.fluxes.measured.at.the.chemocline.confirm. flask. for. nitrate. and. phosphate. analysis.. The. experiment. was. compared. to. the. average. external. daily. loads. of. 179±88. mg. 70. m. (Figure 25).. Significant. ANAMMOX. rates. were. only. that. this. portion. of. the. lake. sustains. a. significant. metabolic. repeated. on. four. consecutive. days,. with. fresh. culture. media,. N.m-2.d-1.and.3.5±1.3.mg.P.m-2.d-1,.suggest.that.an.important. measured. in. April. and. June;. overall. rates. resulted. lower. activity.. These. results. represent. the. first. direct. measurement. to.determine.if.the.nutrient.uptake.capacity.was.saturated.after. amount.of.primary .productivity.is.sustained.by.internal.nutrient. compared.to.denitrification.rates.and.peaked.at.56.μmol.N.m-3.d-1.. of.denitrification.and.ANAMMOX.in.the.water.column.in.South. repeated.exposure.to.high.nutrient.concentrations..At.the.end. recycling. (Figure 25). of. the. Alp. lakes. and. one. of. the. few. studies. in. which. these. of.the.fourth.day,.plants.were.briefly.rinsed.with.distilled.water,. dried.at.70°C.for.48.hours.and.weighed. Net.inorganic.nitrogen.fluxes.and.nitrate.reduction.rates.in.the. Nitrogen.and.phosphorus.uptake.rates,.expressed.as.μmol.(N.or. chemocline P).g-1dw.h-1,.were.calculated.according.to.the.following.equation: Oxygen.concentration.at.the.beginning.of.the.incubations.was. always. below. 50.μM,. nevertheless. at. 60. and. 70. m. depth. a. significant. oxygen. consumption. (comprised. between. 9.2. and. 2.7. mmol. m-3. d-1). was. measured.. Oxygen. consumption. was. highest. in. April. and. decreased. progressively. in. the. following. months.. On. the. contrary. at. 40. and. 50. m. depth. a. significant. where: oxygen.consumption.was.only.measured.in.June.and.November.. C:.initial.concentration.of.NO N.or.PO P.(μM); i 3- 4- Contrarily. to. oxygen,. dissolved. sulphides. were. always. C :.final.concentration.of.NO N.or.PO P.(μM); f 3- 4- consumed. at. all. sampling. dates. at. 50,. 60. and. 70. m. depths.. V:.water.volume.(L); Sulphide.consumption.increased.from.50.to.70.m.and.ranged. B:.plant.biomass.(g.dw); between.2.to.64.mmol.m-3 -1 t:.incubation.time.(h). .d .(Figure 23). Net.fluxes.of.dissolved.inorganic.nitrogen (Figure 24) confirm.that. Results. the.chemocline.of.Lake.Idro.is.an.area.were.N.transformations. Pelagic.community.net.production.and.respiration.rates take. place. and. that. the. processes. involved. are. distributed. differently,. depending. on. depth. and. season.. Significant. net. Net. community. production. rates. (NP). ranged. between. -1.5. fluxes.of.ammonium.were.never.measured,.while.a.substantial. and. 4.6. mmol. O . m-3. h-1. while. respiration. rates. (R). of. the. 2 net.consumption.of.nitrate,.comprised.between.a.minimum.of. pelagic. community. ranged. between. -0.04. and. -3.50. mmol.. 541.μmol. m-3. d-1. and. a. maximum. of. 2167.μmol. m-3. d-1,. was. O . m-3. h-1. (Figure 21).. Highest. NP. rates. were. measured. in. 2 measured. at. 60. and. 70. m. depth.. Significant. fluxes. of. nitrites. Figure 25> Rates of total denitrification (left) and ANAMMOX total (right) measured in the chemocline of lake Idro August.2011.between.1.and.5.m.depth,.as .a.consequence.of. in the four sampling dates. were. always. measured. at. 50. meters,. and. only. in. April,. at. 70. high.temperature.and.phytoplankton.biomass..On.the.contrary. meters. with. rates. ranging. from. a. minimum. of. 10.μmol. m-3 lowest.rates.were.measured.in.December.2010.in.association. . -1 -3 -1 with.low.temperature.and.phytoplankton.biomass..Respiration. d . to. a. maximum. of. 252.μmol. m . d .. A. net. production. of. followed.a.similar.pattern;.highest.R.rates.were.measured.at.the. nitrous.oxide.was.also.measured.in.June.and.September.at.40.. -3 -1 -3 -1 end.of.August.2010.at.surface.and.in.November.2011.at.20.m. (2.8.μmol.m . d ). and. 50. meters. (19.μmol.m . d );. a. high. net. N O. production. was. only. measured. in. June. at. 60. meters.. depth. 2 (499.μmol.m-3.d-1). Overall,.the.net.community.production.integrated.over.the.first. -2 -1 Consistently. with. the. spatial. distribution. of. net. nitrate. 10.m.depth,.ranged.between.2.6.and.13.6.mmol.O2.m .h .which. 29 30 corresponds.to.a.net.production.of.organic.carbon.comprised. consumption. a. significant. production. of. N2. and. N2. was. between.300.and.1600.mg.C.m-2.d-1.assuming.a.photosynthetic. only.measured.at.60.and.70.meters..Denitrification.rates.(Dtot). ranged.between.14.and.1527.μmol.m-3.d-1.and.were.influenced. Figure 24> Net fluxes of nitrites, quotient. of. 1.2. and. a. 12. hours. light. period.. These. values. nitrous oxide and nitrates measured identified.the.lake.as.a.highly.productive.environment.(Wetzel,. by.depth.and.season..At.both.depths.denitrification.increased. in the chemocline of lake Idro in the -3 -1 four sampling dates. Only fluxes 2001).. from. April. (14. and. 115.μmol. m . d . respectively. at. 60. and.. where the slope of the regression line 70.m).to.November.(1066.and.1527.μmol.m-3.d-1.respectively.at. calculated between incubation time Assuming. a. constant. C:N:P. molar. ratio. (equal. to. 106:16:1. and concentration was statistically according. to. Redfield,. 1934). it. is. possible. to. estimate. that. 60.and.70.m). significant (p <0.05) are reported.

Figure 21> Rates of net community production (left) and respiration (right) measured at different depths in the Figure 22> Areal rates of net organic carbon production. Figure 23> Net oxygen (left) and dissolved sulphides (right) consumption rates measured in the chemocline of lake Idro in the four sampling dates. Only fluxes where the slope of the regression line mixolimnion. The dashed line represents the depth below which the net production was negative. calculated between incubation time and concentration was statistically significant (p <0.05) are reported.

60 61 processes. have. been. measured. in. the. chemocline. of. lake. At.station.1.surface.sediments.were.constantly.in.contact.with. ecosystems..Denitrification.rates.integrated.over.a.30.m.depth. anoxic. water;. in. all. sampling. periods. sediments. at. station. 1. (40. to. 70. m). ranged. between. 8.4. and. 238. mg. N. m-2. d-1. and. resulted.very.soft,.black.and.sulhide.smelling..The.thickness.of. Station Depth Density (g cm-3) Porosity (g cm-3) Water content (%) Organic matter (%) were. comparable. to. phytoplankton. assimilation. rates.. Overall. the.organic.layer.was.evaluated.to.be.at.least.25-30.cm.and.it. mean sd mean sd mean sd mean sd this. portion. of. the. lake. consumes. approximately. 0.9. ±. 0.4. presented. evident. signs. of. different. depositions.. In. particular,. tons.N.d-1.comparable.to.assimilated.nitrogen.(1.2.±.0.7.tons.. as.shown.in Figure 27,.the.presence.of.regular.bands.with.light,. 1 0-2 1.02 0.03 0.87 0.00 84.94 2.63 7.29 0.77 N.d-1)..The.two.processes.however.have.a.different.meaning.with. whitish.colour.seems.to.suggest.the.precipitation.of.carbonates,. 2-5 1.02 0.08 0.87 0.03 85.46 4.06 7.64 1.65 regard.to.the.nitrogen.balance.in.the.lake..Assimilation.is.only.a. probably. due. to. steep. and. rapid. pH. variations. in. the. water. 2 0-2 1.09 0.02 0.89 0.03 81.73 1.42 10.94 0.32 temporary.sink.for.nitrogen.as.it.is.transferred.from.the.dissolved. column..At.station.2 .and.3.the.substrate.was.muddy,.oxidized,. to. the. particulate. phase,. and. then. to. the. sediment. surface. and.with.thickness.variable.between.10.and.20.cm..At.station. 2-5 1.12 0.08 0.79 0.06 71.00 3.22 8.38 0.85 where.it.can.be.eventually.released.to.the.water.column.after. 4.the.pristine,.gravel.bottom,.was.covered.by.soft.mud.(10.cm. 3 0-2 1.16 0.04 0.81 0.01 69.72 3.09 7.15 0.55 mineralization..Denitrification.on.the.contrary.is.a.permanent.N. thick).with.a.light.brown.color..The.main.sediment.features.were. 2-5 1.23 0.02 0.75 0.02 60.80 2.89 6.44 0.59 sink.as.it.transform.reactive.N.to.N2. typical.of.sites.and.environments.with.elevated.sedimentation. rates,.showing.in.the.more.surficial.layers.density.values.very. 4 0-2 1.32 0.04 0.69 0.11 52.49 7.06 4.43 0.79 Sedimentation.rates.of.particulate.nitrogen.and.phosphorous. close.to.those.of.water.and.with.elevated.porosity.and.organic. Sedimentation. rates. were. comprised. between. 0.08. g. m-2. d-1. matter.content.(Table 15). 2-5 1.56 0.14 0.65 0.20 41.73 11.63 3.67 0.77 and.1.87.g.m-2.d-1.as.dry.matter..Highest.values.were.measured. Benthic. fluxes. of. oxygen,. methane,. molecular. nitrogen. and. Table 15> Macrodescriptors of surface sediments collected at the 4 sampling stations in the Lake Idro. in.winter.(from.11/24.to.12/19.2010).and.autumn.(08/28-10/24. dissolved.inorganic.nutrients.measured.at.the.4.stations.in.the. 2011).while.relatively.low.values.were.measured.in.spring.and. 4.seasons.are.reported.in.Figure 28..At.station.1.the.absence.of. summer..The.measured.sedimentation.rates.are.comparable.to. oxygen.determined.a.metabolism.entirely.based.on.anaerobic. those.reported.in.the.literature.in.lakes .with.a.similar.productivity. do.not.know.if.other.methane.oxidations.which.are.not.based. stimulate.the.process.of.denitrification. processes. as. denitrification,. manganese. and. iron. reduction,. (0.3. –. 6.5. g. m-2. d-1). (Bloesh,. 2004).. Phosphorous. content. in. on. oxygen. (nitrate. or. metals). are. occurring. on. the. bottom. of. sulphate. reduction. and. methanogenesis.. Oxygen. fluxes. Nitrogen.loss.as.N2.was.quite.balanced.by.nitrogen.regeneration. collected. material. comprised. between. 0.09. and. 0.30%. while. Lake.Idro..In.the.remaining.3.sampling.sites.net.exchanges.of. reported. for. station. 1. are. expressed. in. the. same. units. as. for. in. the. form. of. ammonium (Figure 28).. The. process. of. nitrogen.comprised.between.0.5.and.1.2%..Molar.N.to.P.ratios. methane.were.considerably.smaller.likely.due.to.methanotrophy. the.other.stations.but.should.be.intended.as.oxygen.equivalents. ammonification. seemed. to. have. a. strong. seasonal. regulation,. were.relatively.constant.and.ranged.between.9.and.16.8.(average. occurring. in. the. surface. sediments.. Diffusive. methane. fluxes. as.they.were.back.calculated.from.inorganic.carbon.production. depending. upon. the. temperature. of. bottom. water. and. by. 13),. close. to. ratios. measured. in. the. phytoplankton.. Overall,. were. thus. irrelevant. while,. in. particular. at. station. 3,. methane. rates..Considering.that.microbial.activity.at.115.m.depth.occurs. microbial. activity,. particularly. at. shallower. sites;. constant. and. nitrogen.and.phosphorous.deposition.followed.the.same.pattern. ebullition.was.quite.evident. at.a.temperatures.below.8°.C.and.that.respiration.rates.depend. elevated.rates.of.ammonification.characterized.on.the.contrary. of.suspended.solid.sedimentation,.with.rates.ranging.from.150. from.temperature.with.an.exponential.relationship,.we.conclude. Denitrification. rates. in. Lake. Idro. were. regulated. by. nitrate. station.1..Similar.patterns.were.evidenced.for.dissolved.reactive. to.2000.μg.P.m-2.d-1.and.from.760.to.12500.μg.N.m-2.d-1.that,.in. that. metabolic. activities. on. the. bottom. of. the. Lake. Idro. was. availability.in.the.bottom.water,.which.was.highest.at.stations.3. silica,. a. nutrient. which. is. sequestered. during. diatom. blooms,. the.investigated.year,.correspond.to.a.deposition.of.about.2.tons. extremely.elevated..At.the.deepest.station.methane.produced. and.4..Denitrification.potential.was.elevated.and.not.saturated. incorporated. in. surface. sediments. with. settling. particles. and. P.y-1.and.13.tons.N.y-1. within.sediments.was.not.(or.only.partially).re-oxidized.to.CO2. by.nitrate.in.the.bottom.water.of.stations.3.and.4.while.it.was. recycled. back. to. the. water. via. mineralization. activities.. With. as.oxygen.was.missing;.this.greenhouse.gas.thus.escaped.from. small. at. stations. 1. and. 2.. At. these. latter. sites. the. addition. of. the.only.exception.of.station.1.and.of.the.spring.and.summer. Benthic.fluxes.and.sediment.features sediments. and. diffused. to. the. water. column.. At. present. we. increasing. amounts. of. nitrate. in. the. water. column. did. not. sampling. dates. at. station. 2,. the. fluxes. of. soluble. reactive.

Figure 28> Net fluxes of dissolved oxygen, methane, Figure 26> + 3- molecular nitrogen, NH4 , PO4 and SiO2 measured at the Areal daily sedimentation rates of particulate nitrogen (PN) sediment-water interface. Negative fluxes as those of oxygen, and particulate phosphorous (PP). indicate a net consumption by sediments while positive fluxes indicate a net release from the sediment.

Figure 27> Example of intact sediment cores collected from the deepest station 1. Sediment density resulted slightly above that of water which suggested elevated sedimentation rates. This core was extruded in the laboratory, sectioned in disks with thickness 1 cm and analysed for organic matter content. As it can be appreciated from the colors of the different bands as well as from the values of organic matter content, the vertical profile of sediments is complex, likely due to a) the sedimentation of particles with different mixture of organic and inorganic matter or b) different mineralization velocity of the horizons adjacent to the bottom water.

62 63 phosphorus.were.generally.low.suggesting.an.elevated.retention. as.CRS..The.first.5.cm.of.sediment.is.therefore.a.zone.of.relatively. of.FeS. about.10%.of.the.inorganic.sedimentary.P.pools..This.could.be. potential.for.this.ion.by.most.sediments.in.shallower.areas.of. intense.sulfate.reducing.activity.that.leads.to.the.accumulation.of. due.to.the.strong.reducing.conditions.of.the.sediment.causing. The. molar. ratio. between. AVS. and. Fe. (II)L. represents. a. raw. the. lake.. Deep. sediments,. due. to. very. reducing. conditions,. DS.in.pore.water.up.to.50.μM.and.peaks.of.AVS.and.CRS.of.18.and.. the.release.of.P.from.the.redox-sensitive.pools.as.Fe-PO4..The. estimation.of.the.residual.capacity.of.the.sediment.to.precipitate. constantly. regenerated. soluble. reactive. phosphorus. to. the. 45.μmol. g-1. of. wet. sediment. respectively.. In. the. lower. layers. more.abundant.reactive.pool.is.the.authigenic.P.bound.to.Ca. the.DS.produced.by.sulfate.reducing.bacteria..The.Fe(II)L.in.fact. water.column..It’s.very.likely,.but.still.to.be.demonstrated,.that. diagenesis.processes.lead.to.the.accumulation.of.high.amounts.of. (Auth.Ca-PO4).that.include.all.the.P.bound.to.Ca.generated.in. includes.FeS.which.constitutes.almost.all.of.the.AVS..The.part. the. speed. of. phosphorus. regeneration. at. station. 1. equaled. CRS.(up.to.80.μmol.g-1).which.represent.the.more.stable.reduced. the.sediment.and.represents.30%.of.P. .This.pool.is.sensitive.to. of.Fe(II)L.which.exceeds.AVS.should.be.sufficiently.reactive.to. the. rate. of. anaerobic. mineralization. of. organic. phosphorus.. form.of.sulphur.even.if.partially.oxidized pH.changes. precipitate.DS.but.with.complex.dynamics.as.evidenced.by.the. Seasonal. variation. of. mineralization. rates. should. thus. reflect. The. values. of. AVS. concentrations. measured. in. the. sulphidic. presence. of. DS. in. the. porewater.. Based. on. this. relationship. In.conclusion,.the.sediment.of.Lake.Idro.is.particularly.reduced.and. seasonal.variation.of.settling.particles.from.the.water.column,.in. sediment.of.Lake.Idro.are.really.high.for.a.freshwater.environment,. and. the. ones. above. mentioned,. the. sediment. of. the. lake. can. sulfidic.with.a.limited.capacity.to.retain.the.sulphides.produced.. turn.depending.upon.phytoplankton.blooms.or.loads.of.particles. ranging. from. 1.8. to. 27.2.μmol. g-1.. Considering. that. the. average. be.separated.into.two.horizons (Figure 30)..A.surficial.horizon,. The.production.of.these.compounds.appears.to.be.somewhat. from.the.inlets.. density. of. the. sediment. of. the. lake. is. about. 1.02. g. ml-1,. the. which.extends.to.about.6cm.depth,.where.the.sulfide.production. limited.by.the.low.availability.of.sulfates.but.concentrations.are. concentrations.of.AVS.are.of.the.same.order.of.magnitude.of.those. Phosphorus,. sulphur. and. iron. pools. in. the. sediment. of. the. is.high.and.the.buffer.mechanisms.as.the.DS.precipitation.by.Fe. high..Most.of.the.inorganic.P.has.allochthonous.origin.and.is.not. measured.in.a.number.of.European.lagoons.where.the.high.sulfate. monimolimnion are.potentially.active..Another.horizon.extending.from.6.cm.to. available.for.the.biological.community..The.reducing.conditions. concentration. should. make. the. sulfate. reduction. process. more. The.sediment.collected.at.the.station.of.maximum.depth.of.Lake. at.least.10.cm.depth.where.the.diagenesis.processes.transform. prevent.the.accumulation.of.P.bound.Fe.and.inhibit .the.potential. effective.(Table 16). Idro. was. particularly. sulfidic. with. high. concentrations. of. all. the. FeS.to.more.oxidized.and.stable.compounds.such.as.pyrite.and. removal.of.P.from.the.water.column..Most.of.the.mobilizable.P. The.concentrations.of.dissolved.Fe.in.the.porewater.were.below. measured. reduced. sulphur. pools. (Figure. 29).. Bottom. water. had. elemental.S. is.linked.to.Ca.and.is.sensitive.to.pH.changes. the.detection.limit.of.the.method.(AA)..The.presence.of.DS.in.fact. also.high.concentrations.of.DS.with.values.of.about.100.μM.which. would.indicate.that.all.the.dissolved.Fe.is.precipitated.in.the.form. The. DIP. concentration. in. the. porewater. is. fairly. constant. are.fairly.constant.in.all.seasons.(see.also.chapter.2). Biomass.of.macrophytes.in.the.littoral.zone of. insoluble. sulphides. such. as. FeS.. DS. would. also. indicate. the. throughout. the. entire. sediment. column. except. for. the. Lower.DS.concentrations.were.measured.in.the.sediment.pore.water. Overall,. the. macrophytes. biomass. (fresh. weigh). reached. a. presence. of. strong. reducing. conditions. that. would. explain. the. first. centimeter. where. it. is. slightly. lower. (Figure 50).. The. indicating.a.certain.capacity.of.the.sediment.to.remove.part.of.the. summer. mean. (August. 2010). of. 5422. ±. 1477. g. m-2. in. the. complete.absence.of.microbiologically.reducible.Fe(III)L.that.under. concentrations.are.averagely.higher.than.those.observed.in.the. sulphides.produced.by.sulfate.reducing.bacteria.and/or.that.sulfate. upper. depth. zone. analyzed,. a. value. of. 5355. ±. 1829. g. m-2. in. these.conditions.can.be.easily.reduced.to.Fe(II)L..Thus.the.latter. water.column.and.this.makes.the.sediment.a.potential.source. reduction.activity.maybe.partially.inhibited.by.low.sulfate.availability.. the. intermediate. layer. and. 3596. ±. 763. g. m-2. in. the. deepest. fraction. represents. the. entire. pool. of. labile. iron. and. is. shown. in. of. P. for. the. water. column.. The. profiles. of. the. sedimentary. P. Most. of. the. reduced. sulphur. in. the. sediment. is. still. present. in. one. (Figure. 31.).. In. all. the. other. sampling. campaigns,. mean. Figure 30..The.availability.of.reduced.labile.Fe.is.fairly.uniform.along. pools.are.shown.in Figure 47.and.as.for.the.DIP,.there.are.no. particulate.form.as.DS.represent.only.a.fraction.lower.than.0.5%.of. values.were.constantly.lower.with.minimum.values.measured.in. the.sediment.column.with.a.peak.at.2-4.cm.depth.which.overlaps. pronounced.differences.between.the.layers.apart.from.the.top. AVS.which.then.consists.almost.exclusively.of.iron.monosulphide. October.2010.(2129.±.341.g.m-2.in.the.upper.layer),.in.June.2011. the.peak.of.AVS.and.therefore.might.be.related.to.an.accumulation. cm.of.sediment..The.latter.has.the.lowest.average.concentrations. (FeS)..The.AVS.shows.a.concentration.peak.at.a.depth.of.4.cm.as.well. (1766.±.516.g.m-2.in.the.intermediate.layer).and.in.February.2011. that.suggest.an.higher.P.mobility.from.the.sedimentary.pools. (444.±.282.g.m-2.in.the.deep.zone).. and.a.continuous.exchange.with.the.water.mass..The.largest.P. pool.is.represented.by.the.detrital.P.bound.to.Ca.(Detr.Ca-PO4),. These. results. are. in. agreement. with. the. expected. winter. which.represents.more.than .55%.of.the.inorganic.sedimentary. dormancy. period. followed. by. a. gradual. macrophyte. biomass. P.pool.(Figure.48)..This.pool.has.low.reactivity.and.represents. increase. during. the. growing. season.. On. the. other. hand. a. the. fraction. of. geological. origin,. which. was. conveyed. by. the. specific.trend.was.observed.in.each.of.the.tree.sectors.analyzed. rivers. without. specific. modifications.. This. should. ensure. its. probably. as. a. consequence. of. differences. in. growth. forms. stability.and.therefore.should.not.be.mobilizable.at.the.observed. among. the. dominant. macrophytes.. In. addition,. the. biomass. conditions. of. the. sediment.. The. concentrations. of. the. more. of. macrophytes. exhibited. a. great. variability. during. the. entire. reactive. pools. (ads-PO4. and. Fe-PO4). are. low. and. represent. investigation. period. both. for. the. upper. and. the. intermediate.

Figure 29> Concentration of dissolved sulphide (above) and reduced sulphur pools (below) in surface sediment of Lake Idro.

AVS min max Sacca.di.Goro.Lagoon 0.6 83.2 Figure 30> Concentration of reduced labile iron pool (above) and molar ratio of AVS: Fe (II) L Arcachon.Bay 1.5 6.9 (below) in surface sediment of Lake Idro. Certes 15.5 49.4 Valle.Smarlacca 6.3 13.4 Etang.du.Prevost 15 32.3 S'ena.arrubia 4.5 24.6

Valli.di.Comacchio 4.7 15.7 Figure 31> Box-plot comparing the average biomass of macrophytes during 1-year seasonal monitoring survey; mean values (± St. dev); the dotted line Table 15> Macrodescriptors of surface sediments collected at the 4 sampling stations in the Lake Idro. represents the mean.

64 65 layers. only.during.the.third.and.fourth.incubations..Hourly.uptake.rates. result.can.be.explained.both.by.a.strong.initial.phosphorus.deficit. different.uptake.patterns.for.the.two.nutrients.is.probably.do.to. On. all. the. sampling. dates,. the. spatial. analysis. of. biomass. were. therefore. calculated. only. for. time. intervals. of. significant. in.plant.tissues.and.the.capacity.of.«luxury.uptake”.(uptake.and. their.different.availability.in.the.lake..Since.inorganic.phosphorus. highlighted. huge. differences. among. transects;. differences. nitrate. decrease,. and. not. over. the. entire. incubation. periods. storage.in.excess.of.immediate.growth.needs)..Luxury.uptake. is. rapidly. recycled. by. biogeochemical. processes. occurring. in. that.mirrored.the.extreme.heterogeneity.in.substrate.structure.. as. for. phosphorus.. Nitrate. uptake. rates. (Table 17). increased. of.phosphorus.has.been.shown.in.a.few.studies.of.E..nuttallii. the.system,.low.SRP.concentrations.do.not.necessarily.indicate. Local.features.as.grain.size,.particle-size.distributions,.carbon. with. time. up. to. about. 5.μmol. N. g-1. dw. h-1. on. the. fourth. day;. (Angelstein. and. Schubert. 2008,. James. et. al.. 2006,. Nagasaka. phosphorus. unavailability;. however,. median. concentrations. of.. content. or. slope. affected. the. substrate. receptivity. and. the. no. significant. differences. were. observed. in. cultures. with. and. 2004,. Thiébaut. 2005),. but. to. our. knowledge. only. James. et. al. 3.μg.l-1 (Table 5).hint.at.possible.phosphorus.limitation.of.primary. spatial.distribution.of.aquatic.plants.and.macro-algae..For.more. without.phosphorus.addition. (2006). found. a. similar. capacity. in. L.. major..Both. explanations. producers. information.see.chapter.4. are. consistent. with. the. existence. of. seasonal. phosphorus. Experiments.with.L..major.showed.similar.trends.of.uptake.rates. Stoichiometric. ratios. of. nitrate. and. phosphorus. uptake. also. limitation.of.primary.production.in.Lake.Idro,.since.luxury.uptake. but.lower.values.than.those.observed.for.E..nuttallii,.particularly. suggest. phosphorus. limitation,. particularly. in. L.. major:. while. Potential. assimilation. of. nitrogen. and. phosphorus. by. is.usually.observed.in.environments.with.inconstant.phosphorus. for. nitrate.. In. all. experiments. phosphorus. concentration. initial.molar.N:P.in.the.water.was.about.4:1.in.all.incubations,. macrophytes availability. constantly.decreased.over.the.5-hour.incubations,.with.uptake. average. molar. N:P. of. uptake. rates. was. 3.1. (2.8. s.d.). in. E.. In. all. experiments. with. E.. nuttallii. phosphorus. concentration. rates.diminishing.from.the.first.to.the.last.day.(Table 18)..Nitrate. The. uptake. of. nitrate,. on. the. contrary,. was. more. variable. nuttallii.and.1.4.(0.8.s.d.).in.L..major,.again.indicating.a.selective. constantly.decreased.over.the.5-hour.incubations..In.Figure 32 uptake. was. negligible. on. the. first. day. but. rates. gradually. and. fluctuating. in. time. than. that. of. phosphorus,. indicating. phosphorus.uptake.. we.report.an.example.of.E..nuttallii.culture.that.shows.the.linear. increased. in. the. subsequent. incubations,. although. with. great. that.neither E. nuttallii nor.L. major.were.nitrogen.limited..The. decrease.of.phosphorus.over.time..This.linear.relationship.was. variability;.no.significant.differences.were.observed.in.cultures. observed.in.all.four.consecutive.experiments,.but.with.decreasing. with.and.without.phosphorus.addition. slopes..Therefore,.phosphorus.uptake.rates,.reported.in.Table. 17,. decrease. from. 1.35.μmol. P. g-1. dw. h-1. on. the. first. day. to. The. results. of. the. uptake. experiments. indicate. that,. at. least. Quantitative models (network analysis) 0.83.μmol.P.g-1.dw.h-1.on.the.fourth.day..On.the.contrary,.nitrate. in. spring,. phosphorus. is. probably. a. limiting. nutrient. for. both. uptake.in.E..nuttallii.was.more.variable.than.that.of.phosphorus,. E..nuttallii.and.L..major..The.continuous,.although.decreasing,. Objectives Methods with.frequent.net.efflux.periods.on.the.first.two.days.(example.in. phosphorus. uptake. over. 4-day. periods. demonstrates. that. Ecosystem. analysis. has. always. occupied. a. prominent. place. Seasonal.and.yearly.models Figure 32)..Nitrate.concentrations.showed.a.constant.decrease. uptake.and.assimilation.capacities.were.not.yet.saturated..This. among.the.topics.of.ecological.investigations..However,.in.the. Defining.system.boundaries.was.the.first.step.to.be.completed. last.twenty.years,.these.types.of.studies.have.received.further. for. network. construction.. This. was. necessary. to. distinguish. momentum.because.scientists.and.policy.makers.have.become. clearly. what. is. part. of. the. ecosystem. from. what. is. not.. As. N uptake (µmol g dw-1 h-1) aware. that. for. the. conservation. and. management. of. natural. for. boundaries. the. lake. has. been. considered. as. a. unique. P uptake (µmol g dw-1 h-1) + P - P resources.processes.must.be.understood.at.the.whole.system. system,. so. that. the. pelagic. and. the. littoral. environment. were. mean sd mean sd mean sd scale. (De. Angelis. et. al.,. 1998).. The. fate. of. single. species,. in. included. in. a. unique. system.. The. two. parts. interact. tightly. fact,. strongly. depends. on. the. interactions. that. each. of. them. through.nutrient.exchange.at.the.water-sediment.interface.and. Day 1 1.35 0.18 1.86 0.46 3.67 0.68 establishes. with. other. species. and. with. the. components. of. primary.production..The.pelagic.environment.has.been.entirely. Day 2 0.99 0.18 - - - - the. abiotic. environment.. In. this. interplay. lies. the. very. nature. confined.within.the.so.called.mixolimnion,.which.extends.from. Day 3 0.93 0.08 3.94 0.51 4.30 1.83 of. ecosystem. dynamics. as. it. can. be. observed. in. nature. and. the.lake.surface.to.a.depth.equal.to.approximately.40.m..The. Day 4 0.70 0.07 5.24 1.04 5.67 1.63 the. interactions. among. living. groups. and. non. living. variables. monimolimnion.has.been.included.as.a.separate.compartment. have. been. investigated. through. the. analysis. of. matter. and. and. the. network. approach. considers. as. a. black. box. all. the. Table 17> Elodea nuttallii: phosphorus (P) uptake rates and nitrate nitrogen (N) uptake rates in cultures with and without P. Average and standard deviation of three replicates are shown. energy.flows.(Szyrmer.&.Ulanowicz,.1987)..In.the.last.decades. processes.that.characterize.this.part.of.the.lake.. investigations.at.the.ecosystem.scale.have.increased.noticeably. Before.proceeding.to.define.the.compartments.and.the.fluxes. N uptake (µmol g dw-1 h-1) (Baird. &. Ulanowicz. 1989,. Ulanowicz. &. Tuttle. 1992,. Baird. &. that.connect.them.the.currency.had.to.be.defined..In.this.case. P uptake (µmol g dw-1 h-1) + P - P Ulanowicz.1993,.Christian.et.al..1996,.Baird.et.al..2009).and.this. two.currencies.have.been.selected:.nitrogen.and.phosphorus.. highlights.the.favor.encountered.by.this.approach.in.the.scientific. Standing. stocks. for. the. compartments. were. quantified. mean sd mean sd mean sd community..Ecosystem.investigation.has.gr eatly.contributed.to. as. milligrams. (mg). per. m3. while. flows. were. estimated. as.. Day 1 1.07 0.12 0.12 0.16 0.39 0.03 the.advancement.of.ecology.as.a.rigorous.science.by.clarifying,. mg.m-3.year.-1.of.nitrogen.and.phosphorus..Finally,.variables.or. Day 2 0.52 0.13 0.82 0.52 1.02 0.28 for.example,.the.concept.of.limiting.factor.in.complex.systems. components.have.been.identified.in.the.species.or.trophospecies. Day 3 0.42 0.09 0.87 0.49 1.41 0.36 (Ulanowicz. &. Abarca‐Arenas. 1997,. Ulanowicz. &. Baird. 1999). (that. is. ensemble. of. species. sharing. same. prey. and. same. Day 4 0.41 0.07 0.93 0.20 1.33 0.41 and. contributing. to. elucidate. certain. issues..that. are. crucial. predators).populating.the.ecosystem.plus.non.living.components. for. basic. ecology. such. as. the. concepts. of. ecosystem. health,. that. are. the. pools. of. the. different. forms. of. phosphorus. and. Table 18> Lagarosiphon major: phosphorus (P) uptake rates and nitrate nitrogen (N) uptake rates in cultures with and without P. Average and standard sustainability,.nutrient.cycle.(Ulanowicz.1991,.1995)..From.the. nitrogen..An.overall.number.of.13.compartments.characterized. deviation of three replicates are shown network. approach. a. rigorous. coherent. theory. of. eco-system. the.structure.of.the.ecological.flow.networks.conceived.for.lake. growth.and.development.has.been.derived..(Ulanowicz,.1986;. Idro..A.finer.level.of.resolution.could.be.obtained.for.nitrogen,. 1997),. which. in. turn. has. offered. the. opportunity. to. build. a. but.to.make.possible.the.comparison.between.the.two.networks. systemic.environmental.monitoring.and.indicators.for.ecosystem. it.was.decided.to.keep.the.same.number.of.compartments..The. health.and.integrity..(Bondavalli.et.al..2005).. list.of.the.compartments.accompanied.by.a.detailed.explanation. For.Lake.Idro.network.models.have.been.constructed.to.explore. is.given.in.Table 21.. the.pathways.followed.by.nutrients.and.their.distribution.between. Four. different. types. of. flows. characterize. network. topology:. inorganic. substances,. producers. and. consumers.. Network. they. must. be. all. quantified. to. have. a. complete. and. detailed. models.have.been.developed.also.to.study.how.this.ecosystem. description.of.the.ecosystem..The.four.typologies.of.flows.are: works. and. its. possible. responses. to. management. strategies. 1...exchange.flows.from.component.i.to.j.(.i.and.j.are.used.here.as.

such.as.variations.imposed.to.the.nutrient.external.loading..To. general.identification.keys).that.are.indicated.as.Ti,.j.; apply.the.network.approach.it.is.of.primary.importance.that.one. 2...input.from.the.outside.environment.to.generic.compartment.

identifies. and. quantifies. all. flows. which. determine. the. fate. of. i,.called.T0,.i.; matter.and.energy.once.it.has.entered.an.ecosystem. 3...output.of. matter. that. is. exported. from. compartment. i. as.

utilizable.medium:.Ti,.n+1.;

Figure 32> Uptake experiment with E. nuttallii. Example of temporal trends of soluble reactive phosphorus (SRP, left panel) and nitrate nitrogen 4...dissipative.flow.from.node.i.to.the.external.environment.:.Ti,.n+2. (right panel) concentrations in one of the cultures with P addition during four consecutive daily incubations. All regression lines shown are highly significant (P < 0.01).

66 67 Keys. 0,. n+1,. n+2,. all. identify. the. external. environment. in. the. Following. flow. identification,. estimation. of. compartment. October.15...The.“winter”.network.describe.the.system.in.the. analysis. traces. the. dependency. of. each. compartment. on. all. three. different. functions. it. performs. with. respect. to. medium. standing.stocks.was.done.and.the.magnitude.of.all.flows.was. period.October.15.-.February.15.and.the.“spring”.network.goes. the. others.. In. other. words. it. calculates. which. fraction. of. the. circulation:. source. of. flows,. receiver. of. currency. that. is. still. calculated. from.February.15.to.June.15..Six.seasonal.networks.have.been. currency. that. enters. a. given. compartment. once. resided. in. a. usable,. and. sink. of. dissipated. medium,. respectively.. The. investigated.that.converged.in.yearly.network.for.each.currency.. another.specific.component.of.the.system..This.is.done.using. Three. seasonal. networks. for. each. currency. (nitrogen. and. simplest.example.of.a.network.is.given.in Figure 50.. the. matrix. of. partial. feeding. coefficients. [G]. whose. elements. phosphorus). were. built.. The. first. seasonal. network,. called. Data.used.to.estimate.standing.stocks.and.exchange.flows.were. gij. represent. the. fraction. of. medium. that. enters. compartment. The.whole.network.of.the.lake.ecosystem.is.given.in Figure 34 “summer”. summarizes. flow. exchanges. due. to. ecological. collected.during.the.sampling.activity.conducted.since.2010.in. j.and.that.comes.directly.from.compartment.i..Calculating.the. while.Table 20.reports.all.flows.that.characterize.the.network.. processes. that. affect. the. lake. in. the. period. June. 15. to.. Lake.Idro.(see.chapters.2,.3.and.4)..Additional.information.was. successive.powers.of.this.matrix.(i.e..[G]2.[G]3.[G]4.[G]5.…).one. gathered.from.literature..In.particular.supporting.information.from. gets.the.fraction.of.medium.entering.j.from.i.using.two.([G]2),.. papers.and.reports.was.necessary.to.describe.fish.populations. three.([G]3),.four.([G]4).trophic.steps.and.so.forth..The.sum.of. due.to.the.fact.that..sampling.activity.on.this.components.could. these. matrices. converge. to. the. so. called. «Total. Dependency. not. be. performed. as. not. specifically. required. by. the. project.. Matrix». (Szymer. &. Ulanowicz,. 1987). where. each. coefficient. visuel basse déf. As. for. plankton. community. metabolic. parameters. needed. to. estimates. all. the. matter. that. enters. the. column. compartment. estimate.standing.stocks.and.flows.in.the.appropriate.units.were. from.the.row.compartment.but.using.all.the.pathways.of.different. taken.from.literature..Table 20.specifies.the.references.used.in. length..Adding.up.the.column.values.along.each.column.often. support.of.filed.data. the.total.exceeds.100%..This.happens.because.adding.up.the. Mass. balance. was. often. used. for. flow. estimations. as. any. contribution.of.different.pathways.imposes.double.counting:.the. compartment.as.well.as.the.whole.network.is.assumed.to.be.at. matter.that.flows.from.one.component.to.another.was.already. steady.state.as.required.by.network.analysis.(NA)..Standing.stocks. counted. in. estimates. of. what. the. former. received. from. other. Figure 33> The simplest form of a network with all types of flow. for.phytoplankton.(1),.macrophytes.(2),.rotifers.(3),.cladocerans. components.. The. dependency. matrix. allows. to. understand. (4),. herbivorous. copepods. (5),. predaceous. copepods. (6),. the. importance. of. the. different. compartments. in. sustaining. N° Name Description particulate.matter..(10),.organic.nitrogen.and.phosphorus.(11). the.metabolism.of.any.other.component..Also.it.shows.that.in. 1 Phytoplankton.(FIT) Includes.all.phytoplankton.species.identified.in.the.lake. inorganic.nitrogen.and.phosphorus.(12).dissolved.material.were. case.of.multiple.pathways.direct.effects.(those.that.are.readily. 2 Macrophytes.(MAC) Includes.all.the.macrophyte.species.surveyed.in.the.lake. obtained.from.sampling.data..Biomass.of.fish.populations.was. understandable.because.they.are.associated.to.direct.physical. estimated. using. the. fishery. map. provided. by. the. Province. of. interactions). may. well. be. offset. by. indirect. ones,. those. that. 3 Rotifers.(ROT) All.species.of.rotifers.are.included.here..Species.identified.(see.the.main.text).in. the.lake.are.composed.by.herbivorous.organisms. Brescia.. come.out.from.the.presence.of.multiple.pathways.between.any. two.components..Thus.network.analysis.help.understanding.the. For.compartment.SEDIMENT.(9).and.MONIMOLIMNION.(13).we. 4 Cladocerans.are.large.filter.feeders.with.an.herbivorous.diet..Predatory.cladoce- real.way.the.components.interact.in.an.ecosystem.. Cladocerans.(CLA) rans.have.not.been.considered.given.the.extremely.small.populations. made.no.estimation.of.standing.stocks.as.they.are.irrelevant.for. NA.modelling.. The. contribution. matrix. [F]. establishes. how. much. a. row. compartment.contributes.to.satisfy.the.need.of.currency.of.the. Herbivorous.. Here.Nauplii.and.first.life.stages.of.copepods,.notoriously.herbivorous,.are. The. assumption. of. compartments. at. steady. state. is. seldom. 5 included..Species.they.belong.to.are.mainly.Mesocyclops.leuckarti.and.Cyclops. column. compartment;. that. is. it. quantifies. how. much. output. copepods.(COER) verified..The.residual.unbalance.after.adjustments.made.during. gr..abyssorum. from.the.former.enters.the.latter..Using.the.[F].matrix.one.can. flow. estimations. has. been. corrected. using. the. software. NET. carry.out.the.input.analysis,.which.consists.in.discovering.the. BALANCE.(Allesina.&.Bondavalli,.2003)..This.yielded.a.steady. This.compartment.includes.the.last.development.stages.of.Copepods.that.are. fate.of.a.unit.of.input.to.a.certain.compartment.once.it.exists. 6 Predaceous.. characterized.by.a.predatory.behavior:.they.belong.to.the.species.Mesocyclops. state.configuration.for.all.the.networks. copepods.(COPR) leuckarti.and.Cyclops.gr..abyssorum. such.compartment.and.disperses.in.the.network.according.to. Software. WAND. (Allesina. &. Bondavalli,. 2003). has. been. used. the. topology. and. the. magnitude. of. flows.. In. this. analysis. the. to. analyze. every. single. network. that. was. built.. The. software. All.species.of.omnivorous.fish.that.are.commonly.found.in.lake.Idro:.Alburnus. main. network. is. decomposed. in. sub. networks. that. represent. 7 Omnivirous.fish.(PEON) alburnus,.Carassius.carassius, Cyprinus.carpio,.Leuciscus.cephalus,.Scardinius. requires.input.data.in.an.Excel.matrix.and.performs.the.different. the.set.of.compartments.that.benefit.from.the.currency.carried. erythrophtalmus,.Tinca.tinca,.Rutilus.erythrophtalmus.(Carta.Ittica,.2004). algorithms. that. compose. the. Network. Analysis:. input-output. by.that.single.input.. analysis,. and. calculation. of. system. level. indices.. Input-output. All.species.of.predatory.fish.that.are.common.in.the.lake:.Anguilla.anguilla,. 8 Carnivorous.fish.(PECA) Barbus.plebejus,.Lota.lota,.Coregonus.lavaretus,.Esox.lucius,.Perca.fluviatilis,. Lepomis.gibbosus,.Ictalurus.melas,.Salmo.trutta.(Carta.Ittica,.2004).

9 Sediment.(SED) Includes.all.forms.of.nitrogen.and.phosphorus.that.are.trapped.in.the.sediment. and.that.part.which.is.contained.in.benthic.organisms.

10 Particulate.nitrogen.(PN) Includes.nitrogen.and.phosphorus.as.particles.(seston).produced.by.excretion. Particulate.phosphorus.(PP) and.decomposition.of.organisms.

Dissolved.organic.. nitrogen.(DON) 11 All.forms.of.dissolved.organic.nitrogen.and.phosphorus. Dissolved.organic.. phosphorus.(DOP)

Dissolved.inorganic.. nitrogen.(DIN) 12 This.compartment.includes.all.forms.of.dissolved.inorganic.nitrogen.. Dissolved.inorganic.. and.phosphorus phosphorus.(SRP)

All.the.phosphorus.forms.that.are.present.in.the.monimolimnion,.the.deeper.. layer.of.waters.that.because.of.the.permanent.stratification.of.the.lake.never.. 13 Monimolimnion.(LML) gets.in.contact.with.the.air..Because..this.part.of.the.lake.seems.important.as.. a.reserve.of.nutrients.we.included.it.as.a.separate.compartment.instead.of.. distributing.its.content.among.the.various.forms.of.phosphorus.

Table 19> List of the compartments and their description for the network model of lake idro. Figure 34> Qualitative network for Lake Idro.

68 69 Flux From To Description Source Flux From To Description Source

T0, 1 INPUT PHYTOPLANKTON Input.from.tributaries Sampling.activity Excretion,.decomposition,. Mass.balance:..1/4.loss.from. T MACROPHYTES PARTICULATE.MATTER 2, 10 fragmentation MACROPHYTES. T0, 8 INPUT CARNIVOROUS.FISH Reintroduction.of.individuals Gentili.(personal.communication) T INPUT PARTICULATE.MATTER Input.from.tributaries Sampling..activity Net.flow:.positive.from.DON.(DOP). 0, 10 T MACROPHYTES DON-DOP Release.by.Macrophytes. 2, 11 to.MACROPHYTES. T0, 11 INPUT DON-DOP Input.from.tributaries Sampling..activity Net.flow:.positive.from.DIN.(SRP).. T INPUT DIN-SRP Input.from.tributaries Sampling..activity T MACROPHYTES DIN-SRP Release.by.Macrophytes 0, 12 2, 12 to.MACROPHYTES.

T1, 0 PHYTOPLANKTON OUTPUT Output.to..tributaries Sampling..activity T2, 13 MACROPHYTES LML Sedimentation.rate Mass.balance:.1/4.loss.from.MACROPHYTES T7, 0 OMNIVOROUS.FISH OUTPUT Yearly.catch Fishery.map T3, 6 ROTIFERS PREDACEOUS.COPEPODS Predation See.flow.T1,.3 T8, 0 CARNIVOROUS.FISH OUTPUT Yearly.catch Fishery.map T3, 7 ROTIFERS OMNIVOROUS.FISH Predation See.flow.T1,.7 T9, 0 SEDIMENT OUTPUT Sedimentation.net.rate Sampling..activity Sampling.activity.and.references. T10, 0 PARTICULATE.MATTER OUTPUT Output.to..tributaries Sampling..activity for.metabolic.parameters:.Esjmont- Karabin,.1984;.Carrillo.et.al.,.1996;. T11, 0 DON-DOP. OUTPUT Output.to..tributaries Sampling..activity Gulati.et.al.,.1995;.Wen.and.Peters,. 1994;.Peters.and.Rigler,.1973;. T 12, 0 DIN-SRP OUTPUT Output.to..tributaries Sampling..activity Perez-Martinex.and.Gulati,.1999;. T ROTIFERS PARTICULATE.MATTER Excretion 3, 10 Serada.and.Hudson,.2010;.Olsen. T LML OUTPUT Sedimentation.net.rate. Sampling..activity 13, 0 and.Ostgard,.1985;.Miller.and.. T SEDIMENT DISSIPATION Denitrification.net.rate Sampling..activity Roman,.2008;.Miller.and.Glibert,. 9, diss* 1998;.Steinberg.et.al.,.2002;.. T LML DISSIPATION Denitrification.net.rate. Sampling..activity James,.1987;.Oude.and.Gulati,. 13, diss* 1988.

Sampling.activity.and.references. T ROTIFERS DON-DOP Excretion See.flow.T for.metabolic.parameters:.Esjmont- 3, 11 3,.10 T PHYTOPLANKTON ROTIFERS Grazing.activity Karabin,.1984,.Carrillo.et.al.,.1996;. 1, 3 T3, 12 ROTIFERS DIN-SRP Excretion See.flow.T3,.10 Peters.and.Rigler,.1973;.Olsen.and.

Ostgard,.1985;.Tanaka,.1991. T4, 7 CLAOCERANS OMNIVOROUS.FISH Predation. See.flow.T1,.7

T4, 10 CLAOCERANS PARTICULATE.MATTER Excretion See.flow.T3,.10 T1, 4 PHYTOPLANKTON CLADOCERANS Grazing..activity See.flow.T1,.3

T4, 11 CLAOCERANS DON-DOP Excretion See.flow.T3,.10 T1, 5 PHYTOPLANKTON HERBIVOROUS.COPEPODS Grazing..activity See.flow.T1,.3

T4, 12 CLAOCERANS DIN-SRP Excretion See.flow.T3,.10 T1, 6 PHYTOPLANKTON PREDACEOUS.COPEPODS Grazing..activity See.flow.T1,.3

T5, 6 HERBIVOROUS.COPEPODS PREDACEOUS.COPEPODS Predation See.flow.T1,.3 Fishery.map.(2004).for.abudances.

and.literature.references.for. T5, 7 HERBIVOROUS.COPEPODS OMNIVOROUS.FISH Predation See.flow.T1,.7 metabolic.parameters:.Hendrixson. et.al..2007,.Sterner.and.George. T5, 10 HERBIVOROUS.COPEPODS PARTICULATE.MATTER Excretion See.flow.T3,.10 2000,.Goodyear.and.Boyd.1972,. T5, 11 HERBIVOROUS.COPEPODS DON-DOP Excretion See.flow.T T1, 7 PHYTOPLANKTON OMNIVOROUS.FISH Grazing..activity Serada.and.Hudson.2010,.Elliott. 3,.10 and.Davison.1975,.Elliott.1976a,. T HERBIVOROUS.COPEPODS DIN-SRP Excretion See.flow.T Elliott.1976b,.Elliott.1984,.Elliott. 5, 12 3,.10 and.Hurley.1995,.Elliott.et.al..1995,. T HERBIVOROUS.COPEPODS OMNIVOROUS.FISH Predation See.flow.T Elliott.and.Hurley.1998,.Elliott.and. 6, 7 1,.7 Hurley.2000. T6, 10 HERBIVOROUS.COPEPODS PARTICULATE.MATTER Predation See.flow.T3,.10 T HERBIVOROUS.COPEPODS DON-DOP Excretion See.flow.T T1, 8 PHYTOPLANKTON CARNIVOROUS.FISH Grazing..activity See.flow..T1,.7 6, 11 3,.10 T HERBIVOROUS.COPEPODS DIN-SRP Excretion See.flow.T References:.Bienfang.1980;.Billen. 6, 12 3,.10 and.Lancelot.1988;.Cole.et.al..1984;. T7, 7 OMNIVOROUS.FISH OMNIVOROUS.FISH Predation See.flow.T1,.7 Sinking.of.phytoplankton. Estrum-Yousef.et.al..2000;.Geller. T PHYTOPLANKTON SEDIMENT 1989;.Gibson.2006;.Jassby.and. 1, 9 T7, 8 OMNIVOROUS.FISH CARNIVOROUS.FISH Predation See.flow.T1,.7 and.sedimentation. Goldman.1974;.Jørgensen.et.al.. 1991;.Lastein.1983;.Rodrigo.et.al.. Fish.surveys.(2004).were.utilized.for. 1998;.Schnoor.and.Di.Toro.1980. abundance.data,.metabolic.para- meters.were.derived.from.literature:.

T1, 10 PHYTOPLANKTON PARTICULATE.MATTER Decomposition Mass.balance Hendrixon.et.al..2007,.Sterner.and. George.2000,.Goodyear.and.Boyd. Net.flow:.positive.from.DON.(DOP). T PHYTOPLANKTON DON-DOP Release.by.Phytoplankton. T7, 10 OMNIVOROUS.FISH PARTICULATE.MATTER Excretion 1972,.Sereda.and.Hudson.2010,. 1, 11 to.PHYTOPLANKTON. Elliott.and.Davison.1975,.Elliott. Net.flow:.positive.from.DIN.(SRP).to. 1976a,.Elliott.1976b,.Elliott.1984,. T PHYTOPLANKTON DIN-SRP Release.by.Phytoplankton 1, 12 PHYTOPLANKTON. Elliott.and.Hurley.1995,.Elliott.et.al.. 1995,.Elliott.and.Hurley.1998,.Elliott. and.Hurley.2000. T1, 13 PHYTOPLANKTON LML Sinking.rate. See.flow.T1,.9 OMNIVOROUS.FISH DON-DOP Excretion See.flow.T T7,.11 7,.10 T2, 7 MACROPHYTES OMNIVOROUS.FISH Feeding.activity. See.flow.T1,.7 T OMNIVOROUS.FISH DIN-SRP Excretion See.flow.T Mass.balance:.half.the.loss.from. 7,.12 7,.10 T MACROPHYTES SEDIMENT Sedimentation 2, 9 MACROPHYTES. CARNIVOROUS.FISH OMNIVOROUS.FISH Predation See.flow.T T8,.0 1,.7

Table 20> Complete list of flows, their description and references used to get additional information used to estimate their magnitude. Table 20> Complete list of flows, their description and references used to get additional information used to estimate their magnitude.

70 71 Flux From To Description Source Quantitative models (network analysis)

T CARNIVOROUS.FISH CARNIVOROUS.FISH Predation See.flow.T 8, 8 1,.7 Results Dependence. over. the. MONIMOLIMNION. by. the. network. T CARNIVOROUS.FISH PARTICULATE.MATTER Excretion See.flow.T components.is.highest.in.summer.. 8, 10 7,.10 Total.dependency.(TDM).and.total.contribution.(TCM).matrices The.monimolimnion.constantly.contributes.to.the.whole.network. T8, 11 CARNIVOROUS.FISH DON-DOP Excretion See.flow.T7,.10 Figure 35. and. Figure 36. show. the. histograms. that. visualize. the. outcomes. of. the. dependency. matrices,. whereas.. by. 50%. of. its. requisite. phosphorus.. As. for. nitrogen,. on. the. T8, 12 CARNIVOROUS.FISH DIN-SRP Excretion See.flow.T7,.10 Figure 37.and.Figure 38.show.those.that.make.up.the.contribution. contrary.the.contribution.varies.from.minimum.values.in.spring. Sampling.activity.and.references.. T SEDIMENT MACROPHYTES Uptake. and.maximum.values.in.winter (Figure 40). 9, 2 for.metabolic.parameters. matrix.. The. results. pertain. to. the. yearly. average. networks. for. the.currencies..All.the.compartments.show.strong.dependence. With.reference.to.the.yearly.average.for.all.the.compartments. Consumption.of.benthic. T SEDIMENT OMNIVOROUS.FISH See.flow.T both. dependence. and. contribution. is. higher. for. phosphorus. 9, 7 organisms.by.fish 1,.7 over.phytoplankton,.particulate.matter.and.dissolved.inorganic. nutrients.. Higher. values. for. these. dependencies. are. for. than.for.nitrogen..However,.the.contribution.by.monimolimnion. Consumption.of.benthic. to. macrophytes. and. the. dependence. of. monimolimnion. from.. T SEDIMENT CARNIVOROUS.FISH See.flow.T phosphorus;.this.is.probably.due.to.the.high.recycling.shown.by. 9, 8 organisms.by.fish 1,.7 this.nutrient.in.the.lake..Coefficients.in.the.contribution.matrix. macrophytes. is. higher. for. nitrogen.. Macrophytes. contribute. 15%.of.flow.from.SEDIMENT.. more. to. monimolimnion. in. terms. of. phosphorus. than. of. T SEDIMENT DON-DOP Release confirms. this. hypothesis.. As. for. phosphorus,. zooplankton. 9, 11 to.DIN.(SRP). plays. a. significant. role:. for. many. compartments. dependence. nitrogen..This.holds.also.for.the.dependence.of.macrophytes.on.. monimolimnion. T9, 12 SEDIMENT DIN-SRP Release Sampling..activity. over.ROTIFERS.and.CLADOCERANS.is.almost.equal.to.50%.. This. does. not. hold. for. other. compartments,. in. particular. the. Sampling.activity.and.references. Particular.attention (Figure 39 and Figure 40).has.been.given.to. phytoplankton.. The. way. it. depends. on. and. contributes. to. for.metabolic.parameters:.Esjmont- the.dependence.of.network.components.on.MONIMOLIMNION. T monimolimnion.are.higher.for.phosphorus.than.for.nitrogen.. 10, 3 PARTICULATE.MATTER ROTIFERS Feeding.activity Karabin,.1984,.Carrillo.et.al.1996;. given. the. absence. of. mixing. phases. for. this. part. of. the. lake.. Peters.&.Rigler.1973.and.Olsen.&. A.new.model.was.required.to.comprehend.the.dependence.of. Ostgard.1985. The. dependence. over. MONIMOLIMNION. is. similar. for. all. the. compartments..In.the.yearly.network.for.phosphorus.the.average. the.whole.system.from.inputs.due.to.tributaries.of.the.lake..In.this. T PARTICULATE.MATTER CLAOCERANS Feeding.activity See.flow.T new.model.only.a.new,.virtual.compartment.was.added.to.play. 10, 4 10,.3 dependence. is. around. 20%. and. it. lowers. for. nitrogen. (15%).. the.role.of.intermediate.compartment.for.the.dissolved.inorganic. T10, 5 PARTICULATE.MATTER HERBIVOROUS.COPEPODS Feeding.activity See.flow.T10,.3 These.values.suggest.that.the.whole.system.does.not.depend. that.much.over.the.unmixed.portion.of.the.lake..By.looking.at. fraction. and. in. which. we. collapsed. all. the. inputs. of. nitrogen. T10, 6 PARTICULATE.MATTER PREDACEOUS.COPEPODS Feeding.activity See.flow.T10,.3 the.seasonal.models.the.dependence.over.MONIMOLIMNION. and. phosphorus. from. the. tributaries. Figure 41. compares. the. T PARTICULATE.MATTER OMNIVOROUS.FISH Feeding.activity See.flow.T 10, 7 1,.7 is.higher.than.the.yearly.average.but .in.winter.it.diminishes..In. dependence. of. the. network. from. this. new. compartment. with. that.on.the.Dissolved.inorganic.fraction.(for.both.nitrogen.and. T10, 8 PARTICULATE.MATTER CARNIVOROUS.FISH Feeding.activity See.flow.T1,.7 spring. the. average. dependence. increases. with. respect. to. the. phosphorus).. References.for.metabolic. winter.value.for.phosphorus.but.remains.unaltered.for.nitrogen.. parameters:.Bienfang.1980;.Billen. &.Lancelot.1988;.Cole.et.al..1984;. Estrum-Yousef.et.al..2000;.Geller. T PARTICULATE.MATTER SEDIMENT Sedimentation. 10, 9 1989;.Gibson.2006;.Jassby.and. Goldman.1974;.Jørgensen.et.al.. 1991;.Lastein.1983;.Rodrigo.et.al.. 1998;.Schnoor.&.Di. Toro.1980.

Estimated.as.15%.of.the.flow..

T10, 11 PARTICULATE.MATTER DON-DOP Release from.PARTICULATED.MATTER.to. DIN.(SRP).

T10, 12 PARTICULATE.MATTER DIN-SRP Release Mass.balance

T10, 13 PARTICULATE.MATTER LML Release See.flow.T10,.9

T11, 1 DON-DOP PHYTOPLANKTON Uptake. Sampling..activity

T11, 2 DON-DOP MACROPHYTES Uptake. See.flow.T9,.2 Exchange.between.. Estimated.as.15%.of.the.flow.from. T DON-DOP SEDIMENT 11, 9 components SEDIMENT.to.DIN.(SRP).

Exchange.between.. Net.flow:.positive.from.PARTICU- T DON-DOP PARTICULATE.MATTER 11, 10 components LATE.MATTER.to.DON.(DOP).

Exchange.between.. Net.flow:.positive.from.LML.. T DON-DOP LML 11, 13 components to.DON.(DOP).

T12, 1 DIN-SRP PHYTOPLANKTON Uptake. See.flow.T11,.1

T12, 2 DIN-SRP MACROPHYTES Uptake. See.flow.T9,.2 Exchange.between.. T DIN-SRP SEDIMENT Sampling..activity 12, 9 components Net.flow:.positive.from.. Exchange.between.. T DIN-SRP PARTICULATE.MATTER PARTICULATE.MATTER.. 12, 10 components to.DIN.(SRP). Exchange.between.. T DIN-SRP LML Sampling..activity 12, 13 components

Exchange.between.. Estimated.as.15%.of.the.flow.from. T LML DON-DOP 13, 11 components LML.to.DIN.(SRP).

Exchange.between.. T LML DIN-SRP Sampling..activity 13, 12 components

Figure 35> Yearly dependence of primary producers and zooplankton groups form all the compartments (black bars are for nitrogen and gray bars are for Table 20> Complete list of flows, their description and references used to get additional information used to estimate their magnitude. phosphorus). 72 73 Figure 36> Yearly dependence of Fish (omnivorous and predators), Sediment, Dissolved inorganic fraction and monimolimnion from all the compartments Figure 38> Yearly contribution given by Fish (omnivorous and predators), Sediment, dissolved inorganic fraction and monimolimnion to the system (black bars (black bars are for nitrogen and gray bars are for phosphorus) are for nitrogen and gray bars are for phosphorus).

Figure 39> Dependence of network components on MONIMOLIMNION in the whole networks. Black bars are for nitrogen and gray bars are for phosphorus. The line in green is the average values for phosphorus, the line in blue is the average value for nitrogen.

74 Figure 37> Yearly contribution by Phytoplankton, Macrophytes and zoo plankton groups to the whole network (black bars are for nitrogen and gray bars are 75 for phosphorus). The. outcomes. suggest. that. for. nitrogen. there. is. not. a. great. Dissolved inorganic nitrogen (DIN):. the. analysis. of. this. input. Particulate nitrogen: the.fraction.of.particulate.nitrogen.entering. recycling.(31%.and.21%.respectively)...Macrophytes.contribute. difference. between. dependence. over. external. inputs. and. on. yielded. the. sub-network. of. Figure 42.. A. large. fraction. of. this. the. system. and. that. is. sent. back. as. output. is. rather. small. much. to. P P. . Only. 2%. of. what. these. plants. take. up. from. DIP. the. dissolved. inorganic. fraction. (78%. and. 83%,. respectively):. input.exits.in.the.same.form.(74%).after.taking.part.in.several. (6%),.contrary.to.what.observed.for.DIN..Much.of.this.fraction. goes.to.monimolimnion. this.means.that.the.role.of.recycling.is.minimal..Such.difference. exchange. flows. some. of. which. highlights. the. high. recycling. is. converted. into. DIN. (122%). which. is. in. turn. transferred. to. Particulate phosphorus:.also.in.this.case.there.is.much.retention. increases. noticeably. in. the. case. of. phosphorus. (53.5%. and. potential. through. phytoplankton.. This. recycling. activity. is. phytoplankton.(81%).and.to.the.outside.system.(64%).(Figure. of.what.enters.from.outside..Only..6%.of.this.input.leaves.the. 93%,.respectively).and.the.recycling.is.very.high.for.this.element. performed. along. the. pathway. formed. by. DIN,. phytoplankton,. 43).. Most. of. what. reaches. algae. gets. back. as. particulate. system.untouched,.as.shown.in.Figure 45. particulate. nitrogen,..DIN.. The. contribution. of. zooplankton. nitrogen.and.circulate.(61%)..Also.for.this.input.the.role.of.the. Input.analysis to. DIN. recycling. is. minimal. (6%). and. this. holds. also. for. the. monimolimnion.and.zooplankton.is.of.minor.importance..What. The. greatest. flow. that. originates. from. this. input. involves. DIP. Input. analysis. yields. sub-networks. that. describe. the. fate. monimolimnion..A.rather.small.fraction.of.DIN.(12%).exits.the. goes.to.LML.returns.to.circulate.through.DIN..Macrophytes.play. (389%).and.primary.producers,.that.is..phytoplankton.(488%). of. the. currency. that. enters. the. system. as. external. input. to. system. from. sediment.. This. is. comprehensive. of. the. DIN. lost. the.same.role.than.in.the.case.of.DIN. and. macrophytes. (488%).. Not. negligible. is. also. the. role. of. any. compartment.. Here. only. the. most. significant. inputs. are. through. sedimentation. and. denitrification.. All. the. DIN. taken. zooplankton.organisms.which.take.132%.of.this.input.flow.with. Soluble reactive phosphorus: the. fate. of. the. soluble. reactive. considered:. dissolved. inorganic. nitrogen. (DIN),. particulate. up. by. macrophytes. goes. to. the. monimolimnion. while. from. the.contribution.of.recycle.which.involves,.besides.zooplankton. phosphorus.that.enters.the.system.from.outside.is.traced.by.the. nitrogen,. soluble. reactive. phosphorus. (SRP). and. particulate. phytoplankton.only.a.small.fraction.is.sent.to.the.unmixed.part. also. P P, . DIP,. and. primary. producers.. Output. flows. from. sub-network.of Figure 44. phosphorus.. of.the.lake,.which.then.sends.it.back.to.DIN..Macrophytes.have. monimolimnion.and.sediment.are.greater.than.their.contribution. the.same.flows.to.monimolimnion.and.particulate.nitrogen. Only. 10%. of. what. enters. exits. as. is.. Most. part. of. this. input. to.recycling.. is. taken. up. by. PHYTOPLANKTON. in. which. enters. a. fraction. greater. than. the. entire. input. (531%).. This. is. because. of. the. System.level.indices. recycling.. The. other. compartment. involved. in. recycling..is. Total.System.Throughtput.(TST).and.Finn.Cycling.Index.(FCI).are. particulate.phosphorus.(PP,.351%)..A.consistent.fraction.of.SRP. the.most.intelligible.indices.that.describe.whole.system.activity.. passes.through.zooplankton.and.is.recycled.back.to.SRP.and. Also. total. system. overhead. and. average. mutual. information. PHYTOPLANKTON. enters. in. the. definition. of. the. health. status. of. a. system.. The. Total. System. Throughput. (TST). is. the. sum. of. all. flows. in. an. Only. 35%. of. the. SRP. goes. to. monimolimnion. through. ecosystem..It.quantifies.how.much.medium..is.processed.by.a. phytoplankton..For.LML.sedimentation.is.more.important.than. system..As.such.it.is.a.measure.of.its.size.and.it.quantifies.the.

Figure 43> Input of particulate nitrogen: detailed sub-network showing the role of PHYTOPLANKTON and MACROPHYTES. Flow values are expressed as percentage of the original input.

Figure 40> Contribution by MONIMOLIMNION to the whole network. Black bars are for nitrogen and gray bars are for phosphorus

Figure 41> Dependence of network compartments from tributaries (black bars) and from the dissolved inorganic fraction (gray bars). Figure 44> Input to SRP: detailed sub-network showing the role of PHYTOPLANKTON and MACROPHYTES. Flow values are expressed as percentage of the original input.

Figure 45> Input of particulate phosphorus: detailed sub-network showing the role of PHYTOPLANKTON and MACROPHYTES. Flow values are expressed as percentage of the original input. Figure 42> Input of DIN: detailed sub-network showing the role of PHYTOPLANKTON and MACROPHYTES. Flow values are expressed as percentage of the original input.

76 77 level.of.activity.of.an.ecosystem,.exactly.as.the.sum.of.monetary. be. discussed. in. comparison. with. the. values. obtained. for. the. Macrophytes. are. eradicated. from. the. system. and. as. a. the. unmixed. part. of. the. lake.. The. FCI. does. not. change. with. flows.(GDP).estimates.the.overall.economic.activity.of.a.nation. different.scenarios.that.have.been.considered.(see.the.following. consequences. all. flows. pertaining. this. component. must. respect.to.the.original.network..If.the.flow.from.phytoplankton.to. (Ulanowicz,. 1986).. The. FCI. quantifies. the. fraction. of. medium. section). disappear. from. the. system.. In. these. conditions. no. unbalance. particulate.matter.lowers.due.to.increased.sedimentation,.this. that.takes.part.in.recycling. emerged.for.the.two.networks.and.no.significant.changes.in.the. reduction.is.compensated.by.the .greater.flow.from.macrophytes. Alternative.scenarios As.for.the.other.indices.is.strictly.necessary.that.the.reader.refers. outcomes.of.network.analysis.are.observed.. to.particulate.nitrogen..In.summary,.what.arrives.to.particulate. Some. alternative. scenarios. for. the. network. were. conceived. to. other. pieces. of. literature. to. complete. the. synthesis. that. is. nitrogen. does. not. change. and. the. recycling. function. remains. and.analyzed.to.hypothesize.modification.in.certain.parameters. 3) Increasing macrophyte biomass (scenario Mx10). We. provided.in.the.following.part.of.the.report,.at.least.for.definition. unchanged.. The. peculiar. feature. of. this. model. is. the. role. of. due.to.management.options..This.investigation.was.conducted. considered. also. a. scenario. in. which. macrophytes. take. over. and.meaning.. sediment.in.the.recycling.function,.which.increases.. using.yearly.networks.for.the.two.currencies.. and.increase.their.abundance..Both.standing.stocks.and.flows. Besides.TST.that.quantifies.the.entire.amount.of.currency.that.the. pertaining. to. these. components. were. multiplied. 10. times,. 4) Increasing fish biomass (scenario Fx10). Available. data. on. 1) Doubling input to SRP and DIN (Scenario INx2).. This. first. system.handles,.the.Average.Mutual.Information.(AMI).describes. to. simulate. an. extreme. variation. with. respect. to. the. present. fish. population. are. incomplete. and. partial.. The. alternative. scenario.was.conceived.as.we.underestimated.the.magnitude. how.well.organized.is.the.topology.of.flows,.where.organization. configuration.. A. great. unbalance. was. the. main. consequence. scenario.centered.on.this.component.considers.a.biomass.that. of.external.input.to.the.dissolved.inorganic.fraction..So.doubling. means. efficiency. in. exchanging. medium.. This. efficiency. is. of. these. modifications.. Macrophytes. assimilate. nutrients. from. is.ten.times.greater.than.in.the.present.network..No.unbalance. these. inputs. should. compensate. this. uncertainty.. Doubling. higher.when.the.system.metabolism.can.be.satisfied.by.fewer. the. sediment. and. this. compartment. in. the. new. scenario. has. arises.from.this.change;.accordingly.the.flows.needed.not.be. the. input. to. SRP. produces. an. unbalanced. network.. Steady. pathways. and. networks. are. less. redundant. (considering. both. its. output. greater. than. the. input.. To. restore. steady. state. for. readjusted.and.the.outcomes.of.network.analysis.did.not.change. state. condition. needs. to. be. restored.. This. requires. that. the. internal.fluxes.and.connections.with.the.outside.environment).. sediment,.incoming.flows.from.the.donor.compartments.were. substantially. flow. from. particulate. phosphorus. to. SRP. is. lowered. with. the. What.remains.is.the.encumbered.complexity,.or.overhead.(O),. artificially. increased.. Results. of. this. new. network. are. given. in. main.consequences.of .reducing.the.intensity.of.recycling.and. Figure 49. shows. the. system. level. indices. for. Lake. Idro. as. that. is. currency. dissipated. or. channeled. through. redundant. Figure 48. decreasing.FCI.from..72%.to.62%.of.the.TST. obtained.in.the.different.scenarios..With.respect.to.the.scenarios. connections,. either. internal. or. as. imports. and. exports.. The. The.main.consequences.of.macrophyte.increase.were.a.higher. As. for. nitrogen,. doubling. the. input. to. DIN. produces. an. even. discussed.above.the.calculation.of.system.level.indices.includes. balance.between.TST,.AMI.and.O.determines.the.health.status. uptake. of. DIN,. a. certain. decrease. of. export. flow. from. DIN,. greater.unbalance.and.the.main.compartment.that.experiences. a. further. option. which. is. one. that. considers. the. absence. of. of. the. ecosystems.. Mageau. et. al.. (1995). defined. ecosystem. and.an.increase.of.the.inorganic.nitrogen.amount.that.goes.to. health.as.a.combination.of.three.attributes:.vigor,.organization. such. effect. is. the. particulate. nitrogen. with. input. much. higher. external.input.of.DIN.and.SRP..This.scenario.is.labeled.as.IN0. and. resilience.. They. classified. unhealthy. systems. as. of. three. then.output..To.restore.steady.state.minimizing.to.0.1.mg.m‐3. types:. eutrophic,. characterized. by. various. combinations. of. the.flow.from.particulate.nitrogen.to.dissolved.inorganic.nitrogen. resilience. and. vigor. but. no. organization;. crystallized. systems. was.not.sufficient.and.other.flows.needed.to.be.tuned..Flows. (organization. and. resilience. but. no. vigor);. and. brittle. systems. from. phytoplankton. to. sediment. and. monimolimnion. were. (vigor. and. organization. but. no. resilience)...It. was. by. chance. increased,. as. well. as. those. from. macrophytes. to. sediment. that. these. three. features. could. be. quantified. using. TST,. AMI. and. monimolimnion.. Furthermore. exports. from. sediment. and.Overhead.as.proxies.for.vigor,.organization.and.resilience. and. monimolimnion. were. increased.. This. new. configuration. respectively. depressed.the.cycling.function.and.FCI.diminished.from.38%. In.lake.Idro.TST .for.nitrogen.(36.220.mg.m-3.d-1)..is.much.higher. to.15%. than. that. calculated. for. phosphorus. (3.918. mg. m-3. d-1),. while. The.further.input.to.DIN.is.not.used.by.the.system.and.because. the.opposite.occurs.for.the.index.of.recycling..FCI.is.72%.for. export.to.emissaries.remains.the.same.the.excess.nitrogen.must. phosphorus. and. 38%. for. nitrogen. (Figure ).. This. means. that. exit.from.the.system..This.only.might.happen.through.increasing. the. system. handles. a. higher. amount. of. nitrogen. but. recycles. outputs. from. sediment. and. monimolimnion.. Recycling. activity. a. minimal. fraction. of. it.. This. of. course. does. not. mean. that. lowers.considerably.and.instead.of.cycling.the.system.exports. the. overall. amount. of. nitrogen. that. is. recycled. is. lower. than. nitrogen.through.sedimentation.and.denitrification.. phosphorus.. 2) Macrophyte eradication (scenario M0).. In. this. scenario. AMI.and.Overhead.are.depicted.in Figure 47..Their.meaning.will. we. hypothesize. a. drastic. change. in. boundary. conditions..

Figure 48>Input analysis for DIN: sub-networks for scenario with tenfold increase of biomass for MACROPHYTES (upper graphs) compared with the original model (lower graphs).

Figure 46> TST (mg m-3 d-1) and FCI (% matter that is involved in cycling) calculated for Lake Idro (black bars for nitrogen and gray bars for phosphorus). PB VISUEL

Figure 47> System level indices for Lake Idro. Figure 49> Comparison of system level indices for the different scenarios.

78 79 TST. for. nitrogen. is. higher. than. for. phosphorus. in. all. the. of.the.lake.to.compensate.for.variations.and.consequently.the. of.all.the.links.would.be.the.work.of.many.people.over.their.life. interaction. the. prey. positively. affects. the. growth. rate. of. the. scenarios,.i.e..the.system.handles.a.much.higher.quantity.of.this. increase.in.brittleness.is.not.alarming..These.findings.underline. time;. b). there. are. real. variables. and. interactions. that. are. not. predator. and. this. positive. effect. is. graphically. represented. by. currency..In.all.the.scenarios,.for.both.currencies.indices.do.not. that,. in. the. long. run,. the. removal. of. the. external. inputs. may. quantifiable;.d).systems.show.high.plasticity.in.the.sense.that. an.arrow.pointing.to.the.predator..This.latter,.in.turn,.negatively. vary.that.much..A.stricking.outcome.concerns.TST.for.nitrogen. worsen.the.health.of.the.lake.in.the.sense.of.a.significant.increase. interactions. vanish. whereas. others. are. formed. in. response. to. affects.the.growth.rate.of.its.prey.and.this.effect.is.expressed. and.Overhead.for.both.currencies.in.the.scenario.based.on.the. in.fragility..This.means.that.interventions.should.be.gradual.in. system. dynamics. and. in. a. short. time;. e). conflicting. interests. graphically.as.line.ending.in.a.small.circle.pointing.to.the.prey.. absence. of. input. of. the. dissolved. inorganic. fraction. (DIN. and. order.to.reduce.the.risk.of.eutrophication.while.maintaining.the. are. always. present:. limitations. to. development. opportunities. Each.type.of.link.thus.specifies.a.direction.of.effect..The.graph. SRP)..TST.gets.much.higher.than.in.the.other.cases.and.the.vigor. system.in.equilibrium.with.respect.to.the.needs.of.organization. for.certain.organisms.may.open.up.new.possibilities.for.others. that.describes.a.predator-prey.interaction.is.given.in.Figure 50. of.the.system.increase..This.increase.is.due.to.the.fact.that.the. and.resilience. to. thrive. and. the. system. as. a. whole. never. assumes. a. rigid. A. complex. community,. such. as. that. living. in. Lake. Idro. is. system.must.increase.internal.flows.to.compensate.for.the.loss. configuration.. composed. by. a. variety. of. species. that. feed. on. each. other.. of.currency.that.is.carried.by.the.external.inputs..With.respect.to. A.management.plan.that.aims.at.maintaining.a.balanced.system. According. to. this,. simulation. models. are. less. reliable. for. Modeling.such.community.thus.requires.first.that.we.know.“who. the.present.ascenario,.the.alternative.which.has.no.input.of.DIN. with.respect.to.eutrophication,.embrittlement.and.sclerosis.(the. ecological.investigations.because.a).the.ever.increasing.demand. eats. whom”.. In. addition,. interactions. between. living. and. non. and.SRP.shows.a.much.higher.TST,.a.rather.small.increase.in. three. main. pathologies. of. an. ecosystem),. requires. «multiple- of.quantification.leads.to.excluding.from.the.system.what.is.not. living. things. should. be. identified. and. qualitatively. described.. AMI.and.a.more.consistent.decreease.of.overhead..The.system. goal».policies.which.means.to.conceive.measures.to.improve. quantifiable.at.that.moment.but.it.might.be.a.key.factor.for.the. Once. the. relationships. between. variables. are. specified. it. is. therefore.tends.to.become.more.brittle,.with.more.vigor,.more. all.three.health.indexes,.but.knowing.that.it.is.not.possible.to. ecological.dynamics;.b).outcomes.and.predictions.are.tailored. possible.to.put.together.a.graph.that.elucidates.the.structure.of. organization. of. flows. and. a. reduced. resilience.. By. eliminating. maximize.all.of.them.at.the.same.time.. for.the.specific.system.under.investigation.with.few.opportunity. the.interactions.in.the.community..One.example.of.a.relatively. the. causes. of. eutrophication,. the. effects. are. not. immediately. The.evaluation.of.management.policies.is.not.possible.without. to.extend.them.to.even.similar.systems;.c).outputs.often.may. complex.lacustrine.community.is.given.in.Figure 51. apparent.because.internal.recycling.compensate.for.the.amount. the.help.of.the.instrument.used.here,.the.only.one.capable.of. be.masses. of. numbers. which. allow. some. prediction. but. little. of.nutrients.missing.from.the.outside..This.has.a.further.cost,. On. the. right. of. the. graph. there. is. a. matrix. called. table. of. an.analysis.at.the.scale.of.the.whole .system..Interventions.that. understanding.. that.is.a.decreased.ability.to.resilience.of.the .system.or,.in.other. predictions..This.is.the.fundamental.outcome.of.loop.analysis. tend. to. eliminate. system. uncertainties. by. simplifying. it,. albeit. words,.increased.fragility.with.respect.to.possible.perturbations.. Qualitative.modeling.has.as.its.main.objective.the.comprehension. and.it.is.entirely.constructed.using.the.properties.of.the.graph.. rigorously,. can. cause. unpredictable. and. possibly. adverse. The.complete.absence.of.external.P.inputs,.therefore,.does.not. of.the.mechanisms.at.work.in.a.system.rather.than.the.numeric. It. contains. the. predictions. about. changes. in. the. level. of. effects..Ecological.models.can.support.decisions.by.allowing.to. necessarily.improve.the.health.of.the.system..The.indexes.do. precision.. It. has. several. advantages. over. the. quantitative:. it. abundance.of.the.variables.in.the.form.of.an.expected.direction. organize.the.information.available.in.an.ecosystemic.framework. not.change.with.high.intensity,.demonstrating.a.good.capacity. allows.us.to.include.variables.that.are.difficult.of.even.impossible. of. change.. While. specific. references. (Puccia. &. Levins. 1985). that.includes.rather.than.eliminate.variables.and.unknowns.. to.measure..As.long.as.we.can.know.the.direction.of.effect.of. should.be.scrutinized.for.detailed.explanations.here.follows.an. one.variable.on.another.we.do.not.require.precise.measurement. intuitive.description.of.the.algorithm.that.is.used.in.loop.analysis. or. even. the. mathematical. form. of. the. effect.. The. conclusions. to.make.predictions..Also.the.use.of.the.table.of.predictions.as.a. Predicting the impact on idro lake of water level management policies through derived. from. qualitative. analysis. do. not. allow. for. precise. diagnostic.tool.is.explained. qualitative modelling predictions.or.decisions.about.the.optimal.course.of.action,.but. they.do.permit.us.to.deicide.the.particular.directions.to.push.on. Objectives could. not. be. estimated. quantitatively.. Nonetheless. by. the. a.system.in.order.to.move.it.in.a.desired.direction..Often.this.is. Lake. Idro. provides. water. resource. to. agricultural. activities. approach.we.use.here.it.is.possible.to.get.information.about.the. all.we.can.expect.to.do.with.living.and.human.systems,.which. and. serves. for. energy. (hydroelectric). production.. To. meet. the. trajectories.along.which.the.ecosystem.would.eventually.move. generate.their.own.spontaneous.activity. in.the.two.scenarios. needs. of. both. these. sectors. of. human. activity. regulation. of. Moreover. qualitative. models. are. inexpensive.. When. in. doubt. the.water.level.in.this.water.body.has.been.called.for..However. Qualitative modelling about.the.actual.structure.of.a.system.we.can.model.alternatives. such.regulation,.that.can.be.pursued.in.different.ways.that.can. and.find.out.which.differences.matter..Therefore.the.process.of. BASSE DÉF A. satisfactory. method. to. anticipate. the. impacts. of. human. be. summarized. in. two. alternative. schemes. such. as. periodic. qualitative.modeling.can.be.public,.reproducible.and.intelligible. fluctuations.or.permanent.variations,.might.have.impacts.on.the. interventions.on.nature.is.still.lacking..Given.the.complex.nature. in. a. way. that. a. large. simulation. project. cannot. be.. They. are. Figure 50> Graph representing a predator (P) prey (R) interaction. of.ecosystems,.models.have.become.the.mostly.used.tools.to. ecosystem.that.has.to.be.carefully.assessed.before.embarking. ideal. tools. for. preliminary. analysis,. where. many. uncertainties. To each link a coefficient is assigned to mean that effects investigate. their. dynamics.. Empirical. as. well. as. mathematical. carry a magnitude which, however, is not specified. on. a. specific. policy..Such. impacts. depend. on. several. factors. characterize. the. knowledge. of. the. system. and. changing. models.have.been.extensively.employed.to.make.predictions.. among.which.the.periodicity,.mainly.due.to.seasonal.variations,. hypotheses. and. research. lines. is. very. likely.. A. qualitative. As. for. mathematical. models. the. propensity. is. to. believe. that. and. the. amplitude. of. fluctuations.. An. accurate. quantitative. investigation. may. focus. on. critical. variables. or. process. to. be. models. are. reliable. only. when. their. complexity. increases. and. assessment.requires.a.specific.and.detailed.knowledge.of.the. successively. investigated. in. more. detail. with. a. quantitative. predictions. are. quantitative.. This. attitude. that. often. becomes. hydrological.and.ecological.features.of.the.lake.to.be.included.as. approach..Modeling.must.always.be.a.complementary.approach. a. true. anxiety. toward. quantification. has. generated. ever. more. parameters.in.a.dedicated.software.useful.to.make.predictions. to.field.and.laboratory.studies.and.its.results.must.be.presented. sophisticated. models.. The. vast. majority. of. predictive. studies. about.the.impacts.of.the.different.policies.. in. an. intelligible. way.. The. usefulness. of. a. model. critically. makes. use. of. simulation. models:. the. representation. of. many. Due. to. the. high. uncertainty. about. many. of. the. parameters. depends.on.the.assumptions.at.the.base.of.its.construction:.the. variables,.the.careful.measurement.of.parameters,.the.proposal. and. dynamics. that. would. be. necessary. for. implementing. a. true.model.of.a.system.does.not.exist.but.only.an.more.or.less. BASSE DÉF of.precise.equations.for.the.interactions.among.variables,.and. quantitative. approach,. a. preliminary. assessment. of. these. adequate.representation.of.it.. impacts.conducted.by.qualitative.modeling.is.provided.by.this. then,. by. numerical. methods,. the. predictions. of. the. outcomes. research..Two .management.hypotheses.have.been.considered. of. the. process.. These. methods. are. most. successful. where. The.qualitative.apparatus.used.in.this.research.to.evaluate.the. in.this.explorative.study.as.general.policies.. the. parts. of. the. systems. have. been. produced. in. isolation. ecological.consequences.of.regulating.the.water.level.of.Lake. A. first. scenario. is. characterized. by. the. actual. water. level.. from. one. another,. their. behavior. precisely. specified,. and. the. Idro.is.that.of.loop.analysis,.a.technique.that.. (368.75.m.a.s.l.).with.an.average.fluctuation.of.±1.5.m. circuit. diagrams. of. their. patterning. carefully. designed.. Thus. •..represents. the. system. under. investigation. as. a. graph. and. A. second. scenario. considers. the. present. situation. with. only. the. simulation. of. engineering. systems. has. shown. very. strong. deduce.system.properties.by.studying.those.of.the.graph; predictive.power..The.quantitative.approach.through.simulation. Figure 51> Graph representing a typical lacustrine community. Keys are: N, inorganic natural. fluctuations. (i.e.. almost. constant. levels. at. 368.75. m. •..allows.to.identify.the.complex.feedbacks.that.govern.system’s. nutrients; F, fitoplanKton; Z1 small sized zoo plankton; Z2, large sized zooplankton; I, invertebrate predators; P, planktivorous fishi; C, predatory fish. a.s.l.),.which.simulates.what.might.have.changed.in.the.lake.in. has. had. its. greatest. success. in. the. domain. of. engineering. response.to.perturbations.. respect.to.prior,.lower.level.that.characterized.the.lake.until.year. sciences.(design,.control.and.optimization).where.often.there.is. 2006..In.the.latter.case.the.assessment.must.be.intended.as.an. a.unique.goal.although.in.the.presence.of.many.constraints.. The.Loop.Analysis.(Levins.1974,.Puccia.&.Levins..1985,.Bodini. ex-post.evaluation. 1998,.2000).graphically.describes.the.interactions.between.the. Conversely.we.are.studying.complex.ecological.processes.that. populations.in.a.community.and.with.the.a-biotic.environment. Due.to.the.qualitative.nature.of.the.study.it.has.not.been.possible. cannot.be.modeled.that.way.because:.a).in.a.complex.system. that. make. up. an. ecosystem.. In. particular,. it. considers. how. to.dig.the.quantitative.aspects.connected.with.amplitude.and. of.only.a.modest.number.of.variables.and.interconnections.any. variables. affect. each. other’s. growth. rate,. but. it. retains. only. periodicity.of.water.level.fluctuations.and.consequently.impact. attempt.to.describe.it.completely.and.measure.the.magnitude. the. qualitative. nature. of. this. effect.. That. is. in. a. predator-prey.

80 81 Paths, loops and feedbacks Loops.and.feedbacks. It.indicates.the.direction.of.change.for.the.abundance.of.variable. reasonably. high. number. of. variables. (>10). and. a. high. linkage. To. predict. changes. in. the. abundance. of. variables. following. Links.in.a.graph.may.form.loops..A.loop.is.a.“closed.pathway. X. in. response. to. variation. of. a. parameter. α. that. affects. the. density.. The. software. was. developed. in. an. R. environment. perturbations.that.affect.the.dynamics.of.one.or.more.system. that.leaves.a.node.in.the.graph.and.following.the.directions.of. dynamics.of.species.Y. .The.outcome.depends.on:.a).the.sign.of. (http://www.r-project.org/)..Ambiguous.predictions.are.solved.as. variables.it.is.fundamental.that.we.identify.structural.elements. links.there.returns.without.crossing.intermediate.variables.more. the.input .acting.on.Y...... ;.b).that.of.the.pathway.connecting.Y.to. probability.of.change..In.practice.the.software.randomly.assigns. that.compose.the.graph.and.their.associated.functions.. than. once”.. Figure 53. illustrates. how. loops. of. different. length. X.and.that.involves.k.intermediate.variables,...... ;.c).the.sign. intensity.to.the.links.(Bondavalli.et.al..2006).and.this.is.done.as. emerge.from.a.graph.. of.the.complementary.feedback.whose.loop.connects.the.n-k. many.times.as.the.value.of.the.model.size.(number.of.variables). The.pathways. Every.loop.carries.a.feedback,.an.effect.that.returns.a.functional. variables.not.on.the.path..These.signs.must.be.multiplied.and. multiplied. by. 1000.. This. procedure. yields. a. high. number. of. The.juxtaposition.of.links.in.a.graph.allows.to.identify.pathways. answer. to. an. original. cause. of. variations.. The. negative. the.overall.result.divided.by.the.sign.of.the.maximum..feedback. matrices. (the. mathematical. form. in. which. we. can. translate. a. that. connect. variables. even. though. there. is. not. direct. feedback. dampens. the. variations. imposed. by. fluctuations. in. (...... ). graph)..Applied.to.the.system.A-R-G.previously.discussed.the. interactions.between.them..A.pathway,.by.definition,.is.a.series. certain. components. of. the. system.. The. positive. feedback. on. simulation.would.produce.3000.matrices.with.numerical.values. the. contrary. returns. an. effect. that. amplify. the. initial. variation.. Consider,. as. an. example,. a. system. made. of. a. certain. assigned.to.the.interaction.links..For.each.and.all.matrices.the. of.links.that.leave.a.variable.and,.by.following.the.direction.of. (unspecified).population.(A)..its.predator.(R)..and.a.third.species. links,. reaches. another. variable. in. the. graph. without. crossing. A. typical. negative. feedback. in. ecology. is. associated. to. the. software.computes.the.determinant.and.the.inverse.matrix..This. predator-prey. system.. If. the. abundance. of. the. prey. increases. (G).feeding.on.the.predator..Suppose.R’s.mortality.increases.by. latter.matrix.yields.the.table.of.predictions.(Bender.et.al..1984)... intermediate.variables.more.than.once..Through.the.pathways. some.cause,.either.internal.or.external..To.predict.how.species. variables. affect. each. other;. even. in. the. absence. of. a. direct. by. chance. (i.e.. a. temporary. migratory. flux). there. will. be. more. The.software.allows.to.obtain.a.high.number.of.prediction.tables. food. for. predators. (the. more. prey. the. more. predators). which. G.would.change.it.is.necessary.to.understand.how.the.algorithm. and.the.expected.direction.of.change.for.any.variable.comes.out. interactions.(i.e..predatory.fish.can.be.affected.by.phytoplankton. makes. use. of. the. graphical. elements. of. the. model.. Figure 54. dynamics.via.the.grazing.chain.)..Pathways.allows.impacts.to. will.increase.their.number..The.increased.predation.pressure.will. from.counting.the.signs.produced.by.all.matrices.for.the.specific. force.the.prey.to.return.to.the.abundance.prior.to.the.variation... explains.it.in.an.intuitive.way..Variable.G.is.expected.to.decrease. prediction.pertaining.that.variable..If.the.number.of.positive.signs. percolate. their. effects. up. the. food. web. so. that. variables. that. when.R.reduces.its.growth.rate.. are. far. apart. several. trophic. steps. may. anyway. affect. one. Once. the. prey. returns. to. level. previous. to. the. variation. the. lies.between.75.e.il.100%.of.the.cases.then.the.overall.prediction. predator.will.readjust.its.abundance.accordingly.. is.that.of.an.increase..If.the.number.of.positive.coefficients.lies. another..(i.e..inorganic.nutrients.and.predatory.fish.may.interact. In. the. same. figure. the. graph. is. coupled. with. its. table. of. If.on.the.other.hand.a.sudden.increase.will.affect.the.abundance. between.60.and.75%.of.the.cases.the.prediction.is.still.positive. indirectly.through.the.food.chain.even.though.the.latter.do.not. predictions.for.the.whole.model..The.entries.in.a.table.denote. level. of. one. of. two. species. competing. for. the. same. resource. but.the.uncertainty.increases.and.a.question.mark.is.introduced. use.nutrients.as.source.of.food)..In.a.graph.there.are.pathways. variations.expected.in.all.the.column.variables.when.parameter. this. same. population. will. exploit. more. food. leaving. the. other. as.symbol.to.say.that.there.is.a.tendency.to.increase.for.that. of.different.length.and.their.identification.is.crucial.to.understand. inputs. affect. row. variables.. Conventionally,. the. calculation. is. with.less.resource.at.disposal..This.will.likely.induce.a.reduced. variable.. With. a. number. of. positive. coefficients. between. 40. e. the. way. impacts. propagate. along. the. chains. of. interactions.. done.by.considering.positive.inputs,..those.increasing.the.rate. reproduction.with.fewer.individuals..By.this.mechanisms.more. 60%.of.the.cases.the.prediction.has.been.assumed.as.one.of. Each.pathway.carries.a.sign,.that.is.an.effect,.that.can.be.known. of. change. of. variables.. Consequences. of. negative. inputs. can. resource. will. be. made. available. for. the. former. species. which. no.change.in.the.level.of.that .variable..A.negative.prediction.(a. simply.multiplying.the.signs.of.the.links.forming.that.pathway.. be.obtained.by.simply.reversing.the.signs .in.the.table.because. will.be.increasing.more.and.more.leading.the.latter.species.to. variable. that. decreases. its. abundance). comes. out. when. the. This.sign.makes.the.effect.that.is.carried.by.the.combination.of. the.only.thing.that.changes.in.the.loop.formula.is.the.sign.of.the. extinction. (competitive. exclusion).. In. this. case. the. feedback. number.of.positive.coefficients.for.that.prediction..is.less.than. links.making.the.pathways.explicit..Figure.52.shows.how.any. input,.which.becomes.negative..In.the.specific.case.to.predict. tends.to.amplify.the.initial.variation..Whether.a.loop.produces. 25%.of.the.cases..If.this.number.is.between.25.e.40%.prediction. two.variables.in.a.system.can.be.connected.by.more.than.one. what.would.happen.to.the.system.for.a.negative.input.on,.say,. a. negative. or. a. positive. feedback. can. be. known. by. simply. is.a.tendency.to.decrease.for.that.variable.(?-)... pathway.and.such.multiple.pathways.carries.a.different.effect. R.one.takes.the.second.row.of.the.table.inverts.the.signs..G.is. multiplying.the.signs.of.the.links.that.enter.in.the.loop.. (different.sign). expected.to.diminish.while.both.R.and.A.are.not.changing. A qualitative model for lake Idro The algorithm for predictions The software A.model.is.an.intellectual.construct.that.represents.the.real.world. Predictions.concerns.the.expected.direction.of.change.for.the. but.it.is.not.a.picture.of.it..Rather.it.proposes.a.caricature.of.it. The.complexity.of.the.models.used.to.describe.the.dynamics. abundance.of.variables.when.the.growth.rate.of.one.or.mores. which. emphasizes. certain. features. and. keeps. others. obscure. of.lake.requires.that.the.algorithm.is.implemented.in.a.software.. specie.varies.following.a.parameter.change..The.critical.factors. in.relation.to.what.the.investigator.decided.to.be.important.and. Too.many.levels.of.feedback.and.a.high.number.of.pathways. that.play.a.role.in.this.process.are: deserving. attention.. In. model. construction. relevant. features. connecting. any. two. variable. with. opposite. effects. would. •..the.sign.of.the.perturbation.(input.henceforth),.that.is .whether. of. the. system. are. decided. in. advance.. This. type. of. decision. preclude.the.possibility.to.make.predictions.without.adequate. a.parameter.change.varies.in.such.a.way.that.the.growth.rate. introduces.several.uncertainties.as.for.certain.aspects.of.the.real. computer. support.. To. overcome. this. inconvenient. and. take. of.a.species.increases.(positive.sign).or.decreases.(negative. world.a.price.to.pay.to.make.others.intelligible..Every.model.is. advantage.of.the.possibility.offered.by.the.qualitative.model.a. sign); wrong.in.the.sense.that.it.cannot.be.definitive,.but.meanwhile. software.has.been.developed.that.can.analyze.models.with.a. •..the.sign.of.the.pathways.that.connects.the.variable.affected. the. analysis. proceeds. it. provides. significant. advances. in. the. by.the.input.and.the.variable.for.which.we.want.to.predict.the. comprehension. of. the. system. under. investigation.. Modelers. direction.of.change; must.always.be.aware.that.the.usefulness.of.models.lies.in.the. •..the.feedback.of.the.whole.system.which.is.the.strength.of.the. objectives.that.justify.the.need.of.models..There.is.no.a.definitive. of.the.feedback.loop.between.all.the.variables.and.that.is.a. model:.rather.there.are.only.partial.representations.of.the.reality. measure.of.the.inertia.that.the.system.shows.to.changes; that.can.be.more.or.less.adequate.to.describe.certain.system. Figure 52> Examples of pathways of different length connecting the same two variables in a hypothetical graph. Signs of the pathways are the product of the signs of the links •..the.strength.of.the.feedback.loop.connecting.all.the.variables. features.. making the path. non.included.in.the.pathway.and.that.is.called.complementary. Accordingly.to.evaluate.the.impact.of.management.policies.for. feedback.and.that.buffer.or.amplifies.that.effects.carried.along. the.regulation.of.water.level.in.lake.Idro.we.focused.attention. the.pathway. on.the.dynamics.of.the.littoral.portion.of.the.ecosystems,.with. particular.emphasis.on.interactions.between.inorganic.nutrients. An. increase. of. fecundity. rate. for. a. species. is. an. example. of. and.aquatic.plants..This.choice.is.justified.by.the.fact.that.water. positive.input,.whereas.an.increased.mortality.for.a.species.is. level. variations. deeply. impact. this. portion. of. the. lacustrine. the.most.typical.example.of.negative.input.. environment.. The. above. factors. are. grouped. in. a. unique. formula. to. make. predictions.and.that.takes.the.following.form: BASSE DÉF. .

Figure 53 – Loops of different length in a hypothetical graph. BASSE DÉF. Figure 54> A three variable model and expected changes for G following a negative input on R . 82 83 In.the.past,.the.hydrometric.level.of.lake.waters.was.subjected. the.specificity.of.the.ecology.of.this.portion.of.the.ecosystem. The.row.variables.MN.e.MT.are.self.damped.(a.negative.self- of.regulation.on.the.dynamics.of.the.species.that.translates.in. to. several. regulation. policies.. Since. 1990. two. phases. can. be. in.respect.to.a.general.model.or.a.graph.more.focused.or.the. link. on. them). to. describe. a. density. dependent. growth. rate,. a. a.self-regulation.term.when.such.species.are.all.gr ouped.in.a. distinguished:.the.first,.from.1990.to.2006,.in.which.water.level. pelagic.portion.of.the.lake.. reasonable.assumption.because.when.these.primary.producers. unique.variable.(Puccia.&.Levins.1985,.Bodini.1998)..Such.self. fluctuated.markedly,.and.the.second,.from.2007.to.2011.in.which. reach. high. abundance. values. they. limit. light. availability. for. regulation.term.thus.summarizes.the.various.forms.of.regulative. Macrophyte.species.have.been.grouped.in.two.variables..Such. the.hydrometric.level.was.kept.more.or.less.constant.and.higher. their. own. growth.. Both. groups. utilize. dissolved. nutrients. (DP). feedbacks.at.work.among.microbial.populations.. division. takes. into.account. a. fundamental. ecological. feature. than. the. average. level. that. characterized. the. previous. period.. as. main. source. of. food. and. as. a. consequence. competition. of.these.plants.in.respect.to.water.level.variations,.that.is.their. Variations.of.the.hydrometric.level.of.the.lake.are.visualized.in. between.them.may.arise..To.complete.the.way.the.two.groups. Algae.are.the.other.group.of.primary.producers.to.be.considered.. capability.to.resist.to.dry.conditions.eventually.imposed.by.water. Figure 55.. interact. a. negative. link. goes. from. MN. to. MT. to. represent. the. Only.one.variable.(F).group.all.phytoplankton.species..This.is.not. level. fluctuations.. The. distinction. between. resistant. (MT). and. inhibitory.effect.that.non.resistant.species.exert.over .resistant. an.excess.simplification:.since.the.objective.of.this.research.is. As. specified. in. the. objectives. the. study. has. been. conducted. non.reistant.(MN).macrophytes,.moreover,.adequately.describes. species.. This. link. describes. the. process. through. which. late. not. to. study. the. dynamics. at. the. single. species. scale. a. finer. considering.two.management.options:.that.is.the.return.to.an. the. pattern. of. species. distribution. along. the. shorelines,. that. non.resistant.species.during.ecological.succession.replace.the. resolution. of. the. variables. at. the. species. level. would. create. increase.in.the.hydrometric.level.with.fluctuating.water.regime. shows.a.clear.demarcation.in.two.zones:.the.first.(from.0.to.6.m. earlier,. resistant. macrophytes.. The. subset. of. interaction. links. problems.of.model.tractability.without.allowing.more.significant. (±1.5m). and. to. simulate. changes. occurred. in. 2007. with. an. depth).that.is.dominated.by.the.presence.of.resistant.species.(E.. just.described.is.isolated.from.the.overall.model.and.reported. insights.that.it.can.be.done.with.a.leas.resolved.model.like.the. almost.constant.and.higher.to.prior.level.. nuttallii.e.L..major),.and.the.second.(from.6.to.9.m).in.which.non. in.Figure 58.. adopted.in.this.investigation.. The. bas. e. model. (Figure 56) has. been. conceived. to. describe. tolerant.species.(Chara.spp.).predominate.over.the.other.group... the. fundamental. interactions. between. those. components. that. Figure 57 shows.a.profile.of.the.shoreline.that.exemplifies.the. Dissolved. phosphorus..(DP). originates. from. the. sedimentry. From. phytoplankton. depends. all. the. grazing. chain,. which. is. have. been. considered. as. mostly. representative. of. the. littoral. patter.of.species.distribution... fraction. (SP). which. becomes. soluble. due. to. biochemical. composed.by.zooplankton.(Z,.which.feeds.on.algae.but.also.on. area..It.is.not.a.spatially.defined.model,.nonetheless.it.describes. processes.at.work.at.the.interface.between.water.and.sediment. the.microbial.loop),.planktivorous.fish.(PZ),.and.predatory.fish. and.from.the.mineralization.of.the.particulate.fraction.(PP).by.the. species. (TP).. The. same. resolution. criterion. adopted. for. algae. microbial.loop3.(ML)...DP.as.well.is.self-damped.to.describe.the. species. applies. for. the. variables. of. the. grazing. chain. each. of. continuous. input. of. nutrients. from. the. basin. (Puccia. &. Levins. which.groups.multiple.species.in.a.unique.node..The.grazing.chain. 1985;.Bodini.et.al..2007). is.typical.of.the.pelagic.environment.and.its.component.species. weakly. interact. with. the. littoral. components.. Nonetheless. it. Part.of.the.particulate.phosphorus.(PP).enriches.the.dissolved. cannot.be.considered.isolated.from.the.littoral.portion..Because. fraction.(via.the.ML).and.part.sinks.and.is.buried.as.sedimentary. of.this.we.considered.the.grazing.chain.as.partially.decoupled. phosphorus.(SP),.which.in.turn.sustains.the.dissolved.fraction.. from.the.littoral.subsystem.and.this.assumption.is.made.explicit. Figure 59.shows.the.sub.model.that.describes.the.relationships. in.the.graph.by.the.interaction.between.phytoplankton.(F).and. between.the.different.forms.of.phosphorus. dissolved.phosphorus.(DP)..This.latter.is.depicted.as.beneficial. for.Z.but.it.receives.no.return.action.from.it.to.say.that.zooplankton. BASSE DÉF. The. microbial. loop. (ML). is. represented. as. a. self-damped. does.not.exert.the.same.control.over.the.phytoplankton.that.it. variable.. This. is. necessary. to. take. into. account. the. various. does.in.the.pelagic.environment..The.sub-model.of.the.grazing. forms. of. interactions,. mostly. predator-prey,. between. the. chain.is.given.in.Figure 60... different. microbial. organisms.. Such. interactions. exert. a. form.

Figure 55> Trends of the hydrometric level in lake Idro since 1990. Figure 56> Qualitative model for the main interactions between the components of the littoral portion of the lake ecosystem. Key are: MN, non resistant macrophytes; MT, resistant macrophytes; DP, dissolved phosphorus; SP, sedimentary phosphorus; PP: BASSE DÉF. particulate phosphorus; Ml, microbial loop; F, phytoplankton; Z, zooplankton; PZ, planktivorous fish; TP top predators.

Figure 58> Portion of the overall model that isolates the Figure 59> Portion of the overall model describing the relationships between the different forms of phosphorus. interactions involving macrophyte species and nutrients.

Figure 60> The grazing chain components and their interactions as a sub-model for lake Idro

84 3 Microbial loop is a general terms that describes organisms such as bacteria and protozoa whose action on the organic matter mineralize nutrients that thus become available to primary 85 Figure 57> Distribution of macrophyte species along the vertical profile of the littoral area of lake Idro. producers. All. variables. making. up. the. grazing. chain. have. been. thought. percentage.sedimentary.phosphorus.contribute.to.sustain.these. When. the. feeding. interactions. between. MT,. MN. and. SP. are. The.further.addition.of.the.self-damping.on.SP.(model.C).would. as.self-damped..In.the.case.of.algae.(F).this.self.damping.term,. populations.. added. the. model. yields. the. community. matrix. reported. in.. yield.the.community.matrix.shown.in.Table 25.and.the.table.of. more.than.a.density.dependent.control,.takes.into.account.the. Table 23.(Model.B).with.the.table.o.predictions.in.Table 24. prediction.reported.in Table 26. continuous.supply.of.phytoplankton.that.come.from.the.basin.. These.uncertainties.forced.us.to.develop.four.different.scenarios. For. all. the. other. variables. (Z,. PZ,. TP). the. self-damping. either. for.the.structure.of.the.interactions.in.the.littoral.portion.of.lake. summarizes.all.the.regulative.feedback.that.takes.place.between. Idro:.with.and.without.self-damping.on.SP.in.combination.with. the. species. forming. the. variable. (i.e.. predaceous. zooplankton. the.two.options.with.and.without.macrophyte.species.feeding. that.feeds.on.filter.feeders).or.account.for.other.resources.that. on.S P. . can. be. exploited. by. those. species. and. that. are. not. explicitly. The. community. matrix. that. represents. a. graph. contains. a. considered. in. the. model. (i.e.. top. predators. may. well. feed. on. coefficient..equal.to.1.wherever.any.row.variable.positively.affects. benthic. fish).. The. link. between. the. grazing. chain. and. nutrient. any.column.variable.(arrow.in.the.graph)..If.the.effect.is.negative. cycle. is. completed. by. the. production. of. particulate. material. a.-1.must.be.introduced.(the.circle.had.link.in.the.graph)..A.0. containing. phosphorus. by. all. the. component. of. the. grazing. coefficient.stands.for.the.lack.of.interactions.between.the.row. chain.and.macrophytes.through.excretion.and.decomposition.. variable.and.the.column.variable...Due.to.this.correspondence. Some. of. the. links. in. the. model. of. Figure 77. are. depicted. as. between. graphical. symbols. of. links. and. coefficients. the. dashed.lines;.they.are,.in.particular,.those.representing.feeding. community. matrix. of. the. model. without. self-damping. on. SP. relations.between.the.two.macrophyte.groups.and.sedimentary. and.no.feeding.interactions.between.sedimentary.phosphorus. phosphorus,. plus. a. self-regulation. link. on. this. latter. variable.. and. macrophyte. groups. (model. A,. henceforth). takes. the. form. This.way.of.representing.the.links.wants.to.emphasize.that.we. of.Table 21:. were. uncertain. about. the. existence. of. these. interactions.. The. A.determinant.different.from.0.is.prerequisite.for.the.model.to.be. self-damping. on. SP. would. be. necessary. if. by. this. we. would. accepted..In.case.of.null.value.matrix.inversioni.s.not.possible. identify.the.phosphorus.trapped.in.the.surface.of.the.sediment,. and.predictions.cannot.be.obtained..The.number.of.accepted. that.tales.part.in.the.water.sediment.interface.dynamics..In.this. tries.reflects.the.number.of.stable.cases.(in.this.case.140.out. case. a. continuous. supply. from. the. phosphorus. that. is. buried. of.10,000;.Logofet.1993)..Such.stable.matrices.form.a.sample. in.the.deeper.layer.of.the.sediment.must.be.considered,.which. of.limited.size.considering.the.number.of.simulated.cases..This. Table 24> Table of predictions for model B. would.yield.a.negative.self.effect.on.SP . .If,.on.the.other.hand,. means.that.from.a.quantitative.point.of.view.there.must.be.rigid. SP. represents. the. entire. pool. of. sedimentary. phosphorus. constraints.to.the.magnitude.of.links.in.order.to.have.a.stable. then.no.self.damping.on.SP.is.necessary.(Bodini.et.al..2007).. configuration.for.the.system..Such.values.cannot.be.reproduced. As. for. macrophytes. the. uncertainty. about. their. feeding. by.the.qualitative.approach.but.ad.hoc.field.and.experimental. interactions. with. SP. emerge. form. the. scarce. knowledge. we. studies.could.be.conceived.to.assess.such.a.range.of.intensities.. had.of.this.mechanism.in.lake.Idro..There.is.a.possibility.that. The.prediction.table.for.this.model.is.given.Table 22. these.plants.use.both.dissolved.and.sedimentary.phosphorus,. with. the. former. as. main. resource,. but. it. is. not. certain. I. what. Table 23> Commujnity matrix for model B (no self-damping on SP and macrophyutes feediong on it).

Table 22> Table of predictions for the model whose community matrix is given in Table 24 Table 26> Table of predicitons obtained from model C. (model A).

Table 21> Community matrix for the model of Figure 75 without self damping on Sp and no Table 25> Community matrix for model C. 86 feeding interactions on this latter variable by macrophytes. 87 The. last. scenario. maintains. the. self. damping. on. SP. but. this. 4th. row).. Whereas. non. resistant. macrophytes. would. diminish.. However. this. conclusion. is. presented. with. circumspection. The. fluctuating. hydrometric. level. would. have. influence. on. two. variable.does.not.contribute.to.sustain.the.growth.of.macrophyte. (column.MN,.2nd,.3rd.and.4th.row)..The.various.form.of.phosphorus. because. the. vast. extension. of. resistant. macrophytes. that. processes:.a).the.passage.of.phosphorus.from.the.sedimentary. species. (model. D).. The. outcomes. of. this. model. are. shown. in. are.either.decreasing.or.not.changing.(columns.S P, .D P, .P P, .2nd,. are. presently. observed. could. be. the. temporary. outcome. of. phase.to.the.dissolved.one;.and.b).the.direct.inhibition.of.non. Table 27.and.the.table.of.predictions.in.Table 28. 3rd. and. 4th. row). and. the. system. trophy. seems. to. improve. as. an. incomplete. succession. that. could. be. still. in. progress. and. resistant. macrophytes. over. resistant. species.. Effects. on. these. the.phytoplankton.biomass.is.expected.to.decrease.(column.F, . that. could. end. with. the. replacement. of. resistant. species. processes.will.turn.into.input.to.the.variables.that.are.involved. Discussion 2nd,.3rd.and.4th.row)..This.set.of.models.tell.that.increasing.the. with. non. resistant. ones...Also,. according. to. models. B,C,. and. in.these.dynamics..So.the.impacts.of.a.fluctuating.hydrometric. Resistant.species.have.colonized.and.dominate.the.macrophyte. hydrometric. level. would. be. beneficial. for. water. quality. of. the. D,. the. diminution. of. phosphorus. concentrations. should. be. regime. can. be. simulated. by. considering. 4. inputs:. positive. on. community.in.the.upper.part.of.the.littoral.profile.(0-6.m.depth).. littoral.system.but.with.a.reduction.of.the.fish.stocks,.as.both. accompanied. by. a. reduced. phytoplankton. biomass.. Data. on. DP. and. resistant. macrophytes. (MT);. negative. on. sedimentary. They.have.performed.better.than.non.resistant.species.because. PZ.and.TP.are.predicted.to.decrease..Model.A,.the.one.that.has. chlorophyll.a,.however,..yields.a.significant.increase.(P<<.0,01). phosphorus.(SP).and.non.resistant.macrophytes.(MN).. no. self. damping. on. SP. and. macrophytes. feeds. on. dissolved. of.algal.biomass.in.the.period.following.the.stabilization.of.the. they.are.usually.earlier.species.in.the.ecological.succession.of. Predictions. provided. by. the. 4. models. as. for. these. inputs. are. phosphorus. only,. yields. opposite. expectations.. Non. resistant. hydrometric.level.at .a.higher.quota,.in.agreement.with.model.A.. the.macrophyte.community..They.are.resistant.to.dry.conditions. presented.in.Table 30.which.considers.only.the.row.of.the.original. species.would.be.favored.and.would.dominate.the.community. Furthermore. the. observed. reduced. phosphorus. concentration. and.are.the.first.to.colonize.areas.that.become.submerged.after. tables.of.predictions.that.pertain.the.variables.subjected.to.input... a.dry.period..Increasing.the.hydrometric.level.of.the.lake.would. while. resistant. macrophytes. are. predicted. to. diminish.. The. could.be.due.to.other.inputs.as.well,.namely.to.external.inputs. make. new. areas. available. for. macrophytes. to. establish,. and. nutrient. concentrations. and. phytoplankton. biomass. would. uptake.(e.g..thorugh.the.implemetaion.of.wastewater.processing).. Because.the.fluctuating.hydrometric.level.produce.the.four.inputs. earlier.species.are.favorite.in.this.colonization.process.. be. increasing,. with. a. possible. deterioration. of. water. quality. These.elements.combined.with.the.lack.of.control.on.the.way. as.they.have.been.describe.above.the.effect.of.this.management. in. littoral. zone.. By. looking. at. the. present. state. of. lake. Idro,. data.about.phosphorus.concentrations.and.chlorophyll.a.were. option.can.be.obtained.by.combining.the.effects.of.the.four.input. To. make. predictions. in. this. case. one. should. hypothesize. one. sees. that. resistant. species. are. very. common. along. the. gathered.in.the.course.of.the.years.suggest.not.to.take.drastic. on.the.variables.of.interest..Column.MT.in.Model.B.shows.two. an. increase. in. the. rate. of. change. of. resistant. species,. that. is. shorelines. (see Figure 57).. Also. the. level. of. total. phosphorus. decision.as.for.discarding.model.A.as.inadequate.and.the.study. positive.predictions.one.negative.and.a.zero..That.is.this.model. a. positive. input. to. MT.. The. effects. of. this. variation. over. the. (Figure 61).has.diminished.since.the.hydrometric.level.has.been. will. proceed. maintaining. all. the. 4. models. as. equally. plausible. predict. a. tendency. to. increase.for. resistant. macrophytes.. In. whole.system.can.be.deduced.from.the.table.of.predictions.by. increased.and.kept.more.stable.(one.tail.T.student.applied.to. alternative.descriptions.for.the.system.. model.C.this.tendency.is.exacerbated.as.now.in.the.MT.column. considering.the.row.labeled.as.MT..Along.it.one.reads,.column. total..phosphorus. concentration. before. and. after. year. 2007,. the.ratio.between.positive.and.negative.predictions.is.3:1...Model. In.the.management.option.that.considers.a.fluctuating.hydrometric. by.column.the.variation.expected.in.the.level.of.abundance.of. P<<0,01)..According.to.these.two.evidences.it.would.seems.that. D.has.two.signs.and.two.zeroes..For.model..B,.C.and.D.thus.the. level. for. the. lake,. the. dynamics. of. the. littoral. system. will. be. all.the.components..Predictions.obtained.from.the .four.model. changing.the.hydrometric.level.has.produced.lower.phosphorus. tendency.is.that.of.an.increment..of.resistant.macrophytes.. affected. by. the. frequency. and. magnitude. of. the. fluctuations.. analyzed.with.loop.analysis.for.this.particular.input.have.been. concentration.and.higher.abundance.of.resistant.macrophytes,. However.in.qualitative.terms.the.effects.to.be.considered.pertain. As.for.non.resistant.species.still.we.have.two.distinct.patterns:. extracted.from.the.tables.and.glued.together.in.Table 29 to.make. supporting.the.predictions.obtained.from.models.B,C,.D,.which. the. competition. between. the. two. macrophyte. groups. and. Mmodel.a.predicts.these.macrophytes.to.increase.overall,.while. the.comparison.between.models.easier.. thus.should.be.preferred.to.model.A.as.better.description.of.the. nutrient.availability..In.particular,.the.alternation.of.dry.and.wet. models.B,.C,.and.D.predict.a.decrease,.although.model.C.with. system. Models. B,. C,. and. D. yield. similar. predictions.. Resistant. periods.one.the.one.side.would.tend.to.increase.nutrient.release. an. equal. number. of. pluses. and. minus. along. the. MN. column. nd rd macrophytes.are.expected.to.increase.(column.MT,.2 ,.3 .and. form.the.sediment.to.the.water.column.(SD.is.transformed.in.DP). maintain. great. uncertainty. about. the. direction. of. change. for. and.on.the.other.to.disrupt.mechanisms.of.ecological.succession. this.component..Predictions.of.decrease.seem.to.confirm.result. in. favor. of. resistant. species.. In. the. presence. of. a. fluctuating. from.literature.(Greening.e.Gerritsen.1987).according.to.which.a. hydrometric. regime. there. will. be.no. time. to. complete. the. fluctuating.regime.favoured.the.growth.o.resistant.species..Model. succession.and.resistant.species.will.never.be.replaced.as.the. A,.on.the.contrary,.predict.a.decrease.in.MT.and.an.increase.of. dry.periods.impede.non.resistant.species.to.become.dominant... MN..

Table 28> Table of predictions for model D. Figure 61> Temporal trend of total phosphorus concentrations in the epilimnion of lake Idro.

Table 27> Community matrix for model D.

Table 30> Variations in the abundances of all variables following positive input on MT and DP Table 29> Variations in the abundances of all variables following a positive input on MT according and negative input on MN and SP. Signs along the row of the variable that underwent to the four scenarios A, B, C, D. negative input have been inverted with respect to the original tables.

88 89 It.must.be.pointed.out,.however,.that.model.predictions.apply. reduce.the.concentration.of.this.fraction.in.the.water.column.. 12%.of.total.P.load.(with.peaks.up.to.20%).to.the.lake.compared. In.winter,.when.mixing.of.the.upper.water.column.occurs,.the. only. in. the. zones. in. which. the. coexistence. of. resistant. and. This.could.be.explained.by.the.fact.that.phosphorus.recycling. with.less.2%.of.the.total.water .discharge..Fish.farms.are.also. chemical. features. of. the. water. mass. are. homogeneous. up. to. non. resistant. species. is. possible. and. regulated. only. by. their. can.be.so.high.that.compensates.for.the.reduced.load.from.the. located.along.the.main.tributaries,.thus.contributing.to.the.river. a.depth.comprised.between.40.and.30.m,.in.2011.and.2012,. reciprocal.interactions.(direct.or.indirect.via.the.nutrients)..That.is. basin..The.system.as.modeled.by.graph.A.seem.to.possesses. loads.. respectively.. Below. these. depths,. a. progressive. increase. in. in.the.deeper.waters.of.the.littoral.area,.where.resistant.species. the. greatest. inertia. with. respect. to. the. changed. imposed. as. water. temperature. and. a. decrease. in. water. quality. has. been. We. tentatively. estimated. the. expected. trophic. status. from. TP. are.not.present.the.community.dominated.by.non.tolerant.is.a. input.to.certain.variables..Model.B,.C,.e.D.describe.a.system. observed..Oxygen.depletion.in.the.monimolimnion.determines. concentrations. with. the. Vollenweider. model. (Vollenweider. &. stable.configuration.for.the.community.that.cannot.be.changed. which.is.still.reactive.and.in.which.reducing.phosphorus.loading. the. onset. of. reducing. metabolism,. that. was. evident. from. the. Kerekes.1982)..Outcomes.of.the.modeling.exercise.have.to.be. by.the.fluctuations.of.the.hydrometric.level.. would. produce. less. non. resistant. macrophytes,. whereas. a. sharp.NO3-.decrease.and.the.significant.increase.of.dissolved. handled.carefully.because.the.Vollenweider.model.does.apply. diminution.of.the.resistant.species.seems.impossible.to.obtain.. reduced. compounds. (sulphides,. methane,..iron,. and. total. The. sharp. distinction. between. prediction. of. model. A. and. for.mixed.lakes,.whilst.it.is.not.generally.suitable.for.meromictic. On. the. other. hand. the. trophy. of. the. lake. would. improve. as. manganese).. The. high. concentrations. of. these. compounds. those.of.the.other.three.models.disappears.when.one.looks.at. lakes..We.used.the.mean.P.concentration..from.this.study,.which. phytoplankton,. dissolved. and. particulate. phosphorus. are. all. indicate.an.extreme.degradation.of.the.monimolimnion,.which. the. evolution. of. water. quality. in. the. littoral. zone. as. predicted. is.17-21.mg.P.m-3.and.is.equivalent.to.1.3±0.5.mg.P.m-2.y-1,. expected.to.decrease.. accounts.for.about.the.50%.of.the.lake.volume.and.represents.a. according. to. the. proposed. scheme.. Models. A,. B,. C. in. fact. and.a.water.retention.time.ranging.from.0.5.(mixolimnion.only). potential.risk.for.the.entire.basin..In.fact,.the.amount.of.oxygen. all. predict. an. increase. of. the. phytoplankton. biomass,. which. As main conclusions this qualitative study suggests: and.0.9.y.(whole.lake)..We.obtained.a.mean.Chl-a.concentration. needed.to.oxidize.the.reduced.compounds.accumulated.in.the. will. bring. about. an. increased. turbidity.. As. for. phosphorus. of. 2.5. mg. m-3. with. a. maximum. of. 8. mg. m-3,. corresponding. •..macrophyte. presence. cannot. be. contrasted. by. slightly. monimolimnion.often.exceeds.that.contained.in.the.mixed.layer... the. 4. models. overall. indicate. a. propensity. to. increase. the. to. oligo-mesotrophic. conditions. that. contrasts. with. the. data. managing.the.hydrometric.level.of.the.lake..A.stable.increase. Under.these.conditions,.in.case.of.sudden,.complete.mixing.of. concentration.of.this.element.in.the.various.forms.. obtained. in. this. survey.. However,. it. should. be. noticed. that. of. it. seems. to. favor. resistant. species. and. in. the. case. of. a. the.whole.water.mass,.the.oxygen.consumption.coupled.to.the. because. of. the. meromictic. condition. of. the. lake. these. values. Measures. to. curb. macrophytes. development. are. not. easily. fluctuating.regime.there.would.be.a.different.distribution.of.the. oxidation. of. reduced. compounds. would. induce. a. remarkable. would.be.considered.as.a.proxy.of.the.estimated.trophic.state. conceivable..One.main.option.is.to.reduce.nutrient.loading.from. species.belonging.to.the.two.groups.but.with.a.tendency.for. consumption.of.oxygen.with.a.subsequent.significant,.though. determined.by.the.external.load.under.a.complete.water.mass. outside. the. lake.. In. the. model. language. this. would. translate. tolerant.species.to.dominate.the.community;.. transient,.oxygen.deficit.in.the.water.column. circulation. in.a.negative.input.over.dissolved.phosphorus.(DP)..Along.the. •..according. to. predictions. a. higher,. more. stable. level. of. the. The. monimolimnion. is. a. significant. reserve. of. inorganic. row. labeled. as. DP , . in. each. model,. one. reads. the. expectation. waters.could.be.beneficial.for.water.quality.in.the.littoral.zone. Lake Idro is highly productive, undergoes a stable and persistent nutrients,.in.particular.P, .derived.from.bacterial.mineralization.in. as.for.changes.in.the.level.of.all.the.system.variables..Table 31 (less. phytoplankton. and. reduced. concentrations. for. both. thermal and chemical stratification, and accumulates reducing the.sediment..Contrarily.to.littoral.sediments,.that.have.a.good. summarizes.these.outcomes. dissolved. and. particulate. phosphorus). while. in. the. case. of. compounds and dissolved nutrients in the monimolimnion. buffering. capacity. against. the. release. of. dissolved. nitrogen. fluctuating.level.water.quality.would.remain.substantially.the. Thermal.and.chemical.profiles.along.the.water.column.confirm. Model.A.does.not.predict.any.improvement.in.lake.conditions.. and. phosphorus. to. the. water. column,. the. benthic. system. of. same; that.Lake.Idro.is.permanently.stratified.since.approximately.40. No. variation. is. in. fact. expected. for. both. macrophytes. and. the.monimolimnion.constantly.release.both.N.(as.NH4+).and.P. years. ago. (Barbato. 1975).. Pelagic. primary. production. rates,. phytoplankton.. A. counterintuitive. result. emerges. from. this. •..reducing.nutrient.loading.may.improve.water.quality,.but.with. (as. SRP). to. the. water. compartment.. The. permanent. reducing. biomass.in.the.littoral .belt.and.accumulation.of.organic.matter. model:. reducing. the. load. of. dissolved. phosphorus. would. not. no.impact.on.the.macrophyte.communities.. conditions. of. the. monimolimnion. limit. the. sediment. P. binding. in. the. deep. sediment. demonstrate. that. Lake. Idro. is. highly. capacity.of.the.iron..Most.of.the.P.is.bound.to.Ca.which.can.be. productive,. in. agreement. with. findings. from. previous. studies. released.only.by.pH.variations. (Barbato.1975;.Barbato.et.al..1990;.Garibaldi.et.al..1997).and. according. to. international. standards. (Hopson. &. Zimba. 1993;. Winter. mixing. of. the. upper. layer. of. the. monimolimnion. and. Wetzel,.2001;.Padisak,.2004)..The.ecological.status.of.the.lake. eddy. diffusion. determine. a. partial. transfer. of. nutrient. to. the. was.also.evaluated.applying.the.LTLeco.index.(DL.n°.260/2010),. mixolimnion.. It. has. been. estimated. that. about. 6.5. tons. of. P. which. considers. average. TP. concentration,. hypolimnetic. y-1.diffuse.from.the.monimolimnion.to.the.mixolimnion,.which. dissolved. oxygen. content. and. Secchi. depth.. LTLeco. resulted. represent.about.the.50%.of.the.P.load.to.the.upper.mixed.layer.of. to.be.<.12,.a.value.that.corresponds.to.a.“sufficient”.ecological. the.lake..Moreover,.because.of.the.more.balanced.ratio.between. status,. an. assessment. further. confirmed. by. metrics. obtained. N,. P. and. Si. in. deep. waters. compared. to. surface. waters,. this. from.annual.weighted.average.Chl-a.concentration. flux. determines. a. net. P. enrichment. of. the. upper. mixed. layer. compared.to.the.other.nutrients.. Phytoplankton. biomass,. estimated. as. Chl-a. concentration,. peaked. in. late. summer. 2010. and. spring. 2011.. The. change. in. Reliability and use of ecological quantitative and qualitative community. structure,. observed. between. June. and. October. models. The. two. modelling. analysis. applied. in. this. study. 2010,. resulted. in..a. dense. algal. biomass. in. the. surface. layer. exemplify. how. different. approaches. can. help. in. decision. and.

Table 31> Variations in the abundances of all variables following a reduction of phosphorus loading of. the. water. column,. with. a. consequent. decrease. in. water. policy.making.on.aquatic.environments.. (negative input on DP). Signs along the rows have been inverted with respect to the original transparency. and. a. drastic. deterioration. of. water. quality.. tables because of the negative input assumed to affect DP. The. first. modelling. tool. (Ecosystem. Network. Analysis;. ENA). In. summer. 2010,. up. to. 100. species. of. phytoplankton. were. is. based. upon. a. tropho-dynamical. approach,. that. describes. identified,. none. of. them. was. toxic.. Dinoflagellates. and. all. thropic. interactions. among. ecosystem. components,. and. chlorophytes. showed. the. highest. densities,. even. though. quantifies.the.flows.(in.terms.of.matter/energy.transfer).between. their. contribution. to. the. total. biomass. was. significant. only. in. Concluding remarks species,. abiotic. compartments. and. the. external. environment.. July. and. August.. In. the. remaining. months,. cryptophytes.. and This.approach.follows.the.recognition.that.any.effort.to.preserve. cyanophytes,.together.with.diatoms,.contributed.to.the.largest. This. section. summarizes. the. main. outcomes. of. the. study,. stoichiometry. is. 77. <. DIN:TDP. <. 254,. and. 50. <. DRSi:TDP. <. and.manage.natural.resources.can.be.effective.only.if.the.entire. proportion. of. the. total. biovolume.. Cryptophytes. showed. the. the. issues. that. will. require. further. research,. and. a. preliminary. 330.. Assuming. that. the. average. balanced. ratios. are. DIN:TDP. ecosystem.is.considered.as.the.unit.of.management,.instead.of. lowest. biomass. in. July. and. August,. likely. due. to. the. grazing. evaluation. of. options. for. a. sustainable. management. of. the. =.16:1.and.DRSI:TDP.=.20:1,.one.can.postulate.that.TDP.is.the. single.plant.or.animal.species..For.lake.Idro,..ENA.models.have. effect. of. zooplankton.. In. the. same. period,. corrsponding. to. lake. ecosystem,. along. with. possible. remedial. and. restoration. limiting.factor.with.respect.to.DIN.and.DRSi..On.average,.the. been.constructed.to.explore.the.pathways.followed.by.nutrients. the. maximum. thermal. stability,. Bacillariophyceae. were. mainly. measures. daily.TP.and.DRSi.inputs.exceeds.outputs.by.some.30-40.%,. and.their.distribution.between.inorganic.substances,.producers. represented.by.small.centric.diatoms.(likely.Cyclotella.spp.).that. thus.indicating.that.the.lake.is.a.P.and.Si.sink,.whilst.N.retention. and. consumers,. in. order. to. understand. how. the. ecosystem. Nutrient loads from lake watershed are moderately high, with may. stay. in. suspension. in. the. water. column. due. to. their. low. is.almost.negligible. function. and. to. analyze. possible. responses. to. management. an excess of nitrogen versus phosphorus and silicon.. The. sinking.rates..The.development.of.cyanophytes.observed.at.the. strategies. such. as. variations. imposed. to. the. nutrient. external. annual. load. is. 14.5±5.4. tons. of. TP. (of. which. 8.6±3.2. tons. of. The. P. load. come. mainly. from. the. Chiese. and. Caffaro. rivers,. end.of.summer.2010.is.a.common.phenomenon.that.in.recent. loading. SRP),.745±366.tons.of.TN.(of.which.591±322.tons.of.NO3-N). although.an.appreciable.quota.is.also.accounted.by.the.direct. years.has.occurred.in.all.the.deep.South.alpine.lakes.(Salmaso. and.1326±857.t.of.DRSi.(as.Si)..In.the.main.tributaries,.nutrient. delivery. from. a. fish. farm,. with. average. daily. release. of. about. 2010).. Overall,. phytoplankton. biomass. confirm. the. eutrophic. condition.of.Lake.Idro.(Vollenweider.&.Kerekes.1982;.Rott.1984)..

90 91 Total.System.Throughtput.(TST).and.Finn.Cycling.Index.(FCI).are. uncertainty. about. many. of. the. parameters. and. dynamics. that. 100%). and. by. the. analysis. of. the. inputs.. This. latter. analysis. macrophytes.is.about.10.m..The.community.is.characterized.by. the.most.intelligible.indices.that.describe.whole.system.activity.. would.be.necessary.for.implementing.a.quantitative.approach... indicates.that.the.cycle.of.links.from.SRP,.to.PP.and.back.again. a.high.diversity,.but.with.a.few.dominant.species,.which.account. In. addition. Total. System. Overhead. (O). and. Average. Mutual. When.in.doubt.about.the.actual.structure.of.a.system.we.can. to.SRP,.shows.consistent.fluxes,.in.most.cases.above.the.100%.. for.more.than.90%.of.the.total.biomass,.and.a.definite.zonation. Information. (AMI). describe. the. health. status. of. a. system.. The. model.alternatives.and.find.out.which.differences.matter.. The.Finn.Cycling.Index.(FCI),.that.for.P.assumes.values.up.to.the. of.vegetation..The.typical.constituents.of.the.meadows.located. TST.is.the.sum.of.all.flows.in.an.ecosystem.and.allow.to.quantify. 80%,.also.supports.these.results.. between. -1. and. -6. m. are. submerged. allochthonous. elodeids. Qualitative.models.are.therefore.ideal.tools.for.analysis,.where. how.much.energy.or.matter.is.processed.by.a.system.in.the.unit. (Elodea. nuttallii. and. Lagarosiphon. major),. and. the. macroalga. many. uncertainties. characterize. the. knowledge. of. the. system. The.high.internal.P.recycling.seems.to.suggest.that .the.system. of.time..As.such,.it.is.a.measure.of.the.size.of.the.processes.and.it. Chara. globularis. at. greater. depths.. On. the. whole,. all. these. and. changing. hypotheses. and. research. lines. is. very. likely.. A. productivity.is.relatively.independent.from.the.external.load..In. quantifies.the.level.of.activity.of.an.ecosystem,.exactly.as.the.sum. species.of.macrophytes.have.a.rather.high.conservation.value. qualitative.investigation.may.focus.on.critical.variables.or.process. order. to. verify. this. hypothesis,. some. alternative. scenarios. for. of.monetary.flows.(GDP).estimates.the.overall.economic.activity. in. agreement. with. the. EU. Directive. Habitat. and. the. “Habitat. to.be.successively.investigated.in.more.detail.with.a.quantitative. the. network. were. conceived. and. analyzed.. To. do. this,. a. new. of.a.nation..The.FCI.quantifies.the.fraction.of.matter.or.energy. Supplementary. List”. provided. by. Mariotti. &. Margiocco. (2002). approach.. As. an. example,. the. loop. analysis. technique. was. compartment.was.added.to.act.as.a.link.between.the.pools.of. that.takes.part.in.recycling;.in.other.words.it.describes.the.ability. for.the.Lombardy.Region. applied. in. order. to. evaluate. the. ecological. consequences. of. N.and.P.within.and.outside.the.system..With.regard.to.N,.the. of.the.system.to.use.it..The.AMI.is.an.indicator.of.the.system. regulating.the.water.level.of.Lake .Idro.on.the.littoral.zone.trying. internal.recycling.has.a.limited.effect:.in.fact,.on.average,.the. On. the. basis. of. the. application. of. the. MacroIMMI. (one. of. the. efficiency.in.the.exchange.of.matter.and.energy..This.efficiency. to. answer. questions. like:. do. aquatic. plant. biomass. increase,. network.compartments.similarly.depend.on.the.internal.(83%). two.Italian.indices.for.lake.macrophytes.(Oggioni.et.al.,.2011)),. is.higher.when.the.system.metabolism.can.be.satisfied.by.fewer. diminish.or.remain.stable.after.changing.water.levels?. and. external. (78%). pools.. On. the. opposite,. the. dependence. Lake. Idro. could. be. considered. in. a. “good. ecological. status”,. pathways. and. networks. are. less. redundant. (considering. both. from. the. external. P. input. (53.5%). is. lower. compared. to. the. although. more. than. the. half. of. the. aquatic. macrophytes. are.. internal.fluxes.and.connections.with.the.outside.environment).. The.combined.use.of.the.two.types.of.ecological.models.can.help. dependence.from.the.internal.P.pool.(93%)..Accordingly.it.can. alien.species.(but.with.global.covers.lower.than.75%)..However,. When.the.fluxes.increase,.efficiency.decrease.and.the.overhead. to.evaluate.food.web.responses.to.perturbations.affecting.one. be.concluded.that.internal.P.recycling.sustains.about.the.50%. the.assessment.becomes.more.harsh.(from.good.to.scarce).if. (O).increase..The.O.is.thus.a.measure.of.the.inefficiency.but,.at. or.more.species.that.make.up.the.biotic.community..A.classic. of.the.whole.ecosystem.metabolism. we.consider.exclusively.the.metric.“trophic.score”.(sk).for.South. the.same.time,.it.is.an.indicator.of.system.flexibility..Redundant. example. is. the. removal. of. keystone. species,. which. are. those. alpine.lakes.with.maximum.depth.greater.than.125.m.(sk.=.0.35).. fluxes.are.alternative.pathways.that.could.be.used.by.the.system. biological.components.that.are.a.pivot.in.determining.structure. Input.analysis.also.evidences.the.importance.of.the.loop.among. following.perturbations..Overall.the.balance.between.TST,.AMI. and. functioning. of. the. whole. community. or. of. a. substantial. dissolved.inorganic,.phytoplankton.and.particulate.components.. SFI.and.LHS.seem.to.represent.in.a.correct.way.the.conservation. and.O.determines.the.health.status.of.the.ecosystem.where.TST. part. of. it.. Therefore. the. application. of. these. models. can. help. Sediment.and.monimolimnion.compartments.contribute.mostly. status.of.littoral.and.riparian.habitats.(shore.zones).of.the.lake,. describes.vigor,.AMI.organization.and.O.resilience. to. answer. questions. like:. what. happens. if. the. exploitation. of. with.sedimentation.and.accumulation.fluxes,.in.particular.for.P. although.several.critical.aspects.have.been.identified..We.stress. some. fish. species. of. commercial. interest. is. excessive?. what. cycle..Only.10%.of.SRP.that.enters.in.the.lake.leaves.the.system. the. need. to. update,. widen. and. adapt. several. descriptors. to. The. practical. application. of. these. indicators. can. be. better. happens.if.accidently.an.alien.species.enters.into.the.system?. from.the.same.compartment,.while.more.than.60%.settles.on. the.peculiarities.of.the.Italian.lake-types.and.their.surrounding. understood. with. an. example.. If. we. reduce. the. external. load. The.answer.is.not.in.quantitative.terms,.but.will.simply.highlight. lake. bottom. and. contributes. to. increase. the. internal. P. load.. areas;.similarly,.the.lists.of.species.selected.are.often.incomplete. of. phosphorus. to. Lake. Idro. an. increase. in. TST. and. AMI. is. the.evolutionary.trend.of.the.system. On.the.contrary,.74%.of.DIN.that.enters.in.the.lake.leaves.the. and.need.to.be.carefully.revised..Finally,.the.functional.analysis. observed.(ie.the.ecosystem.acquires.greater.vigor.and.greater. system.from.the.same .compartment,.and.only.9%.settles.and. of. aquatic. vegetation. and. the. functionality. and/or. metabolic. efficiency.in.the.use.of.phosphorus).with.a.parallel.decrease.in. In. conclusion,. once. background. information. about. structural. accumulates.in.the.system. efficiency.of.the.riparian.and.littoral.zones.should.be.assessed. O,.that.is.the.system.becomes.more.fragile.and.more.vulnerable. and.functional.properties.of.the.ecosystem.are.available,.models. for.achieveing.a.better.classification.scheme. to. perturbations.. This. means. that. by. removing. the. external. can.be.used.as.a.scientific.support.to.the.decisions..In.this.way,. A. conservative. estimate. of. the. P. accumulated. below. 50. m. causes. there. is. not. an. immediate. reduction. of. the. effects. subjectivity. can. be. removed. from. the. assessment. of. some. depth. in. the. upper. sediment. horizon. (0-10. cm). indicates. that. Aquatic.macrophytes.represent.a.component.of.aquatic.habitats. of. eutrophication,. but. there. is. a. decrease. of. the. ecosystem. aspects.in.the.decision.making.process.that.cannot.be.based. this.compartment.contains.about.0.8.tons.of.SRP,.0.7.tons.of. with.an.important.functional.role,.for.example.in.the.control.of. resilience.. As. a. consequence. it. suggests. that. managing. the. only.on.expert.judgment.or.on.predetermined.criteria. exchangeable.P, .2.5.tons.of.P.bound.to.iron.and.34.0.tons.of.P. nutrients.or.as.habitat.for.many.species.of.macroinvertebrates. lake. with. immediate. measures,. such. as. a. drastical. reduction. bound.to.calcium..The.more.reactive.forms,.therefore,.account. and. fishes,. but. are. often. perceived. by. local. population. as. Main outcomes of network analysis modeling: relevance of of. the. inputs,. may. not. produce. the. expected. results.. A. more. for.about.25%.of.the.external.load..If.one.considers.that.the.soft. a. problem. for. recreational. and. bathing. uses.. In. Lake. Idro,. external loads and internal biogeochemical processes. The. complex. management. plan. would. be. required. and. step-wise. sediment.has.a.thickness.of.about.30.cm,.it.can.be.estimated. macrophyte. distribution. is. limited. to. a. very. narrow. belt. in. the. more. relevant. outcome. of. the. Ecological. Network. Analysis. is. interventions.should.be.taken.to.push.the.system.in.such.a.way. that. the. phosphorus. potentially. recyclable. towards. the. water. littoral.area;.as.a.consequence,.their.impact.on.the.trophic.status. the.evidence.of.a.very.high.P.recycling.within.the.lake (Figure not.to.increase.the.probability.of.occurrence.of.none.of.the.three. column.may.reach.about.12.tons,.to.which.must.be.added.the.P. and.on.cycles.of.nutrients.at.the.wole-lake.scale.is.relatively.low.. 62)..In.particular,.considering.100.the.amount.of.SRP.(the.most. pathological.configurations.(eutrophic,.brittle,.crystallized). already.dissolved.in.the.monimolimnion.(between.56.and.80.t).. At.a.local.scale,.however,.macrophytes.play.an.important.role. available.form.of.P.to.algae.and.bacteria).entering.the.lake,.only. both.in.terms.of.productivity.and.control.of.nutrients.availability. Qualitative.modeling.has.as.main.objective.the.comprehension. few. units. leave. the. system. in. the. same. form. while. the. major. In. conclusion,. results. from. both. experimental. and. modeling. and.sediment-water.exchanges.. of. interactions. among. ecosystem. components,. rather. than. part.is.internally.recycled.or.accumulates.in.the.sediment.(see. activities. indicate. that. internal. recycling. and. accumulation. measuring.interactions.and/or.flows.among.them..This.approach. fluxes.that.exit.from.the.sediment.and.from.the.monimolimnion).. in. the. sediment. characterize. the. P. cycle. in. Lake. Idro.. As. a. Application of qualitative modeling to assess the impact of graphically.describes.the.interactions.between.the.populations. Differently. from. P, . considering. 100. the. amount. of. DIN. that. consequence,. management. activities. for. lake. restoration. that. management policies for the regulation of water level on aquatic in.a.community.and.with.the.a-biotic.environment.that.make.up. enters.in.the.system,.about.75.leave.it.in.the.same.form.while. consider.only.the.drainage.basin.will.have.limited.results,.since.a. plants.. Macrophyte. species. were. grouped. in. two. functional. an.ecosystem..In.particular.it.considers.how.variables.affect.each. only.a.minor.part.undergoes.internal.recycling.or.settling.to.the. significant.fraction.of.the.lake.metabolic.activity.is.sustained.by. categories. according. to. their. adaptation. to. dry. conditions. other.growth.rate,.but.it.retains.only.the.qualitative.nature.of.this. sediment.surface. its.internal.load..We.tentatively.estimated.the.time.required.for.the. caused.by.water.level.fluctuations,.namely.the.elodeids.(which. effect..Therefore.it.allow.a.preliminary.assessment.of.different. consumption.of.this.huge.internal.P.load.following.a.significant. tolerate. a. wide. variation. in. environmental. conditions). and. the. These. results. are. also. confirmed. both. by. the. input-output. management. strategies. (i.e.. changes. in. a. particular. physical. reduction. in. the. external. loads,. bearing. in. mind. that. multiple. charids. (which. prefer. more. stable. environmental. conditions).. analysis.(where.the.coefficients.of.dependence.are.all.extremely. or. chemical. feature). and. it. is. particularly. useful. when. there. is. (even.stochastic).factors.are.involved.in.the.control.of.internal. The.analysis.has.been.conducted.considering.two.management. high. and. the. sum. of. each. single. compartment. is. higher. that. P.cycling.and.that.this.problem.cannot.be.solve.sith.simplistic. options. (1). fluctuating. water. level. by. some. ±1.5. m. around. assumptions..On.average,.assuming.a.constant.P.diffusion.from. the. current. mean. level. and. (2). the. stabilization. of. the. actual. the.monimolimnion.to.the.upper.mixed.layer.of.about.6.5.tons. hydrometric. level. without. significant. fluctuations. (only. natural. y-1,.we.estimated.a.P.turnover.in.the.monimolimnion.ranging. fluctuations),.to.simulate.changes.which.occurred.in.2007.. between.10.and.15.years.. The. results. of. this. modeling. effort. allow. to. draw. three. main. Development and distribution of macrophyte vegetation. conclusions: Survey. data. confirm. a. very. dense..colonization. of. littoral. •..the.presence.of.macrophytes.cannot .be.contrasted.with.the. macrophytes. all. along. the. shorelines. of. Lake. Idro,. with. the. regulation.of.the.hydrometric.level.of.the.lake..A.stable.water. exception.of.the.riparian.area.delimited.by.the.Liperone.stream. level.increase.seems.to.favor.resistant.species.and,.in.the.case. mouth.and.the.village.of.Ponte.Caffaro,.as.well.as.in.presence. of.a.fluctuating.regime,.there.would.be.a.different.distribution. of. cliffs. and/or. reefs.. The. maximum. depth. of. colonization. by.

Figure 62> Detailed sub-network for the analysis of SRP and DIN inputs.

92 93 of.the.species.and.the.tolerant.ones.will.become.dominant;.. assessed.on.a.case.by.case.basis..Plants.cutting.or.eradication. ecological.features.of.lake.and.its.watershed..In.other.words,. environmental. observing. system. and. a. long. term. ecological. may. resuspend. the. surficial. sediment. causing. water. turbidity. decision.and.policy.making.for.a.such.threatened.ecosystem. research.(LTER).program..The.latter,.is.now.operational.at.national. •..a.higher,.more.stable.water.level.could.be.beneficial.for.water. and.nutrient.release..To.avoid.phytoplankton.and.macroalgae.to. should. be. scientifically. supported.. The. appropriate. tools. for. level. with. the. Italian. LTER. initiative. (http://www.lteritalia.it/),... quality. in. the. littoral. zone. (less. phytoplankton. and. reduced. grow.these.activity.should.therefore.be.conducted.under.more. challenging. such. scientific. support. system. are. first. of. all. an. that.can.be.used.as.a.template.. concentrations. for. both. dissolved. and. particulate. P),. while. restrictive.environmental.conditions.(for.example.at.the.beginning. in. the. case. of. fluctuating. levels. water. quality. would. remain. of.the.vegetative.stage)..Finally,.macrophytes.manipulation.can. substantially.unchanged; facilitate. the. dispersal. of. propagules. or. fragments. increasing. •..reducing.nutrient.loading.may.improve.lake.water.quality.as. the. areal. distribution. of. species. with. vegetative. reproduction. References dissolved. and. particulate. P. are. expected. to. decrease. along. such.as.elodeids.(E..nuttallii .and.L..major).or.M..spicatum..In.the. Alpine Convention, 2009.. Alpine. Signals. -. Special. Edition. 2.. Bays J.S., Crisman T.L. 1983. Zooplankton. and. trophic. state. with.phytoplankton..On.the.other.hand,.little.effect.is.expected. absence.of.adequate.information.it.would.be.better.to.adopt.the. Water.and.Water.Management.Issues..Report.on.the.State.of. relationships.in.Florida.lakes..Can..J. .Fish..Aquat..Sci..40:1813- on.the.littoral.community,.in.particular.a.negative.effects.on.non. precautionary.principle,.with.pilot.studies.follwed.by.full-sacle. the.Alps. 1819. tolerant. macrophytes,. whereas. a. diminution. of. the. resistant. intervention,. when. appropriate.. Overall,. harvesting. should. be. species.seems.unlikely.to.be.achieved.. performed.early.in.the.growth.season.for.at.least.two.reasons:. A.P.H.A., A.W.W.A., W.P.C.F. 1998.. Standard. methods. for. Bender E.A., Case T.J., Gilpin M.E. 1984.. Perturbation. Main problems and possible solutions. Management.of.Lake. the. development. of. new. propagules. is. reduced. because. the. examination. of. water. and. wastewater.. 14th. edition,. A.P.H.A.,. experiments. in. community. ecology.. Theory. and. practice.. Idro.raises.different.problems,.some.of.them.particularly.severe. photosynthesis.is.low.and.reserve.materials.are.removed.with. Washington,.1114.pp. Ecology.64:.1-13. plant. biomass,. and. the. amount. of. exported. biomass. is. lower. and.that.still.remain.to.be.solved..In.addition,.the.wareness.by. AA.VV. (a cura di S. Bassi) 2006 –. Gli. habitat. di. interesse. Bettinetti R., Croce V., Galassi S., Volta P. 2006. pp’DDT. compared. to. that. has. to. be. harvested. at. the. growth. peak. to. stakeholder.and.lay.citizens.of.major.impacts.and.feasibility.of. comunitario. segnalati. in. Emilia-Romagna.. Regione. Emilia- and. pp’DDE. accumulation. in. a. food. chain. of. Lake. Maggiore. achieve. the. same. effects.. It. must. be. emphasized. that. any. sustainable.recovery.practices.are.fundamental.in.order.to.fully. Romagna,.Bologna. (Northern. Italy):. testing. steady-state. condition.. Environmental. intervention,.even.those.that.have.wide.margins.of.safety.and. appreciate. the. complexity. of. the. ecological. problems.. Below. Science.Pollution.Research.13:.59-66. we.summarize.and.prioritise.the.main.issues.based.on.problem. effectiveness,.must.be.conducted.in.compliance.with.existing. Allesina S., Bondavalli C. 2004..WAND:.an.ecological.network. complexity.and.urgency.for.solution: rules,.e.g..for.nature.and.biodiversity.conservation. analysis. user-friendly. tool.. Environmental. Modelling. and. Bettinetti R., Quadroni S., Galassi S. 2008. Is.meltwater.from. Software,.19:.337-340. Alpine.glaciers.a.secondary.DDT.source.for.lakes?.Chemosphere. 1)..persistent.meromixis.determining.anoxia.in.the.monimolimnion,. Understanding the long term evolution of water and ecosystem 73.(7):.1027-1031. which.accounts.for.about.50%.of.lake.volume; quality for a scientific support to decision making..The.global. Ambrosetti.W.,.Barbanti.L..2005..Evolution.towards.meromixis. 2)..In.case.of.sudden,.complete.mixing.of.the.whole.water.mass,. change. scenarios. for. the. Alpine. region,. in. which. lake. Idro. is. of. Lake. Iseo. (Northern. Italy). as. revealed. by. its. stability. trend.. Bienfang P. K. 1980. Phytoplankton.sinking.rates.in.oligotrophic. the.oxidation.of.reduced.compounds.would.induce.a.strong. located,.let.forecast.deep.changes.of.river.and.lake.hydrology.. Journal.of..Limnology.64:.1-11. waters.off.Hawaii,.USA..Journal.Marine.Biology,.61:.69-77. Global.warming.is.expected.to.induce.the.glacier.retreat,.with. consumption.of.oxygen,.with.a.subsequent.significant,.though. Anagnostidis K., Komarek J. 1988.. Modern. approach. to. the. Billen G., Lancelot C. 1988.. Modeling. benthic. nitrogen. cycle. potential.effects.on.both.physical.features.and.trophic.status.of. transient,.oxygen.deficit.in.the.water.column; classification. system. of. cyanophytes.. 3-Oscillatoriales.. Archiv.. in. temperate. coastal. ecosystems.. Blackburn. TH,. Sørensen. J,. deep.lakes.. 3)..the.high. internal. P. load. represent. a. major. obstacle. to. the. Hydrobio..Suppl.,.80:.1-4.(Algological.studies.50-53),.327-472.. editors..Nitrogen.cycling.in.coastal.marine.environments..New. lake.recovery,.because.it.maintains.higher.trophic.conditions. In.the.short.term,.water.inputs.to.lakes.will.increase.as.an.effect. York.John.Wiley.and.Sons..p:.341-378. Anderson L.D., Delaney M.L. 2000..Sequential.extraction.and. compared.to.those.expected.by.the.actual.external.load; of. ice. melting,. with. also. a. possible. contamination. due. to. the. analysis.of.phosphorus.in.marine.sediments:.Streamlining.of.the. Biondi E., Blasi C., Burrascano S., Casavecchia S., Copiz R., release. of. persistent. pollutants. that. have. been. accumulating. 4)..Most.of.the.littoral.area.of.the.lake.is.colonized.by.submerged. SEDEX.procedure..Limnol..Oceanogr.,.45(2):.209-515. Del Vico E., Galdenzi D., Gigante D., Lasen C., Spampinato in.the .past.decades.within.the.ice.cap..(Bettinetti.et.al.,.2006;. aquatic. vegetation,. which. constitutes. a. socio-economic. G., Venanzoni R., Zivkovic L. 2009. –. Manuale. Italiano. di. Angelstein S., Schubert H. 2008. Elodea. nuttallii:. uptake,. rather.than.an.ecological.problem,.since.it.is.perceived.as.a. 2008;.Bogdal.et.al.,.2009)..In.the.long.term,.either.retreat.or.loss. Interpretazione.degli.Habitat.della.Direttiva.92/43/CEE..Società. translocation. and. release. of. phosphorus.. Aquatic. Biology. 3:. nuisance.factor.for.bathing.and.recreational.purposes. of.glaciers.is.expected.to.result.in.a.lesser.water.delivery,.with. Botanica. Italiana. -. Ministero. dell’Ambiente. e. della. Tutela. del. 209-216. a.greater.dependence.of.lake.hydrology.on.the.wet.deposition. Territorio.e.del.Mare,.Direzione.Protezione.della.Natura..http:// This. latter. point. deserves. particular. attention.. The. control. of. regime.. Concurrently,. the. temperature. increase. will. affect. the. macrophyte.growth.requires.the.implementation.of.management. APAT-IRSA CNR. 2004..Metodi.analitici.per.le.acque..Manuali.e. vnr.unipg.it/habitat/ thermal.structure.of.the.water.mass.with.an.increase.of.either. Linee.Guida.N..29/2003,.Roma,.ed..APAT-IRSA.CNR. programs. taking. into. account. all. the. factors. promoting. and. holigomixis. or. meromixis. (Ambrosetti. &. Barbanti. 2005).. In. Blais J.M. 2001..Melting.glaciers:.a.major.source.of.persistent. sustaining. the. lake. productivity.. For. example,. the. mechanical. lake. Idro,. an. increased. stability. of. the. thermal. stratification. is. Baird D., Fath B.D., Ulanowicz R.E., Asmus H., Asmus R. 2009. organochlorines.to.subalpine.Bow.Lake.in.Banff.National.Park,. harvesting.of.the.macrophytes.provides.positive.effect.only.in. thus. expected. to. strengthen. the. meromictic. conditions.. The. On.the.consequences.of.aggregation.and.balancing.of.networks. Canada..Ambio.30:.410-415. the.short.term,.but.unpredictable.consequences.in.the.medium. on. ecosystem. properties. derived. from. ecological. network. increase. of. surface. water. temperature. can. also. stimulate. the. Bloesh J. 2004. Sedimentation.and.lake.sediment.formation..In:. to. long. term.. Active. management. of. submerged. macrophyte. phytoplankton. production,. which. affects. both. pattern. and. analysis,.Ecological.Modelling,.220:.3465-3471. communities.is.currently.practiced.in.lakes.of.various.sizes..The. The.Lakes.Handbook,.Vol..1.Limnology.And.Limnetic.Ecology,. intensity.of.organic.carbon.sedimentation,.along.with.N,.P.and. Baird D., Ulanowicz R. E. 1993. Comparative. study. on. the. control.of.the.biomass.can.be.done.with.different.techniques.like. P.E..O’Sullivan.&.C.S..Reynolds.eds,..Blackwell.Publishing.pp. Si.fixed.into.the.biomass..Carbon.inputs.to.surface.sediments. trophic.structure,.cycling.and.ecosystem.properties.of.four.tidal. manual. or. mechanical. cutting,. eradication,. physical. treatment. 197-229. fuel. microbial. processes. and. increase. the. consumption. of. estuaries..Marine.Ecology.Progress.Series,.99:.221-237. (e.g.,.by.covering.the.bottom.with.textile.that.prevents.light.to. oxygen.and.other.oxidized.compounds,.which.induces.anoxia. Bogdal C., Schmid P., Uszennegg M., Anselmetti F.S., Schringer reach. the. sediment. surface),. and. treatment. with. herbicides.. and.reducing.conditions.in.the.hypolimnetic..The.organic.matter. Baird D., Ulanowicz R.E. 1989..The.seasonal.dynamics.of.the. M., Hungerbulher K. 2009. Blast.from.the.past:.melting.glaciers. Biomanipulation. of. food. webs. at. whole. ecosystem. scale. was. mineralization.will.also.deliver.inorganic.nutrients.into.the.water. Chesapeake.Bay.ecosystem..Ecological.Monographs,.59:.329- as.a.relevant.source.for.persistent.organic.pollutants..Environtal. also.adopted,.but.mainly.for.experimental.purposes.and.in.small. mass..Under.these.circumstances,.in.lake.Idro.the.persistence. 364. Sciences.&.Technology.43:.8173-8177. lakes..If.we.exclude.chemical.treatments,.which.could.lead.to. of.anoxia.and.inherent.anaerobic.processes.will.contribute.an. Barbato G. 1975. Il.lago.d’Idro:.caratteristiche.chimiche.e.fisiche.. Bodini A. 1998. Representing. ecosystem. structure. through. significant. water. pollution,. and. physical. treatment. because. of. increasing. concentration. of. methane,. sulphides,. ammonia,. Memorie.dell’istituto.italiano.di.idrobiologia,.32:.261–295. signed. digraphs.. Model. reconstruction,. qualitative. predictions. the.costs.and.technical.constraints,.the.remaining.options.are. phosphates,.silica.and.heavy.metals..The.permanent.separation. and.management:.The.case.of.a.freshwater.ecosystem..Oikos. cutting.or.eradication..These.are.commonly.used.methods.for. Barbato G. Grottolo M., Resola S. 1990. Indagine. sul. lago. of. mixolimnion. and. monimolimnion. is. expected. to. result. in. 83:.93-106. which. there. are. well. established. technological. procedures.. A. changes. of. N,. P. and. Si. stoichiometry. and. cascade. reactions. d’Idro.. Apetti. chimico-fisici,. microbiologici. e. fitoplanctonici.. costs/benefits.analysis.should.be.carefully.evaluated,.accounting. through.the.food.web. Monografie.di.“Natura.Bresciana”..15:.74.pp. Bodini A. 2000. Reconstructing. trophic. interactions. as. a. tool. also. environmental. and. ecological. currencies.. For. example,. for. understanding. and. managing. ecosystems:. Application. to. Bardat J., Bioret F., Botineau M., Boullet V., Delpech R., Géhu without.reduction.of.N.and.P.loads,.biomass.removal.may.favor. In.lake.Idro,.in.order.to.face.changing.hydrological.and.ecological. a. shallow. eutrophic. lake.. Canadian. Journal. of. Fisheries. and. J.-M., Haury J., Lacoste A., Rameau J.-C., Royer J.-M., Roux the. spreading. of. opportunistic. species. characterized. by. rapid. conditions.further.management.options.have.to.be.considered,. Aquatic.Sciences.57:.1999-2009.. G., Touffet J. 2004 –.Prodrome.des.végétations.de.France..Coll.. growth.(i.e..macroalgae),.with.worsening.effects.especially.in.the. which.in.turn.might.affect.water.and.ecosystem.quality,.making. Patrimoines.naturels,.61..Muséum.national.d’histoire.naturelle,. Bodini A., BondavalliC., Allesina S. 2007. L’ecosistema. e. le. intervention.area..In.the.case.of.communities.composed.by.alien. a.feedback.loop.between.quality.and.potential.uses. Paris..171.pp. sue.relazioni..Idee.e.strumenti.per.la.valutazione.di.impatto.e.di. species. that. contribute. valuable. habitats. for. species. at. risk,. Decision.making.is.thus.a.complex.task.and.should.be.founded. incidenza..Franco.Angeli,.MI,.159.pp. eradication.of.these.species.in.natural.settings.should.be.carefully. on. an. updated. scientific. background. of. environmental. and.

94 95 Bolpagni R. 2010.. Monitoraggio. dell’impatto. della. programme..Marine.Science.and.Technology.(MAST.III)..National. Fossing H., Jorgensen B.B. 1989. Measurement. of. bacterial. Jassby A.D., Goldman C.R. 1974.. Loss. rates. from. a. lake. sperimentazione. della. Navigazione. pubblica. del. Lago. d’Idro. Environmental.Research.Institute,.Silkeborg,.Denmark..62.pp. sulphate. reduction. in. sediment:. evaluation. of. a. single-step. phytoplankton. community.. Limnology. and. Oceanography,. 19:. sulla.componente.vegetazionale.idro-igrofila..Relazione.finale.di. chromium.reduction.method..Biogeochemistry,.8:.205-222. 618-627. De Angelis D.L., Gross L.J., Houston M.A., Wolff W.F, Fleming progetto,.Provincia.di.Brescia,.Brescia. D.M., Cominskey E.J., Sylvester S.M. 1998.. Landscape. Garibaldi L., Brizzio M.C., Varallo A., Mosello R. 1997. Jensen M.M, Petersen J., Dalsgaard T., Bo Thamdrup B. Bolpagni R., Tomaselli M. 2005.. Contributo. alla. conoscenza. modelling.for.everglades.restoration..Ecosystems,.1:.64-75. Idrochimica.e.fitoplancton.del.Lago.d’Idro..Documenta.Ist..Ital.. 2009..Pathways,.rates,.and.regulation.of.N2.production.in.the. della. flora. idro-igrofila. e. della. vegetazione. acquatica. del. lago. Idrobiol..61:.153-172. chemocline.of.an.anoxic.basin,.Mariager.Fjord,.Denmark..Marine. De Bernardi R., Giussani G., Guilizzoni P., Mosello R. 1985. d’Idro. (BS).. Informatore. Botanico. Italiano,. 37. (supplemento. 1,. Chemistry,.113:.102–113. Indagine.conoscitiva.per.una.caratterizzazione.limnologica.dei. Geller W. 1989..The.energy.budget.of.two.sympatric.Daphnia. parte.1).2005. Piccoli.Laghi.Lombardi..Documenta.Ist..ital..Idrobiol..8:1-205. species.in.Lake.Constance:.productivity.and.energy.residence. Jørgensen S.E., Nielsen S.N., Jørgensen L.A. 1991..Handbook.. Bondavalli C., Ulanowicz R. E., Bodini A. 2000..Insights.into.the. times..Oecologia,.78:.242-250. of. ecological. parameters. and. ecotoxicology.. Amsterdam:. De Mera A.G. Vicente Orellana J.A. 2006 –. Aproximación. al. processing.of.carbon.in.the.South.Florida.Cypress.Wetlands:.a. Elsevier..1262p. esquema.sintaxonómico.de.la.vegetación.de.la.región.del.Caribe. Gerdol R. Tomaselli M. 1993.–.The.vegetation.of.wetlands.in.the. whole-ecosystem.approach.using.network.analysis..Journal.of. y.América.del.Sur..Anales.de.Biología.28:.3-27 northern.Apeninnes.(Italy)..Phytocenologia.21:.421-469. Komárek J., Anagnostidis K. 1999. Cyanoprokariota.. 1. Teil:. Biogeography,.27:.697-710. Chroococcales.. In:. Sübwasserflora. von. Mitteleuropa.. Gustav. Den Hartog C., Segal S. 1964.–.A.new.classification.of.the.water. Gibson C.E. 2006.. Sinking. rates. of. planktonic. diatoms. in. Bondavalli C., Bodini A., Rossetti G., Allesina S. 2006. Fischer.Verlag. plant.communities..Acta.Botanica.Neerlandica.13:.367-393. an. unstratified. lake:. a. comparison. of. field. and. laboratory. Detecting. stress. at. the. whole. ecosystem. level.. The. case. of. a. observations..Freshwater.Biology,.14:.631-.638. Koste W. 1978.. Rotatoria. Die. Radertiere. Mitteleuropas.. mountain.lake:.Lake.Santo.(Italy)..9:.768-787. Dussart BH. 1969. Les. Copépodes. des. eaux. continentales. Gebru¨nder.Borntraeger:.Berlin,.Stuttgart. d’Europe. occidentale.. 2.. Cyclopoïdes. et. Biologie.Boubée. &. Goodwillie R. 1992.–.Turloughs.over.10ha,.vegetation.Survey.&. Bottrell, H.H., Duncan A., Gliwicz Z.M., Grygierek E., Herzig Cie.,.Paris. Evaluation..A.Report.for.the.National.Parks.&.Wildlife.Service,. Krammer K., Lange-Bertalot H. 1991, 1997..Bacillariophyceae.. A. 1976..A.review.of.some.problems.in.zooplankton.production. Office. of. Public. Works.. Scaricabile. dall’indirizzo:. http://www. In:.Sübwasserflora.von.Mitteleuropa..Gustav.Fischer.Verlag,.4. studies..Norw..J..Zool..24:419-456. Einsle U. 1996.. Copepoda:. Cyclopoida.. Genera. Cyclops,. npws.ie/en/media/Media,5147,en.PDF volumi. Megacyclops,. Acanthocyclops.. SPB. Academic. Publishing,. Braioni M.G., Gelmini D., 1983..Rotiferi.Monogononti.(Rotatoria:. Amsterdam. Goodyear C.P., Boyd C.E. 1972.. Elemental. composition. of. Kvernevik T., Zambri M., Akhir M., Studholme J. 2002. A.low- Monogononta).. Consiglio. Nazionale. delle. Ricerche. AQ/1/200,. largemouth. bass. (Micropterus. salmoides).. Transactions.of. the. cost.procedure.for.automatic.Sea-floor.mapping,.with.particular. Roma. Elliott J.M. 1976a..The.energetics.of.feeding,.metabolism.and. American.Fisheries.Society,.101:.545-547. reference. to. coral. reef. conservation. in. developing. nations.. growth.of.brown.trout.(Salmo.trutta.L.).in.relation.to.body.weight,. Brandl Z., Lavická M. 2002.. Morphological. differentiation. of. Hydrobiologia.474(1):67–79. water.temperature.and.ration.size..Journal.of.Animal.Ecology,. Grabherr G., Mucina L. 1993.. . Die. Pflanzengesellschaften. some.populations.of.the.genus.Cyclops.(Copepoda:.Cyclopoida). 45:.923-948. Österreichs..Fischer,.Jena. Lastein E. 1983. Decomposition.and.sedimentation.processes. from.Bohemia.(Czech.Republic)...Acta.Soc..Zool..Bohem..6:161- in. oligotrophic,. subarctic. Lake. Thingvalla,. Iceland.. Oikos,. 40:. 168. Elliott J.M. 1976b. Energy.losses.in.the.waste.products.of.brown. Greening H.S., Gerritsen J. 1987. Changes. in. macrophyte. 103-112. trout.(Salmo.trutta.L.)..Journal.of.Animal.Ecology,.45:.561-80. community. structure. following. drought. in. the. Okefenokee. Braun-Blanquet J. 1964.. Pflanzensoziologie,. 3rd. edition.. Swamp,.Georgia..USA..Aquatic.Botany.28:.113-128. Levins R. 1974. Qualitative. Analysis. of. partially. specified. Vienna,.New.York:.865.pp. Elliott J.M. 1984.. Growth,. size,. biomass. and. production. of. systems.. Annals. of. the. New. York.Academy. of. Sciences. 231:. young. migratory. trout. Salmo. trutta. in. a. Lake. District. stream,. Gulati R.D., Perez C. Siewertsen K. 1995.. Zooplankton. as. a. Carrillo P., Reche I., Cruz-Pizarro L. 1996. Quantification.of.the. 123-138.. 1966–1983..Journal.of.Animal.Ecology,.53:979-904. compound. mineralising. and. synthesizing. system:. phosphorus. phosphorus.released.by.zooplankton.in.an.oligotrophic.lake.(La. excretion..Hydrobiologia,.315:.25-37. Logofet D.O. 1993. Matrices.and.Graphs..Stability.problems.in. Caldera,.Spain):.regulation.factors.and.adjustment.to.theoretical. Elliott J.M., Davison W. 1975. Energy. equivalents. of. oxygen. mathematical.ecology..CRC.Press,.Ann.Arbor.MI,.USA.pp..308. models..Journal.of.Plankton.Research,.18:.1567-1586. consumption.in.animal.energetics..Oecologia,.19:.195-201. Hendrixon H.A., Sterner R.W., Kay A.D. 2007. Elemental. stoichiometry. of. freshwater. fishes. in. relation. to. phylogeny,. Lovley D.R., Phillips E.J.P. 1987.. Rapid. Assay. for. Reducible. Christian R.R., Flores E., Comin F., Viaroli P., Naldi M., Ferrari Elliott J.M., Hurley M.A. 1995. The. functional. relationship. allometry.and.ecology..Journal.of.Fish.Biology,.70:.121-140. Ferric. Iron. in. Aquatic. Sediments.. Applied. and. Environmental. I. 1996. Nitrogen. cycling. networks. of..coastal. ecosystems:. between.body.size.and.growth.rate.in.fish..Functional.Ecology,. Microbiology,.53:.1536-1540. influence.of.trophic.status.and.primary.producer.form..Ecological. 9:.625-627. Hillebrand H., Dürselen C.D., Kirschtel D., Pollingher U., Modelling,.87:.111-129. Zohary T. 1999..Biovolume.calculation.for.pelagic.and.benthic. Mageau M.T., Costanza R., Ulanowicz R.E. 1995. The. Elliott. J.M.,. Hurley. M.A.. 1998.. A. new. functional. model. for. microalgae..J..Phicol..35:.403-424. development.and.initial.testing.of.a.quantitative.assessment.of. Chýtrý M., Tichý L. 2003..Diagnostic,.constant.and.dominant. estimating.the.maximum.amount.of.invertebrate.food.consumed. ecosystem.health..Ecosys.Health.1:201–13. species. of. vegetation. classes. and. alliances. of. the.. Czech per.day.by.brown.trout,.Salmo.trutta..Freshwater.Biology,.39:. Hołińska M., Dahms H.U., 2004..New.diagnostic.microcharacters. Republic:. a. statistical. revision.. Folia. Facultatis. Scientiarum. 339-349. of.the.cephalothoracic.appendages.in.Cyclops.O.F..Müller,.1776. Margaritora F.G. 1985.. Cladocera.. Fauna. d’Italia.. Calderini,. Naturalium.Universitatis.Masarykianae.Brunensis.108:.1-231. (Crustacea,.Copepoda,.Cyclopoida)..Zoosystema.26:175-198. Bologna. Elliott J.M., Hurley M.A. 2000. Optimum. energy. intake. and. Ciampittiello.M..2011..Parametri.idromorfologici.per.la.valutazione. gross. efficiency. of. energy. conversion. for. brown. trout,. Salmo. Hopson M.S., Zimba P.V. 1993. Temporal. variation. in. the. Mariotti M.G. Margiocco C. (edit), 2002 -. Carta. Naturalistica. delle. pressioni. e. degli. impatti. e. della. qualità. degli. habitat.. In:. trutta. feeding. on. invertebrate. or. fish.. Freshwater. Biology,. 44:. biomass. of. submersed. macrophytes. in. Lake. Okeechobee,. della. Lombardia.. Un. Sistema. Informativo. Territoriale. per. la. Marchetto. A.,. A.. Boggero,. M.. Ciampittiello,. G.. Morabito,. A.. 605-615. Florida..J..Aquat..Plant.Management.31:.76-81.. conservazione.della.biodiversità..170.pp..MILANO:.Fondazione. Oggioni. &. P. . Volta. (a. cura. di),. Indici. per. la. valutazione. della. Lombardia.per.l’Ambiente.(ITALY). Elliott J.M., Hurleyn M.A., Fryer R.J. 1995. A. new,. improved. Huber-Pestalozzi G. 1938, 1961, 1962, 1968, 1969, 1982, 1983. qualità.ecologica.dei.laghi..Report.CNR‐ISE,.03‐11:.123‐154. growth.model.for.brown.trout,.Salmo.trutta..Functional.Ecology,. Das.phytoplankton.des.Süsswasser..In:.H.J..Elster.,.Dr..H.C.W.. Matzinger A., Müller B., Niederhauser P., Schmid M., Wüest, Cline.J.D..1969..Spectrophotometric.determination.of.hydrogen. 9:.290-298. Ohle.(Ed.):.Die.Binnengwasser..8.volumi. A. 2010. Hypolimnetic.oxygen.consumption.by.sediment-based. sulphide.in.natural.waters..Limnology.and.Oceanography.14.(3),. reduced.substances.in.former.eutrophic.lakes..Limnology.and. Esjmont-Karabin J. 1984. Phosphorus. and. nitrogen. excretion. James C.S., Eaton J. W., Hardwick K. 2006.. Responses. of. 454-459. Oceanography,.55(5),.2073-2084. by.lake.zooplankton.(rotifers.and.crustaceans).in.relation.to.the. three. invasive. aquatic. macrophytes. to. nutrient. enrichment. do. Cole. J.J.,. Likens. G.E.,. Hobbie. J.E.. 1984.. Decomposition. of. individual. body. weights. of. the. animals,. ambient. temperature,. not.explain.their.observed.field.displacements..Aquatic.Botany. Miller C.A. Glibert P.M. 1998..Nitrogen.excretion.by.the.calanoid. Planktonic.Algae.in.an.Oligotrophic.Lake..Oikos,.42:.257-266. and.presence.of.food..Ekologia.Polska,.32:.3-42. 84:.347-353. copepod. Acartia. tonsa:. results. of. mesocosm. experiments.. J.. Plankton.Res.,.20:.1767–1780. Conti.F., .Abbate.G.,.Alessandrini.A.,.Blasi.C..2005..An.annotated. Estrum-Yousef S.R., Feuerpfeil P., Schubert H., Schumann James M.R. 1987.. Seasonal. changes. in. metabolic. rates. of. check-list.of.Italina.vascular.flora..Palombi.Editore,.Roma. R. 2000. Quality.of.particulate.matter.and.its.potential.sinking. zooplankton.and.their.importance.to.phytoplankton.production. Miller C.A. Roman M.R. 2008. Effects.of.food.nitrogen.content. rates.in.pelagic.samples.of.inshore.and.bodden.waters.of.the. in. two. New. Zealand. lakes. of. contrasting. trophic. state.. New. and. concentration. on. the. forms. of. nitrogen. excreted. by. the. Dalsgaard. T., . Nielsen. L.P.,. Brotas. V., ..Viaroli. P., . Underwood. Southern.Baltic.Sea..International.Review.of.Hydrobiology,.85:. Zealand. Journal. of. Marine. and. Freshwater. Research,. 21:. 573. calanoid.copepod,.Acartia.tonsa..J..Exp..Mar..Biol..Ecol..359:. G.J.C.,. Nedwell. D.B.,. Sundbäck. K.,. Rysgaard. S.,. Miles. A.,. 341-357. -.588. 11-17. Bartoli.M.,.Dong.L.,.Thornton.D.C.O.,.Ottosen.L.D.M.,.Castaldelli. G.. Risgaard-petersen. N.. 2000.. Protocol. handbook. for. NICE- Ettl H. 1978. Xanthophyceae.. Teil. 1.. In:. Sübwasserflora. von. Murphy K.J. 2002. –. Plant. communities. and. plant. diversity. in. Nitrogen.cycling.in.estuaries:.a.project.under.the.EU.research. Mitteleuropa..Gustav.Fischer.Verlag. softwater.lakes.of.northern.Europe..Aquat.Bot.73:.287-324.

96 97 Nagasaka M. 2004. Changes.in.biomass.and.spatial.distribution. Roberti A. 2004..Vegetazione.acquatica.e.riparia.del.Lago.d’Idro. Thamdrup B., Dalsgaard T., Jensen M. M., Ulloa O., Farìas Ulanowicz R.E., Abarca-Arenas L.G. 1997.. An. informational. of. Elodea. nuttallii. (Planch.). St.. Jhon,. an. invasive. submerged. (Italia. settentrionale).. Tesi. di. Laurea,. Dipartimento. di. Biologia. L., Escribano R. 2006.. Anaerobic. ammonium. oxidation. in. the. synthesis. of. ecosystem. structure. and. function.. Ecological. plant,. in. oligomesotrophic. Lake. Kizaki. from. 1999. to. 2002.. Evolutiva.e.Funzionale,.Università.di.Parma. oxygen-deficient. waters. off. northern. Chile.. Limnology. and. Modelling,.95:.1-10. Limnology.5:.129-139. Oceanography,.51(5):.2145–2156. Rodrigo M.A. Pierson D.C., Pettersson K., Kaup E., Padisák J. Ulanowicz R.E., Baird D. 1999..Nutrient.controls.on.ecosystem. Nielsen L.P. 1992. Denitrification.in.sediment.determined.from. 1998..Sinking.and.floating.of.natural.phytoplankton.assemblages. Thiébaut G. 2005.. Does. competition. for. phosphate. supply. dynamics:.the.Chesapeake.mesohaline.community..Journal.of. nitrogen.isotope.pairing..FEMS.Microbial.Ecology,.86:.357-362. in.Lake.Erken..Arch..Hydrobiol..Spec..Issues.Adv..Limnol.,.51:. explain.the.invasion.pattern.of.Elodea.species?.Water.Research. Marine.Systems,.19:.159-172. 143-156. 39:.3385-3393. Oggioni A., Bolpagni R. 2010.. Proposta. metodologica. per. Ulanowicz R.E., Tuttle J.H. 1992.. The. trophic. consequences. la. determinazione. del. valore. trofico. di. piante. acquatiche. di. Rott E. 1984. Phytoplankton. as. biological. parameter. for. the. Tomaselli M., Bolpagni R., Gualmini M., Borghi M.L., Perlini S. of.oyster.stock.rehabilitation.in.Chesapeake.Bay..Estuaries,.15:. ambiente.lacustre:.primi.passi.per.la.formalizzazione.di.un.indice. trophic.characterization.of.lakes..Verh..Internat..V erein.Limnol.. & Spettoli O. 2003.. La. Vegetazione. dei. nuclei. naturalistici. del. 298-306. macrofitico..In:.Bottarin.R.,.Schirpke.U.,.Tappeiner.U.,.Oggioni. 22:.1078-1085. Parco.Regionale.dell’.Sud..I.Quaderni.del.Parco.n°2..Ed.. Utermöhl H. 1931.. Uber. das. umgekehrte. microscop.. Arch. A.,.Bolpagni.R..(a.cura.di),.Macrofite.&.Ambiente..Atti.del.XIX. Consorzio.del.Parco.Oglio.Sud,.Regione.Lombardia,.Provincia. Rowan J.S., Soutar I., Bragg O.M., Cutler M.E.J. 2006..Lake. Hydrobiol..Plankt..22:.643-645. Congresso.della.Società.Italiana.di.Ecologia.“Dalle.vette.alpine. di.Mantova. Habitat.Survey.in.the.United.Kingdom..Sniffer,.Edinburgh. alle. profondità. marine”,. Bolzano. 15-18. settembre. 2009:. 191- Tomaselli M., Bolpagni R., Gualmini M., Petraglia A., Longhi Valderrama, J.C. 1981. The. simultaneous. analysis. of. total. 204. Rowan J. S., Carwardine J., Duck R. W., Bragg O. M., Black D. 2006..Studio.fitosociologico,.cartografia.della.vegetazione.e. nitrogen. and. total. phosphorus. in. natural. waters.. Marine. A. R., Cutler M. E. J., Soutar I., Boon P. J. 2006..Development. Chemistry,.10:.109-122. Oggioni A., Buzzi F., Bolpagni R. 2009.. Indici. macrofitici. per. analisi.dello.stato.trofico.delle.acque.della.Palude.del.Busatello. of.a.technique.for.Lake.Habitat.Survey.(LHS).with.applications. la. valutazione. della. qualità. ecologica. dei. laghi:. MacroIMMI. e. (Italia. settentrionale).. Bollettino. del. Museo. Civico. di. Storia. Vollenweider R. A., Kerekes J. 1982..Eutrophication.of.Waters,. for. the. European. Union. Water. Framework. Directive.. Aquatic. MTIspecies..In:.Marchetto.A.,.A..Boggero,.M..Ciampittiello,.G.. Naturale.di.Verona,.21:.3-38. Monitoring,.Assessment.and.Control..OECD,.Paris:.154.pp. Conservation:.Marine.and.Freshwater.Ecosystems,.16,.637-657. Morabito,.A..Oggioni.&.P. .Volta.(a.cura.di),.Indici.per.la.valutazione. Ulanowicz R.E. 1986. Growth. and. Development:. Ecosystem. Wen Y.H., R.H. Peters. 1994. Empirical.models.of.phosphorus. della.qualità.ecologica.dei.laghi..Report.CNR-ISE,.02-09:.50-74 Ruttemberg K.C. 1992..Development.of.a.sequential.extraction. Phenomenology..Springer-Verlag,.New.York. and. nitrogen. excretion. rates. by. zooplankton.. Limnology. and. method.for.different.forms.of.phosphorus.in.marine.sediment.. Olsen Y., Ostgard K. 1985.. Estimating. release. rates. of. Oceanography,.39:.1669-1679. Limnology.and.Oceanography.37:.1460-1482. Ulanowicz R.E. 1991. Contributory. values. of. ecosystem. phosphorus. from. zooplankton:. Model. and. experimental. resources..In:.Ecological.Economics.(R.Cosatnza.ed.):.253-268,. Wetzel R. G. 2001. Limnology. Lakes and river ecosystems. verification..Limnology.and.Oceanography,.30:.844–852. Ruttner-Kolisko A. 1974.. Planktonic. Rotifers:. biology. and. Columbia.University.Press,.New.York. 3rd Edition. Academic.Press..1006. taxonomy..Die.Binnengewässer.(Supplement).26:1-146. Osservatorio dei Laghi Lombardi, 2005.. Qualità. delle. acque. Ulanowicz R.E. 1995. Trophic. flow. networks. as. indicators. of. Wetzel R.G., Likens G.E. 1990. Limnological. analyses.. 2nd. lacustri. in. Lombardia. –. 1°. Rapporto. OLL. 2004. Fondazione. Salmaso N., Mosello R. 2010..Limnological.research.in.the.deep. ecosystem. stress.. In:. Food. Webs:. Integration. of. Patterns. and. Edition..Springer-Verlag,.New.York,.391.pp Lombardia. per. l’Ambiente. e. IRSA/CNR,. Regione. Lombardia,. southern.subalpine.lakes:.synthesis,.directions.and.perspectives.. Dynamics.(G.A..Polis.e.K.O..Winemiller.ed.),.358-368..Chapman. Wolinska J., Keller B., Manca M., Spaak P. 2007..Parasite.survey. ARPA.Lombardia. Advances.in.Oceanography.and.Limnology.1:.29-66.. and.Hall,.New.York. of.a.DAPHNIA.hybrid.complex:.host-specificity.and.environment. Oude P.J., Gulati R.D. 1988..Phosphorus.and.nitrogen.excretion. Sarika-Hatzinikolaou M., Yannitsaros A. & Babalonos D. 2003. Ulanowicz R.E. 1997. Ecology,. the. Ascendent. Perspective.. determine.infection..J..Anim..Ecol..76:191-200.. rates. of. zooplankton. from. the. eutrophic. Loosdrecht. lakes,. The. macrophytic. vegetation. of. seven. aquatic. ecosystems. of. Complexity.in.Ecological.Systems..Columbia.University.Press. with.notes.on.other.P .sources.for.phytoplankton.requirements.. Epirus.(NW.Greece)..Phytocenologia.33:.93-151. Hydrobiologia,.169:.379-390. Schnoor J.L., Di Toro D.L. 1980. Differential. phytoplankton. Pace M.L. 1986..An.empirical.analysis.of.zooplankton.community. sinking. and. growing. rates:. an. eigenvalue. analysis.. Ecological. size.structure.across.lake.trophic.gradients..Limnol..Oceanogr.. Modelling,.9:.233-245. 31:45-55. Serada J.M., Hudson J.J. 2010. Empirical.models.for.predicting. Padisak J. 2004. Phytoplancton.. In:. he. lakes. handbook. Vol. 1. the. excretion. of. nutrients. (N. and. P). by. aquatic. metazoans:. Limnology.and.limnetic.ecology..edited.by.P.E..O’Sullivan.and.C.. taxonomic.differences.in.rates.and.element.ratios..Freshwater. S..Reynolds..Blackwell.Publishing..pp.251-308. Biology,.56:.250-263. Perez-Martinex C., Gulati R.D. 1999. Species-specific.N.and.P. Siligardi M., Bernabei S., Cappelletti C., Ciutti F., Dallafior V., release.in.Daphnia..Hydrobiologia,.391:.147-155. Dalmiglio A., Fabiani C., Mancini L., Monauni C., Pozzi S., Scardi M., Tancioni L., Zennaro B. 2011..Indice.di.Funzionalità. Peters R.H., Rigler F.H. 1973..Phosphorus.release.by.Daphnia.. Perilacuale.(IFP)..Manuale.Apat.Roma. Limnology.and.Oceanography,.18:.821-839. Steinberg D.K., Goldthwait S.A., Hansell D.A. 2002..Zooplankton. Popovskì J., Pfiester L.A. 1990..Dinophyceae..In:.Sübwasserflora. vertical.migration.and.the.active.transport.of.dissolved..organic. von.Mitteleuropa..Gustav.Fischer.Verlag. and.inorganic.nitrogen.in.the.Sargasso.Sea..Deep-.Sea.Res.,.I. Puccia C.J., Levins R. 1985..Qualitative.Modeling.of.Complex. 49:.1445–1461. Systems.. Harvard. University. Press,. Cambridge,. MA. USA,. pp.. Sterner R.W., George N.B. 2000.. Carbon,. nitrogen. and. 259. phosphorus.stoichiometry.of.cyprinid.fishes..Ecology.81,.127- Redfield A.C. 1934..On.the.proportions.of.organic.derivatives. 140. in.sea.water.and.their.relation.to.the.composition.of.plankton.. Szyrmer J., Ulanowicz R.E. 1987.. Total.flows. in. ecosystems.. James.Johnstone.Memorial.Volume,.Liverpool. Ecological.Modelling,.35:.123-136. Regione Lombardia, Comune di Anfo, Comune di Bagolino, Tanaka, Y. 1991.. Nitrogen. Budget. for. the. Rotifer. Brachionus. Comune di Idro, Comune di Lavenone, 2008. “Accordo. di. plicatilis..Journal.of.the.World.Aquaculture.Society,.22:.57–64. Programma.per.la.Valorizzazione.del.Lago.d’Idro”.. Thamdrup B., Dalsgaard T. 2002.. Production. of. N2. through. Regione Lombardia, Provincia Autonoma di Trento, 2006.. anaerobic.ammonium.oxidation.coupled.to.nitrate.reduction.in. “Accordo. tra. la. Regione. Lombardia. e. la. Provincia. Autonoma. marine.sediments..Applied.and.Environmental.Microbiology,.68:. di.Trento.per.l’armonizzazione.delle.azioni.di.salvaguardia.delle. 1312–1318. acque.del.Lago.d’Idro.e.del.Fiume.Chiese”.

98 99 Background

Humans.have.extensively.impacted.the.natural.landscape,.as.a. sectors:.agriculture,.livestock,.energy,.flood.protection,.fishing,. result.of.the.expansion.of.settlements.and.consequent.needs,. protected.areas,.lake.management,.and.of.course.local.planning.. which. have. influenced. management. approaches.. Today,. in. Of.equal.importance.is.the.involvement.of.the.business.sector,. light. of. humans’. increasing. capacity. to. transform. their. living. local. associations,. and. civil. society,. without. which. successful. environment,. it. is. ever. more. important. to. approach. land. use. water.management.is.impossible. plans.drafted.at.an.area.level.and.which.take.into.consideration. In.such.a.context,.the.topic.of.water.resources,.their.qualitative. the. deep. relationships. between. abiotic,. biotic,. and. cultural. and. quantitative. conservation,. their. correct. and. rational. use,. factors;.that.is,.by.adopting.an.ecologically.respectful.approach. and. their. strategic,. cultural,. and. environmental. importance. is. The.degradation.of.water.resources.and.related.ecosystems.is. becoming.of.primary.relevance.in.everyday.life,.and.increasingly. also.due.to.problems.that.regard.all.sectors.involved.in.land.use. impacts.the.choices.of.public.decision-makers,.. and. environmental. management,. and. it. must. thus. be. tackled. It.is.thus.decisively.important.to.«adopt.a.set.of.rules.in.which. through.a.concerted.policy.effort.at.the.regional,.provincial,.and. criteria.of.public.utility,.economic.performance,.social.value,.and. municipal.levels.. environmental.sustainability.contribute.equally.to.the.search.for. In.order.to.improve.the.environmental.quality.of.water.bodies,. efficient. solutions. for. the. restoration. of. a. river. basin. «. (World. one.must.therefore.adopt.multiple.strategies.involving.numerous. Water.Forum,.2000)1. ANNEXE 3: Lake Iseo: a complex Methodology One.of.the.tasks.of.environmental.research.is.the.development. This. new. model. is. a. fundamental. step. in. the. shift. from. of.tools.that.can.interpret.local.conditions,.taking.into.account. monitoring. to. know,. or. environmental. analyses. for. knowledge. socio-ecological system. the.rapidity.with.which.changes.take.place,.while.respecting.its. purposes. only,. to. monitoring. for. governance,. or. in. support. basic.unity. of. policy. choices. and. as. a. tool. to. assess. their. effectiveness.. This.framework.is.suitable.for.supporting.responsible.decision- As. the. environmental. sphere. branches. out. into. a. web. of. making.processes.and.identifying.and.evaluating.environmental. Water use and lake contract. increasingly. artificial. relationships,. we. need. to. recover. protection.policies. interpretative. models. that. can. help. set. the. guidelines. for. a. project.whose.ultimate.goal.is.to.contribute.to.the.construction. In.the.effort.detailed.below,.we.have.attempted.to.translate.some. of. an. ecological. system. able. to. achieve. dynamic. equilibrium,. of.these.motivations.into.a.framework.to.interpret.the.territory. self-regulate,.and.remain.sustainable.in.the.long.run. and. landscape. of. Lake. Iseo. and. its. basin. using. an. organic. approach. that. takes. into. consideration. the. social,. ecological,. To.assess.the.health.and.quality.of.an.aquatic.ecosystem,.the. and.cultural.factors.at.various.levels.of.integration.. scientific. community. uses. numerous. indexes. and. indicators,. Author: while.European.and.Italian.legislation.in.this.field.encourages.a. Since.the.excessive.development.of.human.activities.(tourism,. shift.towards.an.integrated.approach.. fishing,. transport,. untreated. urban. sewage). is. causing. a. Dott..Antonio.Dalmiglio continuous. drop. in. water. quality,. excessive. consumption. of. Currently,.the.analysis.of.environmental.dynamics.is.based.on. resources,.conversion.of.natural.areas.and.farmland.into.built- the.DPSIR.framework.(Driving.forces-Pressures-States-Impacts- up.areas,.and.the.emission.of.pollutants.into.the.atmosphere,.it. Responses),. which. derives. from. the. PSR. model. (Pressure- is.indispensable.to.approach.in.an.integrated.manner.both.the. State-Response). developed. by. the. OECD. (Organization. for. local. territory. –. with. its. ongoing. transformations. and. different. Economic. Cooperation. and. Development). on. the. basis. of. the. land.use.patters,.and.the.landscape.as.collective.goods.whose. causal.relationship.between.human.activities.and.environmental. qualities.must.be.preserved.and,.where.possible,.restored.and. effects. improved,.with.development.guidelines.that.are.compatible.with. the.different.value.levels.that.are.recognized.

100 101

1 Definition of the 2° World Forum on Water (The Hague, March 2000). Negotiated planning: the Lake Contract and integrated, multi-sector policies Therefore,. in. a. multilevel. governance. system,. lake. contracts. out.in.the.Gothenburg.Strategies10.and.Treaty.of.Lisbon.(2009)11.. are. continuous. negotiation. processes. between. public. Finally,. lake. contracts. pursue. multiple. goals:. security,. risk. For. effective. landscape. and. water. resource. management. and. River.contracts.and.lake.contracts.are.the.logical.next.step.in.a. administrations. and. private. subjects. involved. at. various. prevention. and. mitigation,. environmental. recovery,. landscape. governance,.and.to.help.decision-makers.evaluate.alternatives. national.and.European.legislative.framework.which.has.arisen. territorial. levels,. and. are. implemented. through. multi-sector,. improvement,.sustainable.use.of.resources,.sustainable.tourism,. and.make.policy.choices.that.are.coherent.with.stated.goals,.it.is. through.major.Community.directives.such.as.Water.Framework. multi-scale. agreements. typified. by. the. voluntary. nature. and. and.the.dissemination.of.water.culture.. flexibility.associated.with.such.decision-making.processes.. vital.to.know.the.evolutionary.dynamics.of.the.environment.and. Directive.2000/60/CE.(WFD),.adopted.by.the.European.Council. Lake.contracts.thus.encourage.local.planning.at.the.grass-roots. assess.the.effects.of.different.actions.and.policies. and.Parliament.on.23.October.2000,.the.European.Landscape. Lake.contracts.are.not.an.additional.level.of.planning;.instead,. level,.since.they.involve.communities.in.promoting.and.improving. Convention. of. 2000,. Directive. 2003/4/CE. on. public. access. to. they.are.a.lake.management.instrument,.through.the.integration. their. own. territories,. promote. direct,. concrete. actions. on. the. International legal framework: how have lake environmental. information,. Directive. 2003/35/CE. on. public. of.policies.and.the.promotion.of.the.capacity.to.cooperate.and. part.of.institutions.and.the.various.components.of.civil.society,. contracts come to be? participation.in.respect.of.the.drawing.up.of.certain.plans.and. share.among.various.levels.of.government.and.the.various.local. and. tackle. economic,. social,. and. environmental. problems. in. The. fragmentation. of. resources. and. skills,. interests. that. are. programmes. regarding. the. environment,. Directive. 2001/42/ community,. fully. grasping. the. “regional. and. local. dimension”. a. synergetic. manner. in. order. to. achieve. a. more. sustainable. sometimes.difficult.to.reconcile,.less-than-ideal.infra-.and.inter- CE. on. Strategic. Environmental. Assessments. (SEA),. and. the. that. the. European. Union. intends. to. reflect. in. its. laws,. as. set. development.model. institutional. cooperation,. and. the. lack. of. a. well-established. proposed.Soil.Framework.Directive,.COM(2006).232.. culture. of. public. participation. provide. major. obstacles. to. The. international. experience. of. river. contracts. is. undoubtedly. management.. This. situation. has. pushed. the. international. an.interesting.tool,.both.for.its.ability.to.develop.riverside.areas. The governance system promoted by the WFD is based . -..the.limitation.and.control.of.point-source.and.non-point- community. to. identity. new. tools. and. approaches. to. water. and. for. the. direct. involvement. of. local. stakeholders.. This. has. on principles such as: source.pollution;. resource.management.. made. it. possible. to. extend. the. use. of. this. tool. to. lakes. as. •..the. integration principle,. according. to. which. integrated. . -..the. integration. of. the. qualitative. and. quantitative. well,.contributing.to.creating.a.policy.framework.based.on.the. In.the.1980s.and.1990s,.European.countries.–.albeit.to.different. community.water.policies.must.be.coordinated.with.other. approaches.(art..10); degrees. and. with. different. modalities. –. began. to. realize. principles.of.sustainability. sectorial.policies.(points.9.and.16.of.the.preamble); •..the. sustainability principle. for. pursuing. the. economically,. that. territorial. development. and. protection. cannot. overlook. In. Europe,. river. contracts. were. developed. as. early. as. 1981. •..the. principle according to which water governance. must. ecologically,.and.socially.sustainable.use.of.water.resources. hydrographical.basins.as.key.units.of.reference.. 8 in. France . with. a. Circular. Letter. issued. by. the. Ministry. of. the. be. defined. on. the. basis. of. watersheds. instead. of. political. or. (articles..1,.7,.9); Environment,. which. used. the. Contrats. de. Rivière. to. fight. the. administrative.boundaries.(point.33.of.the.preamble.and.art..3); In.order.to.tackle.the.environmental.problems.of.a.river.or.lake. •..the.principle of active public participation in.the.drawing.up,. increasing.degradation.caused.by.the.abandonment.of.the.banks. basin. through. an. integrated,. multi-disciplinary. approach,. the. •..the.principle of the obligation to produce results,.according. re-examination,. and. updating. of. watershed. management. of.the.country’s.main.rivers..In.following.years,.similar.contracts. decision.was.made.to.encompass.a.series.of.values.in.a.set.of. to.which.Member.States.have.the.obligation.to: plans.through.the.ex-ante.involvement.of.and.consultation. were. adopted. by. countries. such. as. Belgium,. Luxemburg,. the. rules.that.could.guarantee.the.integration.of.various.interests.. . -..achieve.the.best.possible.ecological.and.chemical.water;. with.affected.parties.(art..14); This. is. how. Lake. Contracts. and. River. Contracts. were. born,. Netherlands,.Spain,.and.Italy.to.tackle.serious.hydrological.and. . -..prevent.water.deterioration.(prevention.principle);. •..the transparency principle and.the.full cost recovery principle. as. voluntary. agreements. within. the. framework. of. negotiated. environmental.problems.in.some.of.their.river.basins. for.water.services,.including.on.the .basis.of.reparation.for. strategic. planning2,. with. the. large-scale. involvement. of. local. . -..reduce.waste.from.priority.substances.or.eliminate.it.in.the. But. it. was. with. the. Water. Framework. Directive. 2000/60/CE. environmental. damages. through. the. application. of. the. stakeholders.and.the .goal.of.identifying.and.sharing.objectives,. case.of.hazardous.waste.(articles.1,.4,.10); (WFD). and. related. directives. (Habitats. Directive. 92/42/CEE,. “polluter.pays”.principle.(art.9). intervention. strategies,. competences,. and. actions. to. be. which.calls.for.the.creation.of.a.European.ecological.network;. •.the combined approach principle.for.the.control: implemented.. Directive.2007/60/CE.on.the.assessment.and.management.of. . -..of.pollution,. based. on. integrating. emission. limits. with. The.Contracts,.set.out.in.the.documents.of.the.2°.World.Forum. flood.risk).that.the.European.Community.introduced.the.explicit. environmental.quality.goals;. on. Water,. are. considered. instruments. aiming. to. achieve. both. concept. of. “lake contracts and river contracts” as. tools. to. the.correct.management.of.water.resources.and.the.restoration. achieve.qualitative.goals.through.integrated,.participative,.and. process.for.the.entire.local.territory. locally-based. management. of. water. resources,. abandoning. centralized. regulatory. approaches. and. affirming. instead. This. aspect,. which. is. covered. in. the. statement. of. the. Dublin. the. close. relationship. between. land. use. planning. and. local. The lake contract in the main European countries 3. International.Conference.on.Water.and.the.Environment.(1992) governance. and. land. use. planning. and. water. management,. 4 Many. European. countries. have. implemented. lake. and. river. des Eaux),.a.document.which.defines.the.guidelines.for.integrated. and.in.the.European.Declaration.for.a.New.Water.Culture ,.and. indicating.integrated.watershed.management.as.the.way.to.go.. which.has.recurred.several.times.in.international.law,.point.to. restoration.projects.through.a.large-scale,.integrated.approach. water.management.over.the.next.15.years,.with.qualitative.and. the.1977.UN.Convention5.which.explicitly.requires.states.lying. The.WFD.sets.qualitative.goals.for.each.water.body;.should.these. involving. participative. decision-making. processes.. Some. of. quantitative.goals,.while.taking.into.account.private.and.public. within.the.same.hydrographical.basin.to.cooperate.on.the.basis. goals.fail.to.be.met,.it.mandates.that.the.causes.be.understood,. these.experiences.can.be.directly.linked.to.the.lake.contract.and. interests,.and.local.and.national.needs. and.that.solutions.be.developed.and.planned.to.achieve.them,. river.contract.process. of.equality,.integrity,.and.mutual.benefits.. At. the. local. level. the. SAGE. (Schémas de Gestion et using.all.available.tools.and.involving.all.relevant.stakeholders. d’Aménagements des Eaux).applies.the.SDAGE’s.guidelines.to. More. recently,. this. cultural. approach. has. been. reflected. both. The French experience in. European. Parliament. policies. regarding. water. resources6,. The. creation. of. a. shared. vision,. which. calls. for. new. water. individual.river.basins,.by.setting.detailed.and.specific.qualitative. and.by.the.United.Nations,.which.have.adopted.hydrographical. management. and. control. policies,. makes. it. possible. to. orient. The. French. legislation. regulating. and. orienting. public. water. and.qualitative.goals..A.tool.that.complements.the.SAGE.is.the. basins.as.units.for.reference.for.biodiversity.protection.policies7. processes. towards. the. prioritization. of. goals. and. the. re- policy.is.based.on.two.important.laws.(Law.1245.of.16.December. Contrat de Rivière,.instituted.in.France.in.1981.with.a.Circular. orientation.of.financial.resources.and.planning,.in.light.of.the.fact. 1964.and.Law.3.of.3.January.1992).which.emphasize.the.role.of. Letter.from.the.Minister.of.the.Environment..It.is.based.on.the. Lake contracts: the European experience that.any.local.territory.is.not.a.homogeneous.unit,.but.includes. water.as.shared.heritage,.and.not.merely.a.functional.element. same. principles. and. targets. the. same. stakeholders,. with. the. numerous.different.needs.and.functions. useful.for.certain.purposes. Over. the. last. few. decades,. Europe. has. experienced. a. radical. same. goal. of. balanced. water. management. at. the. watershed. shift.in.water.policy,.with.numerous.initiatives.being.adopted.by. This.new.cultural.approach.means.that.the.lake.contract.can.be. Thanks. to. the. 1964. law,. France’s. six. main. watersheds12. are. level..It.is.different.from.SAGE.in.that.it.is.a.non-binding.contract,. individual.states.and.the.EU.itself. seen. as. “negotiated, participatory planning process aiming to managed. through. the Comité de Bassin,. a. sort. of. ‘water.. based. on. voluntariness. and. on. a. high. level. of. cooperation. contain ecological and landscape degradation and to promote parliament’.with.representatives.from.the.French.state,.the.local. between.public.bodies.and.planning.levels,.and.the.involvement. the restoration of watersheds.”9.. community,.and.water.users..The.Comité.is.tasked.with.drafting. of. local. communities;. it. regards. mostly. the. information. and. the.SDAGE.(Schémas Directeur de Gestion et d’Aménagements consultation.phases.

2 Negotiated planning is a planning methodology that regulates the interventions of a multitude of private and public subjects in light of the unified management of resources. 3 Dublin. International Conference on Water and the Environment (ICWE), which published the “Dublin Statement on Water and Sustainable Development”, which lays out key water management concepts.; 1992 4 Madrid, 18 February 2005 5 “UN Convention on the Law of the Non-Navigational Uses of International Watercourses” ratified in 1977 6 European Parliament resolution on water resources (2009): «The water cycles means that Planet Earth is one big watershed. And the watershed in which each one of us lives reflects our practices.”. 7 UNEP, Global Biodiversity Strategy: Guidelines for Action to Save, Study and Use Earth’s Biotic Wealth. Sustainably and Equitably: “A hydrographic basin is a territories whose boundaries are not 10 European Council of Gothenburg – extraordinary sessions – Conclusions of the Presidency, 2001. political, but rather the geographic boundaries defined by ecosystems and social boundaries defined by local human communities; they are large enough to protect the integrity of ecosystems, 11 Lisbon Treaty – Protocol on the application of the principles of subsidiarity and proportionality, entered into force in 2009. 102 yet small enough for local communities to consider them home”. 12 France was divided into 6 major watersheds: from the Adour to the Garonne; from the Artois to Picardy; from the Loire to Brittany; from the Rhine to the Meuse; from the Rhone to the 103 8 Ministère de la Région Wallone, Division de l’Eau, Guide méthodologique relatif au contrat de rivière, Région Wallone, 2001. Mediterranean; from the Seine to Normandy. 9 National Charter of River Contracts (2010).

Loi sur l’eau du 3 janvier 1992 •..la.valorisation.de.l’eau.comme.ressource.économique.et.la. Lago di Viverone •..The. presence. of. the. Piedmont. Region. in. the. Steering. Les.objectifs.et.actions.du.contrat.de.bassin.versant.du.Lac. répartition.de.cette.ressource,.de.manière.à.satisfaire.ou.à. The.process.to.establish.a.lake.contract.began.in.2007,.in.order. Committee.is.seen.as.guaranteeing.the.representation.of.all. du.Bourget.sont.conformes.avec.l’article.2.de.la.Loi.sur.l’eau,. concilier.lors.des.différents.usages,.activités.ou.travaux,.les. to. contribute. to. the. environmental. restoration,. protection,. subjects.involved; rappelé.ci-après.. exigences.:. and.promotion.of.the.lake.through.more.efficient.coordination. •..The.institutional.complexity.caused.by.the.presence.of.three. Les.dispositions.de.la.présente.loi.ont.pour.objet.une.gestion. . -..de.la.santé,.de.la.salubrité.publique,.de.la.sécurité.civile.et. between.local.administrations,.operators,.and.associations.. provincial.administration.is.not.seen.as.a.weakness; équilibrée. de. la. ressource. en. eau.. Cette. gestion. équilibrée. de.l’alimentation.en.eau.potable.de.la.population,. A. Steering. Committee. was. established. as. part. of. the. •..The.intentions.of.the.individuals.on.whose.shoulders.much. vise.à.assurer.:. . -..de.la. conservation. du. libre. écoulement. des. eaux. et. de. Institutional. Programme. Agreement. between. the. Piedmont. of.the.process.rests.is.seen.by.some.as.a.potential.problem,. Region.and.the.Province.of.Biella,.which.committee,.through. •..la.préservation.des.écosystèmes.aquatiques,.des.sites.et. la.protection.contre.les.inondations,.de.l’agriculture,.des. especially.for.the.future. a.facilitator,.began.the.process.of.identifying.the.needs.of.the. des.zones.humides.(...),. pêches. et. des. cultures. marines,. de. la. pêche. en. eaux. from Reg. Piemonte - I Contratti di fiume e di lago in Piemonte. douces,. de. l’industrie. de. la. production. d’énergie,. des. various.stakeholders. •..la.protection.contre.toute.pollution.et.la.restauration.de.la. Politiche per la tutela e il mantenimento della risorsa acqua. transports,.du.tourisme,.des.loisirs.et.des.sports.nautiques. In.2010.the.“Memorandum.of.Understanding.for.the.activation. qualité.des.eaux.(...),. (2012). ainsi.que.de.toutes.autres.activités.légalement.exercées. of.a.Lake.Contract.for.Lake.Viverone”.was.signed. •..le.développement.et.la.protection.de.la.ressource.en.eau,. Avigliana Lakes (Lago Grande and Lago Piccolo) In. general,. the. problems. relating. to. the. initial,. preparatory. The.process.to.establish.a.Lake.Contract.(Piedmont.Regional. phase. concerned. timing. issues,. which. were. rather. more. Decree.n..395.of.18.September.2009).began.in.2009.;.The. The.reference.legal.text.for.the.Contrat.de.Rivière.is.the.Circular. The. project. leader. of. the. Contrat. de. Bassin. du. Fier. et. du. lac. drawn.out.compared.to.other.experiences..For.this.reason,. contract.will.probably.be.signed.in.March.2012..The.Action. Letter. of. 30. January. 2004. issued. by. the. Ministry. for. the. d’Annecy. is. the. Communauté. de. l’Agglomération. d’Annecy,. participants.expressed.their.opinions.on.questions.inherent. Plan.has.not.yet.been.defined. Environment.and.Sustainable.development..It.is.based.on.the. along.with.seven.of.the.watershed’s.municipalities. to.the.intrinsic.nature.of.the.Lake.Contract..: extensive. involvement. of. local. stakeholders. (politicians,. local. communities,.resource.users).and.a.shared.project.to.restore.and. The Italian experience optimize.hydrological.resources..The.goals,.which.are.defined. In. Italy,. river. contracts. and. lake. contracts,. albeit. with. some. In. spite. of. the. acknowledged. positive. effects. of. these. collectively,.are.then.translated.into.a.5-year.management.plan,. evident. differences,. are. part. of. the. regional. policies. explicitly. experiences. –. creation. of. partnership. networks,. facilitation. of. A multi-scale, multi-disciplinary approach which.takes.into.account.the.ecological.potential.of.the.river.. aiming.at.the.environmental.restoration.of.lake.and.river.basins,. inter-institutional. dialogue,. and. support. for. the. recovery. of. a. In.Italy,.the.goal.of.a.river.contract.is.to.incrementally. and. to. achieve. the. qualitative. goals. set. by. the. WFD;. lately,. The. first. lake. contract (Contrat de bassin versant). was. long-lost. “lake. culture”. among. the. local. populations. –. many. achieve. the. shift. from. sectorial. flood. and. pollution. 13 they. have. also. attracted. the. attention. of. the. Ministries. of. the. implemented.between.2003.and.2009.for.Lake.Bourget .with. difficulties.can.be.encountered. mitigation. policies. towards. integrated. policies. for. the. Environment.and.Economic.Development.. the.goal.of.ensuring.consistently.good.water.quality.in.light.of. environmental,. landscape,. and. productive. restoration. In.general,.these.include: its.associated.uses.(drinking.water,.swimming,.fishing,.etc.).and. The.4th.National.Roundtable.on.River.Contracts.(Turin,.2012),. of.river.basins. functions. (biodiversity. protection,. water,. tourism,. landscape,. in. addition. to. setting. the. goal. of. achieving. national. normative. •..Difficult. integration. between. the. various. planning. and. •..Protection.of.natural.habitats etc.).. One. aim. was. to. ensure. a. sustainable. balance. between. recognition. for. the. National. Charter. of. River. Contracts. (2007). coordination.levels.among.the.various.administrative.levels, •..Protection.of.water human. activities. (harbours,. beaches,. fishing,. etc.). and. natural. as.an.example.of.a.successful.strategy.for.the.implementation. •.Low.level.of.consensus.among.the.subjects.involved,. areas.along.the.lakeshore. of.European.Directives.in.the.water.field;.it.also.focuses.on.the. •..Soil.protection. European.Commission’s.interest.in.river.contracts,.considering. •..Often.unclear.identification.of.the.funds.needed.to.implement. •..Flood.protection that. they. address. the. need. for. water. protection. and. local. the.Action.Plans,.which.often.run.the.risk.of.remaining.mere. •..Protection.of.the.landscape.and.natural.features governance,. key. themes. in. the. Europa. 2020. development. lists.of.good.intentions.that.will.never.be.implemented,.leading. SDAGE RMC du 20 décembre 1996 •..Active.involvement.of.local.communities policies.. Currently,. participative. planning. processes. (lake. to.a.lack.of.confidence.in.such.instruments,.and Le. Schéma. Directeur. d’Aménagement. et. de. Gestion. contracts).in.Italy.concern.a.limited.number.of.lakes,.mostly.in. des.Eaux.du.bassin.Rhône.Méditerranée.Corse,.adopté. •.With.regards.to.process.management:. the.Po.River.watershed,.in.Lombardy.(the.first.region.to.promote. par. le. Comité. de. Bassin. et. approuvé. par. le. Préfet. Legislative Decree n. 152 of 3 April 2006 a.river.contract).and.Piedmont. •..Limited.capacity.to.involve.actors.that.are.truly.representative. coordonnateur.de.Bassin.le.20.décembre.1996.. Implements. Directive. 2000/60/CE. for. community. of.the.local.territory,.especially.in.the.private.sector,. For. the. implementation. of. their. Water. Protection. Plans,. both. activities. regarding. water. bodies. and. surface. and. regions. explicitly. refer. to. lake. contracts,. identifying. them. as. •..Frequent. lack. of. strong. political. leadership. with. confers. subterranean.water. Contenu des quatre volets du contrat negotiation. and. partnership. development. processes. with. the. legitimacy.and.strength.upon.the.process,. The.implementation.of.this.norm.implies.as.a.key.point. Le. contrat. de. bassin. versant. comprend. les. quatre. aim.of.launching.watershed.restoration.efforts. “…. The active participation of all the parties interested grands.volets.suivants.:. •..Frequent.lack.of.suitable.management.capabilities.within.local. Lombardy. is. promoting. a. lake. contract. for. Lake. Iseo,. while. bodies,. in implementing watershed management plans” •..A..Améliorer.la.qualité.de.l’eau. Piedmont.has.adopted.two.lake.contracts.(Lake.Viverone.and. •..Lack.of.capability.to.develop.and.apply.adequate.negotiation. •..B1..Restaurer,. entretenir. et. gérer. les. écosystèmes. the.Avigliana.Lakes),.promoted.by.the.relevant.provinces.(Biella- and.involvement.modalities, Management Plan for the Po River Watershed aquatiques. Turin.and.Turin,.respectively),.with.the.financial.support.of.the. •..B2..Protéger.contre.les.crues. regional.administration,.which.has.also.launched.a.coordination. •..Lack.of. capability. to. identify. potential. synergies. with. other. •..The. River. Contract. as. a. tool. to. implement. the. management.plan.at.the.subwatershed.level.for.the. •..C..Communiquer,.animer.et.évaluer. process. to. define,. on. the. basis. of. ongoing. experimental. ongoing.or.completed.participatory.processes,. achievement.of.quality.goals. contracts,.a.shared.methodology.to.be.adopted.for.subsequent. It. is. thus. evident. that. lake. contracts. risk. turning. into. a. weak. contracts.. planning. level,. overlapping. but. not. integrated. with. existing. •..Homogeneousness.in.river.contracts.for.the.regions.of. plans14.. the.Po.watershed,.while.respecting.local.peculiarities. A.second.contract.began.in.2011.and.will.end.in.2017. The. Contrat. de. Bassin. du. Fier. et. du. lac d’Annecy (Rhone. –. It. is. thus. clear. that. there. is. a. need. to. develop. quickly,. and. Méditerranée.watershed),.launched.in.2009,.is.currently.in.the. possibly. at. the. national. or. at. least. the. district. level,. shared. development. phase.. Although. several. monitoring. campaigns. guidelines. for. the. implementation. of. the. WFD’s. indications. are.underway.in.the.watershed,.additional.studies.are.needed.to. on. participation,. and. which. are. compatible. with. the. stringent. better.understand.the.lake.and.develop.a.coherent.action.plan. deadlines.that.watershed.planning.must.abide.by,.guaranteeing. whose.first.activities.will.be.implemented.in.2014. uniform.processes.and.legal.recognition.for.such.a.process.

104 13 Lake Bourget has a surface area of 44.5 km² between the Jura and Bauges mountains, the Chautagne plain to the north, and the Chambérien basin to the south. 14 A. Magnaghi, Seminar “Participatory planning processes at the basin levels: perspective for river restoration and the implementation of European water directives”, Bologna 2008. 105 Presentation of the lake watershed Piedmont Regional Water Protection Plan (PTA) Art. 36 of the Norms of the Regional Land Use Plan (PTR) Art. 1 - Plan norms [2].The.PTR.acknowledges.the.importance.of.river.contracts. The. lake’s. watershed. (Tab. 1) is. mostly. mountainous,. and. •..Recognition.of.water.as.a.shared.resource.and.right. and lake contracts,. intended. to. implement. the. water. located. in. the. provinces. of. Brescia. and. Bergamo.. It. is. quite. •..Introduction.of.the.principles.of.reciprocal.loyal.collaboration. protection. plan,. as. tools. that. allow. for. the. development. of. elongated,.and.runs.essentially.from.NE.to.SW..It.is.bordered.by. between. the. bodies. in. charge. of. water. management. and. synergies.with.land.use.planning.tools.at.the.provincial.and. major.mountain.chains,.including.the.Adamello.massif.(3.500.m. effective.citizen.participation. local.levels. a.s.l.)..It.has.quite.a.large.surface.area,.with.marked.changes.in. Art. 10 - Plan norms The.contracts,.intended.as.negotiated.planning.instruments,. elevation,.from.its.lowest.point.at..Costa.Volpino.(186.m.a.s.l.).to. .Introduction. of. river. contracts. and. lake. contracts. as. correlated. with. strategic. planning. processes. for. the. the.Adamello.peal. negotiated.planning.tools.for.the.local.application.of.the.PTA. restoration.of.river.basins,.aim.to.define.an.ongoing.sharing. Lake. Iseo. is. roughly. S-shaped. and. is. fed. by. the. Oglio. river,. process.involving.all.interested.actors.in.order.to.encourage. Art.10 - 2. For the purposes of comma 1,. integrated. which.runs.through.Lombardy.for.about.280.km..In.the.middle. the.integration.of.the.various.policies. basse déf. management.modalities.at.the.watershed.and.subwatershed. of.the.lake.stands.Montisola,.the.largest.and.highest.island.of. level. are. promoted. in. order. to. pursue. the. protection. and. from Elena Porro – Reg. Piemonte. “Water in the Alps” any.pre-alpine.lake.(surface.area.4.km2.and.maximum.elevation. optimization. of. water. resources. and. related. habitats,. along. 3rd International Conference, Torino 13/10/2010 599.a.s.l),.flanked.to.the.north.and.south.by.the.islets.of.Loreto. with.flood.protection..In.such.cases.the.negotiated.planning. and.San.Paolo. instruments.are.called.river.contract.or.lake.contract. Water.levels.are.regulated.artificially.by.the.Consorzio.dell’Oglio. using.the.dam.built.at.Sarnico.in.1933..Water.level.fluctuations. Example of process formation are. limited. to. 140. cm. (-30. cm;. +110. cm). around. zero. level.. (185.15. m. a.s.l.),. for. a. useable. volume. of. about. 76. million. m3 Contract negotiation roundtable .including.all.involved.parties . of. water.. Regulation. tends. to. improve. the. water. inflow. regime. (Alpine. reservoirs),. helping. dilute. the. wastewater. from. Steering committee with.executive.functions the. numerous. municipal. sewerage. system,. and. the. water. Monographic area document outflow.regime,.helping.meet.the.needs.of.the.numerous.users. Shared.document.laying.out.knowledge.on.and.the.shortcomings.of.existing.plans. downstream.from.the.lake,.especially.farmers.

Action Plan Region Lombardy Underwriting of a contract Province Brescia,.Bergamo WATERSHED LAKE Reciprocal.committment.and.sharing.of.resources.on.the.part.of.all.subjects. Hydro.graphic.basin Oglio Lake.surface.area 60.9.Km2 Latitude.(average) 45°.44’.N Island.surface.area 4.298.Km2 2 from G. Negro – Reg. Piemonte. “Verso il contratto di fiume della Stura di Lanzo” 04/07/2007 Longitude 10°.04’.E Montisola.surface.area 4.282.Km Watershed.surface.area.(including.lake) 1736.Km2 Average.water.level 186.m.asl Average.elevation 1429.m Max.depth 258.m Max..elevation 3,554.(Adamello).m Average.depth 122.m Permanent.residents 168,377 Cryptodepression 72.m On.the.basis.of.existing.or.expected.national.and.international. While.participative.processes.related.to.the.implementation.of. Non-resident.population 246,490 Max.length 20.2.km normative.indications.(Law.n..662/1996.on.negotiated.planning;. actions.to.improve.water.quality.appear.to.be.well.developed.at. Type natural,.regulated Max.width 3.km PTUA;.Legislative.Decree.42/2004.and.subsequent.amendments. the.watershed.level,.the.implementation.of.necessary.protection. Main.tributaries river.:.Oglio,.Borlezza Total.coastline 63.5.km (Cultural. Heritage. and. Landscape. Code);. Legislative. Decree. measures. remains. limited,. and. the. effective. implementation. Effluent river.:.Oglio Total.coastline.of.Montisola 9.0.km 152/2006),. the. Lombardy. regional. administration,. pursuant. to. of.water.body.restoration.and.improvement.areas.is.limited.to. Average.annual.discharge.of.the.effluent 58.7.m3/s Water.volume 7,569.m3..106 Regional.Law.2/200315,.Regional.Law.26/20033.and.subsequent. isolated.cases.. Sinuosity.index 2.28 amendments,. and. the. Water. Protection. and. Use. Programme. Lake.Iseo.is.no.exception.. Sinuosity.index.(including.Montisola) 2.62 (PTUA6),. has. adopted. the Lake Contract16,. with. the. express. A. careful. examination. of. the. deep. and. apparently. irreversible. Watershed.area/Lake.area 28.49 purpose. of. protecting,. valorising,. and. promoting. lakes. and. economic.and.land.use.changes.that.occurred.over.time.in.the. Theoretical.renewal.time 4.1.years related.environmental,.territorial,.economic,.and.social.systems. lake.area.has.led.certain.stakeholders.to.conclude.that.it.is.still. Theoretical.residence.time 15.-.18.years possible. to. pursue. changes. aiming. to. restore. some. essential. Average.mixolimnium.residence 2.75.years values.of.great.social,.historic,.and.economic.significance. Use F, .D,.N,.T,.S.*

Regional Law n. 26 of 12 December 2003 In. order. to. achieve. this. goal,. certain. segments. of. the. local. Tab. 1> Main morphometric and hydrological characteristics. Art. 9.. The regional administration promotes concerted, community.have.grasped.the.importance.of..working.together,. * F = fishing, IN = industrial, D = drinking water, N = navigation, T = tourism, S=swimming. integrated policies at the watershed and subwatershed optimizing.resources,.reducing.diseconomies.of.scale,.and.acting. levels, with the participation of public and private in. a. coordinated. manner. to. affect. the. organizational. system. subjects, for the protection and valorisation of water while.acknowledging.the.multi-dimensionality,.interconnection,. resources and related habitats, and flood protection. interactivity,. and. dynamic. nature. of. the. environmental,. social,. The negotiated planning instruments set out in regional and.economic.processes.that.affect.the.lake’s.watershed.. legislation for these purposes are known as river contract and lake contract.

106 15 L.R. 2/2003 “Programmazione negoziata regionale”. 107 16 Voluntary agreement between the regional administration, local authorities, and other private and public subjects aiming to define the goals, intervention strategies, competences, and actions to be launched. . Water and land use at Lake Iseo

Lakes,. which. have. always. been. exploited. and. managed. for. for.productive.activities.which.deeply.influenced.the.lives.and. disciplinary.approaches.oriented.towards.the.adoption.of.a.new. important. for. the. entire. lake. area,. since. it. would. provide. an. human.use,.have.undergone.tremendous.changes.over.the.last. activities.of.local.inhabitants. system-wide,.integrated,.multi-scale,.and.multi-disciplinary.view. integrated.public.transport.system.to.compete.with.the.private. few.decades..Natural.habitats.have.been.severely.modified,.both. of. environmental. changes. and. their. operational. implications. transport.that.causes.severe.vehicle.traffic.problems,.and.would. An. important. aspect. that. characterizes. and. binds. the. directly. and. indirectly. through. dangerous. ecological. alteration. (multiplicity. of. stakeholders. involved,. complexity. of. decision- also.provide.a.service.for.tourists.. environmental.conditions.of.the.entire.area.is.the.regulation.of. phenomena.. making. process,. correlation. with. planning. and. economic. lake. water. levels20,. with. its. consequent. effects. on. the. overall. The. current. transport. infrastructure. system. produces. direct. feasibility.aspects). Water,.a.natural.resource.whose.environmental.functions.must. system. negative. environmental. effects,. and. indirectly. impacts. lake. be.safeguarded.for.current.and.future.generations,.is.a.scarce. Recently22,. the. initiatives. developed. by. various. institutional. water.quality.as.well. Since.1933,.the.lake’s.water.level.is.regulated.by.the.Consorzio. resource. that. must. be. allocated. in. an. equitable. and. efficient. subjects.working.together.and.the.projects.they.have.launched. dell’Oglio.through.the.Sarnico.dam..This.activity,.implemented. Significantly.positive.effects.could.be.achieved.by.improving.the. way.among.the.various.sectors.and.communities,.in.light.of.its. mark. a. turning. point:. there. is. now. an. attempt. to. go.. beyond together. with. the. management. of. artificial. water. bodies. lake’s.environmental.balance.and.habitats,.preserving.the.area’s. economic.value..It.has.a.plurality.of.possible.uses,.which.have. the. mere. hydraulic-engineering. regulation. of. the. water. level. upstream,.supplies.the.so-called.“new.water”.used.for.irrigation. natural.heritage.and.landscape. brought. about. a. multitude. of. “separate. protection”. regimes,. and. pursue. the. protection. of. the. “resource. system”. and. the. and. hydroelectric. purposes. downstream. (between. 1933-. leading. to. the. fragmentation. of. legislation. and. competences,. “production”. of. opportunities,. including. through. a. landscape.. The.development.of.these.components.will.bring.about.benefits. 1992,.an.average.of.57.3.Mm3.for.irrigation.and.64.4.Mm3.for. and.the.multiplication.of.“legal.tools”.and.planning.levels.. “plan”23.that.takes.into.account.the.push.for.modernization,.and. to. both. the. local. system. and. to. the. tourism. sector,. which. hydroelectric.purposes.were.produced.each.year);.“new.water”. though. the. management. of. the. changes. and. transformations. encompasses. various..components:. water,. land,. history,. and. In. Italy,. the. legal. regime. regulating. water. has. historically. indicates.the.water.made.available.to.users.in.addition.to.that. that.would.interfere.with.this.process,.especially.in.the.absence. food.and.wine. been. typified. by. a. general. trend. to. overcome. privatistic. and. which. would. already. have. been. available. in. the. absence. of. of.interventions. individualist.concepts.of.water.use,.through.the.gradual.adoption. water.regulation.activities..The.contribution.of.this.“new.water”. With.regards.to.water-related.tourism,.which.has.grown.in.recent. of. principles. aiming. to. satisfy. the. general. public. interest. and. is.fundamental,.since.it.is.often.crucial.for.the.success.of.farming. For. this. reason. it. is. indispensable. to. achieve. an. improved. years,. the. target. audience. is. quite. vast:. in. addition. to. water. encourage.a.plurality.of.uses. and.industrial.activities.during.droughts. knowledge.of.the.local.territory.and.the.ways.in.which.it.uses. sports,.there.are.facilities.such.as.water.parks,.bathing.beaches,. the.lake’s.water24,25. and.sports.centres..The.suitability.of.lake.water.for.bathing.and. The. fundamental. principle. behind. this. trend. is. that. water. is. Water. regulation21. also. helps. prevent. excessively. high. water. swimming. is. of. crucial. importance. for. hotels,. campgrounds,. first.and.foremost.a.collective.good..The.goal.is.this.to.ensure. levels. In. order. to. achieve. the. above,. knowledge. of. the. area’s. and. other. tourist. facilities,. which. are. mostly. located. along. maximum.consistency.between.this.resource’s.availability.and. demographics26. is. indispensable.. Over. the. years,. these. have. The. problems. generated. by. the. artificial. regulation..of. water. the. lakeshore.. The. presence. of. unique. natural. features. and. use. on. the. basis. of. differing. local. needs. in. the. short,. middle,. undergone. significant. changes,. with. seesawing. population. levels.mean.that.the.water.volume.supplied.at.Sarnico.needs.to. protected. areas. increases. the. chance. to. attract. national. and. and. long. term,. and. to. tackle. the. issue. through. a. redefinition. numbers. on. the. lake’s. two. shores. (Bergamo. and. Brescia. be.regulated.each.season,.and.this.leads.to.significant.variations. international.tourists,.especially.ecotourists. of. policies. and. renewal. of. the. instruments. for. an. integrated. provinces)..This.has.had.a.significant.impact.on.water.and.land. in.water.levels.(larger.that.the.annual.variations.in.water.levels. management.of.water.resources17,18. use.in.the.watershed.. Since.water.is.a.natural.attraction.that.drives.the.tourism.sector,. under.natural.conditions),.resulting.at.times.in.excessively.low. it.is.logical.to.take.into.consideration.the.impact.of.water.quality. In.such.a.framework,.the.public.water.resource.and.its.regulation. levels.that.jeopardize.the.reproductive.success.of.fish.species. Urban. areas,. located. along. the. lake’s. shores,. are. localized. on.tourism..Water.quality,.and.in.particular.the.proliferation.of. impact. a. plethora. of. human. activities. across. the. board. (from. that.breed.in.the.littoral.zone,.such.as.Common.Bleak,.European. elements.within.a.landscape.matrix.typified.by.the.presence.of. algae. and. macrophytes. and. the. parameters. that. influence. local. governance. to. productive. development. and. agriculture).. Whitefish,.and.shad,.and.additionally.lead.to.the.impoverishment. woodlands.along.the.lakeshore.area;.woodlands.are.the.most. suitability. for. swimming. are. important. elements. that. directly. If.one.considers.water.as.a.finite.resource,.“water.governance”. of.lakeshore.habitats.. widespread.habitat.type.and.are.uniformly.distributed.along.the. affect.the.quality.of.the.tourism.offer.. implies.the.involvement.of.a.plurality.of.private.and.public.actors. lake’s. shores.. There. are. also. areas. of. fallow. land,. crop. land,. Equally.important.are.the.problems.related.to.public.and.private. mountain.pastures,.orchards,.and.barren.areas.. Other.available.information.which.is .useful.to.define.an.overall. The.national.and.international.evolution.of.water.management. navigation.caused.by.reduced.hydraulic.head.in.the.proximity. framework. for. the. lake. includes. that. related. to. water. use. legislation.engenders.a.profound.examination.of.the.importance. of. piers;. damage. to. the. lake. ecosystem;. structural. problems. Areas.where.farmland.is.prevalent.are.rather.uniformly.distributed. (irrigation,.drinking.water,.hydroelectric.plants.on.the.Oglio.river. grated.to.“water.economics”,.implying,.among.other.things,.a. caused. to. much. of. the. lake’s. shoreline;. the. emergence. of. along the.lakeshore.area;.cropland.is.prevalent.in.the.north.near. upstream. and. downstream. from. the. lake,. minor. hydroelectric. more.rational.use.and,.in.our.case,.a.better.understanding.of.the. mudflats. and. of. aquatic. macrophytes. (which. in. turn. cause. the.town.of.,.and.to.a.greater.extent.in.the.south,.where. plants).. original.vocation.and.function.of.lakes. further.degradation.and.a.reduction.in.the.lake’s.landscape.and. the.flat.terrain.is.more.suitable..Extensive.orchards,.olive.groves,. recreational.value),.and.the.emergence.of.the.level.spillways.of. and.vineyards.are.present.throughout. Hydroelectric.use.is.prevalent.in.the.mountain.areas.upstream. Such.a.structural.framework.must.necessarily.take.water.quality. the.circum-lake.sewers.. from.the.lake..Within.the.lake’s.watershed.there.are.no.artificial. into.account,.a.factor.which.is.of.great.importance.in.the.case. Also. of. great. importance. is. infrastructure.. The. area. faces. the. reservoirs.for.hydroelectric.purposes..The.only.plants.of.any.size. of.Lake.Iseo.due.to.the.economic.activities.relying.on.water.use. Excessively. high. water. levels. cause. local. flooding,. difficult. typical. problems. associated. with. transport,. with. inadequate. are.along.the.upper.Borlezza.torrent. (hydroelectric.production.from.man-made.basins.upstream.from. mooring.at.piers,.damage.to.private.and.public.property,.traffic. public. transport. and. heavy. vehicle. traffic,. including. some. the. lake;. farming. and. hydroelectric. production. downstream. problems,.and.water.infiltrations.in.the.sewer.network. highly.dangerous.stretches.of.road..In.the.foothill.and.lowland. There.are.seven.hydroelectric.consumers.that.use.Lake.Iseo’s. from.the.lake;.drinking.water).and.the.optimization.of.ecological,. areas,. infrastructure. and. transport. services. have. undergone. a. regulated.water,.and.they.are.all.downstream.from.the.lake. It.should.be.pointed.out.that.these.phenomena.are.not.always. natural,. and. environmental. aspects. for. tourism. purposes. gradual. long-term. decline,. along. with. widespread. traffic. and. tied. to. artificially. lowered. water. levels,. but. are. often. the. With.regards.to.irrigation,.there.are.no.major.users.upstream.or. (natural.parks,.tourist.use.compatible.with.downstream.interests. major.problems.regarding.the.crossing.of.urban.areas,.due.both. consequences.of.natural.oscillations.in.the.water.level.within.the. along.the.lake.itself;.most.users.are.located.along.the.Oglio.river. and.economic/productive.development.influenced.by.proximity. to. increasing. motorization. and. the. presence. of. a. great many. limits.set.by.the.water.regulation.law. downstream.from.the.lake.and.are.managed.and.represented.by. to.large.cities)19. production.and.retail.facilities.. the.Consorzio.dell’Oglio.. Over. the. year,.the. landscape. in. the. Lake. Iseo. area. has. been. Due.to.its.intrinsic.characteristics,.the.lake.envir onment,.if.seen. Freight. transport. has. a. major. impact,. since. it. is. mainly. road- constantly. modified. to. reflect. human. needs,. although. without. With. regards. to. industrial. use,. the. Oglio. River. downstream. in.its.territorial.context,.serves.as.a.hub..Nevertheless,.in.certain. based,.while.rail.transport.remains.limited.. overwhelming. the. local. environment,. and. maintaining. in. most. from. the. lake. and. its. tributaries. host. 14. active. concessions,. areas.and.their.surroundings,.the.lake.is.still.perceived.as.a.mere. cases.environmentally.sustainable.and.harmonious.standards. Within.the.overall.framework.of.the.integrated.transport.system,. for.an.overall.flow.of.410.l/s;.unfortunately,.it.is.not.possible.to. link.between.mountain.areas.(in.particular.the.Valcamonica.and. lake. navigation. provides. an. important. opportunity. to. link. determine. which. of. them. are. located. in. the. lake’s. immediate. the.Adamello.massif).and.hill.and.lowland.areas.(Franciacorta,. The.need.for.flood.protection.and.water.level.regulation.has.thus. lakeshore. municipalities. and. complement. road. and. rail-based. watershed.. Valcalepio,.Oglio.river.downstream.from.the.lake,.and.farmland. become.an.opportunity.to.create.new.landscapes,.new.spaces,. public.transport. areas).where.numerous.interests.overlap.. and.new.ecological.and.natural.scenarios..We.are.still.a.ways. With.regards.to.drinking.water,.the.lake’s.water.is.used.by.the. away. from. conceiving. the. “water”. and. “landscape”. resources. Interchange. between. the. various. types. of. public. transport. is. municipalities.of.Monteisola.and..(Vello).. Thus,. historically. the. importance. of. the. lake. has. been. tied. as. strategic. elements. that. can. contribute. new. integrated. principally.to.its.use.as.a.water.reservoir,.a.necessary.resource.

17 L. 5 January 1994, n. 36 ” Disposizioni in materia di risorse idriche”. 22 Reg. Lombardia DGR VIII/2244 of 29.03.2006 “Approvazione del Programma di Tutela e uso delle acque, ai sensi dell’art.44 del D.Lgs.152/99 e dell’art.55, comma 19 della l.r.26/2003”: 18 L.R. 26/2003 “Disciplina dei servizi locali di interesse economico generale. Norme in materia di gestione dei rifiuti, di energia, di utilizzo del sottosuolo e di risorse idriche”. refrerence law for all bodies and subjects collaborating to achieve qualitative goals in Lombardy. 19 Regione Lombardia, ARPA Lombardia, Fondazione Lombardia per l’Ambiente & IRSA/CNR, 2005. “Qualità delle acque lacustri in Lombardia. Osservatorio dei Laghi Lombardia.” 2005 Report. 23 D.c.r. 19/01/2010 - n. VIII/951 – “Approvazione delle controdeduzioni alle osservazioni al Piano Territoriale Regionale adottato con d.c.r. n. VIII/874 del 30 luglio 2009 - Approvazione del 20 M. Buizza “Il caso del lago d’Iseo e del fiume Oglio” in “L’influenza del deflusso minimo vitale sulla regolazione dei grandi laghi prealpini”, Guerini Ed. 1988. Piano Territoriale Regionale (articolo 21, comma 4, l.r. 11 marzo 2005 «L. per il governo del territorio»)”. 108 21 Royal Decree n. 2181 del 5/2/1934 grants authority for water regulation to the Consorzio dell’Oglio in compliance with the Regulations of 14/9/1932 (lake water levels between +110 cm and -30 24 Provincia di Bergamo – Piano Territoriale di Coordinamento Provinciale, 2004. “Relazione generale e norme di attuazione” + “Studi e analisi”. 109 cm compared to the hydrometric zero at Sarnico). A Decree by the Ministry of Public Works (Div.11 n.13614) establishes that the elevation of 185.98 m a.s.l. defines the public waters of Lake 22 Provincia di Brescia – Piano Territoriale di Coordinamento Provinciale, progetto definitivo, 2005. “Relazione generale e norme di attuazione”. Iseo, and that the Consorzio dell’Oglio must compensate the properties located above this line (which it has done). 26 Documento strategic del Sebino. Inquadramento Territoriale, Processo Partecipato, Quadro Conoscitivo e di analisi, Sintesi e Approfondimenti, Costruzione degli Scenari. An. important. aspect. of. the. lake. is. its. water. quality27. which. is. •..progressive. loss. of. the. typical. aspects. that. characterize. the. The history of Lake Iseo’s Lake Contract affected. by. the. increasing. population. and. tourism,. as. well. as. lake’s. landscape,. and. which. have. affected. its. social. and. by.pressure.from.local.economic.and.productive.activities..The. economic.profile.as.well;. In. setting. goals. for. sustainable. water. management. and. use,. The. project. was. thus. one. of. the. first. concrete. steps. towards. presence,.on.both.shores.of.the.lake,.of.an.extensive.domestic. •..simplification. of. the. lake. ecosystem,. associated. with. the. Lombardy. regional. government. has. identified. negotiated. achieving.an.overall.strategic.vision.for.the.construction.of.an. and. industrial. sewer. system28,29. has. contributed. to. improving. monotonous,.artificial.crops;. planning. tools. as. the. best. way. to. promote. consultation. and. organizational.system.able.to.draw.stakeholders.together.and. water. quality,. although. some. small. settlements. still. discharge. integration. in. water. use,. planning,. and. conservation. policies,. establish. a. network. of. contacts. and. relations. resulting. in. an. •..low. water. quality. due. to. anthropization,. significant. point. sewage.directly.into.the.lake..Currently,.strategic.interventions. encouraging.the.participation.of.private.and.public.subjects. authoritative Steering Committee33,. a. politically. and. socially. sources.of.continuous.pollution.(disposal.of.untreated.sewage,. are. underway. that. will. solve. problems. related. to. untreated. useful.organizational.system.to.coordinate,.adopt,.and.manage. private. and. public. wastewater. disposal). and. occasional. For. this. reason,. following. the. publication. in. 2005. of. the. sewage.from.Valcamonica,.which.flows.into.the.Oglio.river.and. a. development. strategy. for. the. Lake. Iseo. system,. optimizing. pollution. (spillways. for. urban. waste. water). and. non-point. application. for. grants. promoted. by. Fondazione. Cariplo. for. eventually.reaches.Lake.Iseo.. efforts.and.minimizing.overlap,.while.respecting.the.autonomy.of. sources.of.pollution.(agriculture.and.livestock). “Sustainable water management: promoting forms of integrated the.competences.of.its.individual.components,.and.developing. The. introduction. of. polluted. water. into. Lake. Iseo,. due. to. and participatory management of surface waters”,. the. Thus,. thanks. to. its. intrinsic. characteristics,. the. lake’s. an.information.and.dissemination.system.(website).for.technical. the. sometimes. inefficient. treatment. of. sewage,. has. led. to. Comunità.Montana.del.Monte.Bronzone.e.del.Basso.Sebino31,. environment,. if. seen. in. purely. territorial. terms,. has. been. and. elements.and.general.intervention.guidelines. the. eutrophication. of. its. waters,. which. should. normally. be. in. its. capacity. as. project. leader,.stipulated. in. October. 2006. a. continues.to.be.a.crucial.element.. oligotrophic.. Some. of. the. consequences. of. eutrophication. Memorandum.of.Understanding.with.the.Provinces.of.Bergamo. The.goal.of.first.phase.of.the.project.was.to .build.a.knowledge. include. the. increase. rate. of. sedimentation,. which. impacts. The. goal. of. the. work. that. local. agencies. have. begun. is. to. and.Brescia,.the.Alto.Sebino,.and.Sebino.Bresciano.Mountain. framework.encompassing.the.characteristics.of.the.study.area. the.lake.bottom.and.has.led.to.the.substitution.of.some.plant. help.in.the.development.of.the.Lake.Iseo.system,.and.to.try.to. Communities,. the. Oglio. Consortium. and. the. Consortium. for. and. build. a. complete,. organic. picture. of. the. lake’s. strengths. communities,. and. a. reduction. in. sites. suitable. for. swimming,. understand.the.importance.of.the.lake’s.centrality.to.this.system,. the.Associated.Management.of.Lakes.Iseo,.Endine,.and.Moro,. and.weaknesses,.by.drawing.together.in.one.place.the.results. with. a. negative. impact. on. tourism30.. Eutrophication. and. both.in.terms.of.what.it.represents.today.and.in.terms.of.steering. Tutela.Ambientale.del.Sebino.S.p.A.,.Agenda.21.in.Costa.Volpino. of. all. previous. studies.. This. made. it. possible. to. arrive. at. a. fluctuating.water.levels.have.also.had.a.negative.impact.on.the. its.future.development.. and.Iseo.with.the.goal.of.submitting.to.the.Foundation.a.project. well-supported. diagnosis. of. Lake. Iseo’s.conditions,. organized. lake’s.fish.fauna..The.latter.aspect.is.of.particular.relevance.due. to.improve.environmental.quality.and.water.management.in.the. according. to. the. main. land. use,. environmental,. and. socio- In.such.a.context,.the.various.forms.of.water.use.are.fundamental.. to.the.conflicts.of.interest.that.arise.out.of.the.different.water.use. Lake.Iseo.area.. economic.aspects..This.information.was.archived.in.a.dynamic. Their.regulation.must.be.improved.significantly,.within .a.broader. needs.and.are.particularly.difficult.to.solve.. database. geographic.and.ecological.framework..In.addition,.institutional. The.project,.called.«Coordinating together to act on the waters Both. professional. and. sport. fishing. are. important. aspects. agreements. must. be. reached. to. overcome. the. fragmentary. of Lake Iseo»32.(2005-2007),.had.the.following.priority.goals: This.process.contributed.to.the.creation.of..cooperation.network. of. the. local. economy,. although. professional. fishing. is,. sadly,. nature. of. local. policies. by. extending. the. strategic. plan. of. among.the.various.stakeholders,.a.key.step.towards.the.future. increasingly. limited. to. an. aging. population,. with. only. two. •..Identifying,. in. compliance. with. the. WFD’s. environmental. operation. to. the. entire. lake. area.. As. indicated. in. the. project. construction. of. a. “Lake Contract”.. A. modern,. participatory. operators. in. Bergamo. province,. and. 27. in. Brescia. province,. objectives,.the.necessary.actions.for.improving.environmental. “Coordinating to act together for Lake Sebino’s water”.[13].several. approach.to.resource.and.land.use.planning.and.management. where. it. remains. an. important. activity.. Sport. fishing. is. quite. quality.and.the.participatory.management.of.lake.resources,. problems.need.to.be.tackled.efficiently:. is. evidenced. by. the. projects. Guarantor’s Committee,. the. overcoming. the. fragmentation. and. lack. of. cohesion. of. the. popular,.albeit.with.unclear.limits.on.where.it.can.be.practised,. invitation. to. participate. aimed. at. the. various. local. authorities. •..valorising. the. lake. and. surrounding. areas. as. central. to. various.planning.level.in.order.to.re-organize.local.governance. especially.with.regards.to.the.numerous.small.harbours.. (43.subjects.including.local.bodies,.consortia,.associations,.and. the. territorial. identity. and. sense. of. belonging. of. the. local. in.the.Lake.Iseo.area;. Some. of. the. problems. related. to. fishing. include. the. fact. that. trade.representatives),.the.dissemination.of.partial.results.online,. community; pelagic. species. have. decreased. drastically. over. the. last. few. •..Encouraging.the. participation. of. all. stakeholders. in. order. to. and. the. possibility. of. interacting. with. citizens. with. a. potential. years. (Common. Bleak),. while. the. Lake. Trout. is. uncommon;. •..valorising.the. historic,. territorial,. cultural,. and. environmental. activate.and.implement.the.necessary.tools.to.adopt.concrete. interest.in.the.project’s.contents. capital. liked. to. the. lake,. around. which. local. economic. and. actions.to.implement.the.interventions.identified.as.prioritary. Twaite. Shad. and. Lavaret. remain. frequent,. and. are. especially. The. first. phase. (concluded. with. a. technical. report. and. productive. activities. should. be. planned,. in. order. to. reduce. by.the.local.community; important.for.professional.fishing..Near-shore.species.that.have. attachments. on. description. of. the. local. territory,. participatory. their.impact.and.promote.their.sustainability;. undergone.population.declines.include.Arctic.Char.and.Rutilus. •..Setting. the. stage. for. the. future. signing. of. a. Framework. processes,.knowledge.and.analytical.frameworks,.and.creation. aula..Compared.to.the.past,.introduced.species.have.increased. •..improving. lake. quality. and. access. (including. the. shoreline. Agreement. for. Local. Development. in. the. form. of. a. Lake. of.possible.scenarios).was.followed.by.the.drafting.of.the.Lake significantly,.including.occasional.records.of.Wels’.Catfish.. and.the.lake.itself).for.tourism,.recreational,.and.educational. Contract,. a. voluntary. agreement. between. the. regional. Iseo Strategic Document34,.whose.goals.include.summarizing. The.excessive,.continuous.exploitation.of.water.resources.has. activities;. administration,.local.authorities,.and.other.private.and.public. existing.problems.and.drafting.a.list.of.80.priority .actions.for.the. subjects. aiming. to. define. the. goals,. intervention. strategies,. protection,.valorisation,.promotion,.and.development.of.the.lake,. therefore.led.to.the.following.problems:. •..providing. stakeholders. with. accessible,. easy. to. understand. competences,.and.actions.to.be.launched. in.light.of.existing.planning.effort,.the.various.levels.of.territorial. •..for.years,.the.territorial.management.of.the.lake.area.has.been. information. on. the. dynamics. impacting. the. lake. and. its. jurisdiction,.and.local.needs.as.evidenced.by.the.participatory. almost. completely. detached. from. its. broader. geographical. environment.. process.. Actions. include. habitat. and. ecosystem. restoration. context;. The Lake Contract In.order.to.sustainably.manage.and.protect.the.lake,.integrated. efforts. to. help. improve. and. re-colonize. degraded. areas,. the. Is.a.negotiated.planning.tool.that.makes.it.possible.to: •..the.lake’s. hydraulic. characteristics. are. similar. to. those. of. a. policies. on. a. watershed. scale. are. necessary.. They. must. be. diversification. of. aquatic. habitats,. the. protection. of. remaining. man-made.reservoir,.where.water.only.occupies.the.residual. able.to.meet.the.needs.of.all.stakeholders,.and.balance.water. •..“adopt a set of rules in which criteria of public interest, unique. areas,. including. their. enlargement. and. optimization. to. space.left.after.human.activities.and.flood.protection.efforts;. use. with. biodiversity. conservation,. agriculture,. and. energy. economic performance, social value, and environmental increase.ecosystem.viability..In.particular,.the.four.macro-areas. production,.while.protecting.the.local.territory.and.its.use. sustainability play an equal role in the search for efficient of.action35.are.divided.into.two.classes:.general.measures,.which. •..the.loss,.caused.by.human.activities,.of..evolutionary.characters. solutions for the restoration of the lake environment”,. concern. the. entire. lake. and. are. partly. tied. to. provincial. and. and.of.the.gradual.transition.between.land.and.water;. regional. planning. (administrative/organizational. coordination,. •..promoting,. on. the. basis. of. the. contents. of. Directive. •..reduction.of.the.lake’s.ecological.value,.and.presence.of.high- improvement. of. scientific. knowledge. on. environmental. 2000/60/EC,. “consultation and integration of policies impact.human.activities;. aspects);. and. specific. actions. to. solve. problems. at. the. local. at the lake watershed level, with the participation of all level.(ecological.characterization.of.certain.areas.near.the.lake,. relevant public and private subject, for the protection regulation.of.lake.water.levels).. and optimization of water resources and related habitats, and the reduction of flood risk” (Regional.Law. 26/2003,.art..45,.point.9).

32 Comunita’ Montana del Monte Bronzone e Basso Sebino (Prov. di Bergamo) “Coordinarsi per agire insieme sulle acque del Sebino. Relazione tecnica”; 2007. Total amount € 250.000 of which € 140.000 funded by Fondazione Cariplo. 33 Optimizes efforts and minimizes overlap while respecting the autonomy of the competences of the individual components, develops an information and dissemination system (website) for technical elements and general intervention guideline. It has three tasks: implementing actions, raising funds, providing a venue for collectively implementing shared policies instead of isolated interventions. The Steering Committee is the natural outgrowth of the Guarantor’s Committee. 34 The Lake Iseo strategic document (2007) is one of the main results of the Coordinarsi per Agire Insieme sulle Acque del Sebino project. The goals of the document are: summarizing existing 27 G. Premazzi, A. Dalmiglio, A., C. Cardoso and G. Chiaudani “Lake management in Italy: the implications of the Water Framework Directive”, Lakes & Reservoirs: Research and Management problems and drafting a list of 80 priority actions for the protection, valorization, promotion, and development of the lake. 2003 8: 41–59. 35 The actions to develop the system are: GROUP A1 Measure to improve knowledge of issues, support planning, monitor expected results, and develop tools to support decision-ma- 110 28 Provincia di Brescia – Piano d’Ambito, 2006. king; GROUP A2 Infrastructure and environmental restoration measures aiming to control pressures and improve the active management of water resources leading to the drafting and 111 29 ATO Provincia di Bergamo – Piano d’Ambito, 2004. implementation of projects; GROUP A3 Measures for the formalization of technical and management norms and criteria (procedure and operational plans) that go beyond the implementation 30 A. Dalmiglio, E. Bettoni, M. Galbiati “Studio ambientale, pressione del territorio e fioriture algali”, D.G. ASL di Bergamo, 2005. of existing regulations, and for the adoption of specific framework agreements for the involvement of subjects active in the local area; GROUP A4 Measures for organizational and financial development, and measures aiming to provide information and promote cultural and social/behavioural norms through communication, promotion, and awareness-raising activities. The. Lake Iseo Strategic Document contains. an. initial. analysis. and.the.dissemination.of.studies.and.initiatives.on.the.part.of. In.keeping.with.the.agenda.dictated.by.the.Lake.Iseo.Strategic. site-specific.needs.(Annex.3). of. the. territorial,. environmental,. and. socio-economic. issues. the.various.bodies.involved; Document. and. the. constraints. on. funding. imposed. by. the. The. most. important. environmental. problems. to. be. solved. are. affecting.the.lake,.and.identifies.three.main.problems:. application.for.grants,.four.action.lines.were.identified:. •..definition.of. a. model. to. assess. the. impact. of. the. project’s. structural. environmental. changes,. such. as. dams. and. artificial. •..eutrophication.of.the.lake; actions.on.the.various.social.and.environmental.components. 1...restoration. of. the. lake’s. aquatic. ecosystems. and. natural. shorelines,.environmental.changes.due.to.activities.such.as.the. •..waste.water.collection.and.treatment; Additionally,.the.presence.of.various.groups.of.stakeholders.has. habitats.in.order.to.restore.degraded.areas.and.encourage.their. artificial. regulation. of. lake. water. levels,. the. inflow. of. polluted. •..regulation.of.water.levels. made.it.possible.to.tackle.in.a.coherent.and.consistent.manner,. re-colonization.on.the.part.of.native.species.and.protection. waters,.dredging.operations.(generally.every.5.years.and.whose. These. problems. need. to. be. solved. in. order. to. achieve. the. through.the.assessment.of.Lake.Iseo’s.true.priorities,.elements. of. remaining. characteristic. local. habitats. by. optimizing. and. main. impact. is. decreased. water. clarity),. and. the. cutting. of. objectives.set.out.in.the.Lombardy.regional.government’s.PTUA.. such.as: enlarging.them,.and.improving.the.value.of.the.ecosystems.of. reedbeds.... the.Lake.Iseo.area37.(actions.1,.2,.3);.. With.regards.to.eutrophication,.an.analysis.of.the.pollutants.in. •..reducing.water.pollution; The. methodologies. used. for. site-specific. interventions,. which. 2...interventions.to. widen. the. network. for. qualitative. and. the.lake.estimates.a.pollution.load.of.72.tP/a,.which.is.equivalent. •..reducing.flood.risk; were.also.proposed.in.earlier.scientific.studies,.are.the.result.of. quantitative. monitoring. of. waste. water. flows. into. the. lake,. to. an. equilibrium. phosphorus. concentration. of. 16-18.μg. P/l,. the.application.of.environmental.engineering.techniques,.such. •..competition.over.the.use.of.lake.resources; functional.verification.of.restoration.activities,.refinement.and. reachable.in.5/10.years.. as.shoreline.rehabilitation,.the.restoration.and.re-shaping.of.the. •..environmental.and.landscape.restoration,.and.the.restoration. broadening.of.monitoring.techniques.for.the.identification.of. lake.bottom.to.encourage.the.diversification.of.aquatic.habitats,. The.drop.in.the.concentration.of.pollutants.flowing.into.the.lake. of.lakeside.settlements; necessary.water.treatment.interventions.in.the.drainage.basin. and. ‘plant. nursery’. techniques. to. plant. shoreline. vegetation. is.the.result.of.waste water collection and treatment efforts.that. •..the.promotion.of.lake.culture. (actions.4,.5,.6); and.enlarge.reedbeds.to.create.new.breeding.areas.for.fish.and. began. during. the. second. half. of. the. 1990s.. The. Valcamonica. 3...education,.awareness-raising,.and.technical.training.activities. birds.. The. project. encompassed. the. three. macro-areas. of. the. Oglio. area. (whose. waste. water. flows. into. Oglio. river). and. some. of. (actions.7,.8,.9); the.buildings.whose.waste.water.flows.into.the.Borlezza.do.not. river. watershed. (Lake. Iseo. and. the. Oglio. river. upstream. These. actions. are. subject. to. both. pre-. and. post-intervention. 4.. ..project.coordination.activities.(action.10).including.education. yet.have.a.waste.water.treatment.system..Another.problem.is. and. downstream. from. it),. which. areas. are. functional. and. monitoring.efforts.to.verify.and.assess.their.functionality,.in.the. and. awareness-raising. and. technical. training. in. keeping. the regulation of water levels.in.the.lake..As.the.lake’s.waters. homogeneous. and. closely. linked. to. one. another.. They. were. latter.case.taking.into.account.the.entire.annual.biological.cycle.. with. the. needs. identified. by. local. communities;. expansion. are.the.source.of.hydroelectricity,.irrigation.water,.and.water.for. the. basis. for. the. initial. social,. economic,. and. environmental. and. development. of. the. website,. and. implementation. of. Post-intervention.monitoring.(April.2010.–.August.2011).helped. industrial.use.throughout.the.watershed,..the.volume.of.water. analyses.that.aimed.to.assess.water.resources.in.qualitative.and. a. communication. plan. dedicated. to. ongoing. activities.. An. assess.the.colonization.of.new.habitats.with.the.application.of. supplied.at.Sarnico.(lake.effluent).needs.to.be.regulated.each. quantitative.terms.and.with.regards.to.their.use.. institutional.coordination.phase.is.also.planned. the. above-mentioned. methodologies,. and. the. impact. of. the. season.. This. leads. to. significant. variations. in. the. lake’s.water. This.was.followed.by.an.examination.of.a.series.of.issues.more. interventions. on. local. ecosystem. dynamics.. Finally,.automatic. levels;. in. particular,. lower. water. levels. generate. problems. for. closely. related. to. the. lake’s. watershed,. especially. within. the. The.types.of.actions.planned.are: instruments. have. been. used. to. collect. quantitative. and. public. and. private. navigation,. damage. the. lake. ecosystem,. administrative. borders. of. the. Alto. Sebino,. Sebino. Bresciano,. •.structural.(works) qualitative.data.on.waste.water.flows.to.the.Oglio.river.upstream. cause.structural.problems.to.much.of.the.coastlines.of.lakeside. and.Monte.Bronzone.and.Basso.Sebino.Mountain.Communities,. •.management-related.(maintenance.and/or.management.rules) from.the.lake.in.the.Municipality.of..Costa.Volpino,.and.to.collect. municipalities,.the.emergence.of.mudflats.and.the.emergence. and.the.Municipality.of... data. on. the. chemical. and. physical. characteristics. of. the. lake. •.aiming.to.harmonize.“governance”.tools and..eradication.of.aquatic.macrophytes.(with.a.negative.impact. water.and.its.biological.components. In.April.2008.a.new.application.for.grants.issued.by.Fondazione. on.the.lake’s.landscape.and.recreational.value.of.the.lake),.and. The.planned.interventions.are.consistent.with: the.emergence.of.the.level.spillways.of.the.circum-lake.sewers.. Cariplo. (Water. Quality. 2008). provided. the. opportunity. to. The. activities. implemented. are. extensively. documented •..the.indications. of. the. Lombardy. Regional. Administration’s. Excessively. high. water. levels. cause. local. flooding,. difficult. implement.the.new.interventions. (http://www.lagoiseosebino.it/documenti_conclusione_02.html). PTUA;. in.underwater.videos.published.in.a.multi-media.DVD. mooring.at.piers,.damage.to.private.and.public.property,.traffic. This.new.idea.led.to.the.“Implementation of shared interventions •..The.goals.and.perspectives.set.out.in.the.Water.Pact.promoted. problems,.and.water.infiltrations.in.the.sewer.network.. aiming to improve the ecological conditions, the qualitative Fondazione.Cariplo’s.application.for.grants.Water.Quality.2010. by. the. Lombardy. Regional. Administration. along. with. 120. Solving.these.problems.would.go.a.long.way.towards.solving. status and the habitat restoration of Lake Iseo”.project.(2008- provided.an.additional.opportunity.to.continue.with.the.ongoing. )36 bodies.and.agencies;. other.related.problems:. 2011 .. activities.. The. new. project. (2011-2013). «Aquatic ecosystem •..The.PTCP.(Land.Use.Plans.for.Provincial.Coordination.-.Piani. restoration in Lake Iseo; interventions to improve Lake Thanks. to. this. project,. which. included. restoration. efforts. •..algal blooms,.which.in.late.summer.have.caused.temporary. Territoriali.di.Coordinamento.Provinciale).of.the.Provinces.of. Endine; restoration efforts at Lake Moro»38,.was.immediately. targeting. the. lake’s. natural. habitats. and. ecosystem,. many. of. bans.on.bathing.and.on.the.use.of.lake.water.for.irrigation,.and. Bergamo.and.Brescia;. accepted. by. the. over. 43. relevant. bodies,. including. agencies,. the.actions.and.interventions.set.out.in.the.Lake.Iseo.Strategic. the.formation.of.red.stains.on.the.water.surface,.with.possible. •..the Provincial Fisheries Plans;. organizations,. associations,. and. trade. association,. and. was. consequences. for. the. Municipality. of. Monte. Isola,. which. Document.were.implemented,.including: •..the.Mountain Community Plans,. launched.with.new,.shared,.concrete.actions.aiming.to.improve. draws.its.drinking.water.directly.from.the.lake; •..restoration. and. re-colonization. of. degraded. areas,. environmental.quality.in.the.Lake.Iseo.basin.and.in.lakes .Endine. diversification.of.aquatic.habitats,..characteristic.local.habitats. •..the.Public Land Optimization Plan,. •. aquatic macrophytes.eradicated.from.the.lake.bottom.which. and.Moro.. by.optimizing.and.enlarging.them,.and.improving.the.value.of. float.to.the.surface.and.are.dragged.downlake.by.the.current. and. in. particular. with. the. needs. that. emerged. during. the. the.ecosystems.of.the.LOWER.LAKE.ISEO.AREA;.. All.planned.interventions.are.consistent.with: have. a. negative. impact. on. tourism,. fishing,. and. plumbing. participatory.phases.completed.during.prior.ef forts,.and.on.the. •..the.indications. of. the. Lombardy. Regional. Administration’s. and. drainage. systems,. causing. an. expensive. management. •..interventions. to. widen. the. network. for. qualitative. and. basis. of. the. results. and. preliminary. projects. developed. within. PTUA;. problem; quantitative.monitoring.of.waste.water.flows.into.the.lake; the.framework.of.the.“Coordinating together to act on the waters •..online.information,.communication,.awareness-raising,.training. of Lake Iseo”.project. •..The.goals.and.perspectives.set.out.in.the.Water.Pact.-.shared • fish fauna,.which.is.negatively.impacted.by.eutrophication.and. action programme39. promoted. by. the. Lombardy. Regional. and.educational.activities,.and.project.coordination.activities. The. project. thus. proposes. concrete,. shared,. and. replicable. fluctuating.water.levels. Administration.along.with.120.bodies.and.agencies;. The.results.achieved.and.the.activities.to.be.planned.brought. actions. to. improve. the. environmental. quality. of. the. Lake. Iseo. In.summary ,.the.«Coordinating.together.to.act.on.the.waters.of. •..The.Regional. Optimization. Plan. for. Public. Lake. Property. in. about. both. the. pursuit. of. initial. objectives. and. the. natural. basin. Lake.Iseo.«,.has.been.developed.through.the.following.actions: Lakes.Iseo,.Endine,.and.Moro;. evolution.of.the.first.Committee.in.terms.of.both.territory.and. Its. results. will. provide. useful. information. to. set. the. stage. for. •..The.PTCP.of.the.Provinces.of.Bergamo.and.Brescia;. •..collecting.and.coordinating.planning.policies.and.projects.on. representativeness.(Permanent steering committee). the. additional. pinpointing. of. remaining. local. emergencies,. in. the.part.of.private.and.public.actors; •..The.Provincial.Fisheries.Plans;. Given. the. proven. solidity. of. the. tools. needed. to. implement. coherence. with. the. needs. identified. during. the. preliminary. •..implementation.of. the. 80. actions. set. out. in. the. Lake. Iseo. concrete. actions. and. interventions. identified. as. prioritary. by. phase.carried.out.during.the.“Coordinating together to act on •..The.Mountain.Community.Plans,. Strategic. Document,. which. actions. represent. the. shared. the. local. community,. and. in. light. of. the. close. links. between. the waters of Lake Iseo”.project. •..The.Management.Plans.of.the.Municipal.Nature.Parks.of.Lake. planning.agenda.for.Lake.Iseo; participatory. processes,. the. correct. economic. assessment. The. first. interventions. were. launched. in. April. 2008;. they. Endine.and.Lake.Moro. •..support.and.promotion.of.the.participation.of.local.communities. of. water. resources,. and. restoration. efforts,. the. “Shared continue.in.a.series.of.steps.according.to.degree.of.priority.and.. in.enhancing.the.Lake.Iseo.area; interventions aiming to improve the ecological conditions, •..launching.of.an.integrated.communications.system.that.makes. the qualitative status and the habitat restoration of Lake Iseo“. were.adopted,.an.additional.step.forward.to.address.some.of. 37 As of August 2010, some of the most important efforts targeting the lake ecosystem included the restoration of the aquatic ecosystem between Sarnico and Predore with the placement of access.to.and.interaction.with.the.project’s.elements.possible,. 80 bundles of sticks and 6 trees with dense branches, along with other dredging activities and the creation of new beaches for the litoral reproduction of selected fish species; the historic the.widely.shared.problems.in.the.Lake.Iseo.area.. eel fishery between Sarnico and Paratico was also restored. Research activities also continue: on the determination of the lake’s nutrient threshold using a mathematical model for managing 112 qualitative and quantitative aspects, and to define governance instruments to be used as the basis for decision-making in the multi-criteria management of the lakes’ water, and the systematic 113 36 “Implementation of shared interventions aiming to improve the ecological conditions, the qualitative status and the habitat restoration of Lake Iseo” project (2008-2011; cost: 845.000,00 € and temporally coherent mapping of dissolved oxygen levels and other chemical and physical parameters in the lake’s deep water. of which 450.000,00 funded by Fondazione Cariplo). 38 the project has an overall budget of € 1’000’000 and is co-funded by Fondazione Cariplo for an amount of € 500’000. 39 signed on 24 February 2009 by the Lombardy regional administration and representatives of public bodies, hydroelectric and irrigation users, and environmental associations. The.project,.which.has.five.action.lines.to.help.positively.affect. The.project.aims.to.implement.concrete.actions40,.indentified.as. Each. action. has. effects. on. the. entire. system:. it. can. lead. to. The.activities.carried.out.so.far.in.Lake.Iseo.seem.to.be.heading. natural. ecosystem. and. resource. evolution. dynamics,. which. prioritary.during.previous,.well-established.technical.activities,. transformations. or. trigger. mechanisms. that. will. cause. the. in.the.following.direction:.the.lake.and.its.surroundings.are.seen. have.been.damaged.in.some.cases;.the.action.lines.include: and.taking.the.opportunity.to.broaden.the.geographical.use.of. system. to. absorb. the. effects. of. the. actions,. with. sometimes. as.planning.elements.at.various.scales.in.alternative.to.sectorial. 1...Interventions.to.restore.natural.habitats.and.the.lake.ecosystem. a.coordinated,.shared.methodology.that.has.been.proven.to.be. unpredictable. consequences.. This. is. an. important. aspect. to. plans:.the.need.for.simplification.of.a.complex.system.cannot. in. the. upper. Lake. Iseo,. in. continuity. with. similar. efforts. on. efficient,.while.“exporting”.the.model.to.Lakes.Endine.and.Moro. keep.in.mind.for.both.study.and.management.purposes.. lead.to.a.sub-division.of.the.Lake.Iseo.area.without.losing.its. (Annex.4). overall. meaning.. There. remains. the. possibility. of. working. on. lower. Lake. Iseo. by. restoring. original. hydro-morphological. It.thus.becomes.important.for.all.actions.that.have.consequences. increasingly. small. environmental. units,. while. maintaining. a. conditions,.re-colonizing.degraded.areas,.diversifying.aquatic. The. expected. results. are. mostly. tied. to. the. construction. of. on. the. local. area. to. be. coordinated. among. all. the. subjects. solid.knowledge.of.the.higher.and.lower.hierarchical.levels.and. habitats,.and.maintaining.remaining.unique.characteristics; functional. responses. to. site-specific. problems,. with. particular. interested.in.the.management.of.the.entire.system. highlighting.reciprocal.ties.. 2...Improving. Lake. Endine’s. biological. and. ecological. reference. to:. restoration. and. re-modelling. of. the. lake. bottom;. characteristics. with. habitat. restoration. efforts,. especially. diversification. of. aquatic. habitats;. environmental. engineering. reedbeds. and. ecosystems. that. serve. as. filters,. increasing. works.along.the.lakeshore;.planting.of.riparian.vegetation.and. natural. land-water. links,. and. supporting. native. fish. enlargement.of.the.reedbed.to.provide.breeding.sites.for.fish.and. ANNEX populations; birds;. sustainable. management. of. lake. ecosystem. resources;. 3...Improving.natural.habitat.and.especially.water.quality.at.Lake. creation.of.instruments.and.works.to.protect.and.improve.the. ANNEX 1: Lake Iseo ANNEX 2: Participating bodies lake’s.biological,.chemical,.and.physical.components.. Moro; In.its.northernmost.4.km.or.so,.the.lake.runs.from.NNE.to.SSW. The.bodies.that.are.currently.participating.in.this.project.are.led. 4...Education.and.awareness.raising.in.schools.and.promotion.of. Along. with. the. above,. the. project. also. aims. to. implement. as. a. continuation. of. the. Valcamonica.. At. the. point. where. the. by.the.Comunità.Montana.dei.Laghi.Bergamaschi.(which.draws. local.lake-related.features; communication,.educational,.and.promotional.activities.in.order. Oglio.river.enters.the.lake,.the.shore.is.flat.and.runs.almost.in.a. together.the.Monte.Br onzone.and.Basso.Sebino,.Alto.Sebino,. straight.line.from.NW.to.SE,.while.the.lake.itself.is.about.3.km. 5...Project.coordination.activities. to. focus. public. attention. on. the. project’s. issues,. broaden. its. and.Val.Cavallina.Mountain.Communities).and.the.Consortium.for. geographical.scope,.and.improve.its.effectiveness.. wide..The.lake.then.narrows.to.about.2.km,.near.the.southern. the.Associated.Management.of.Lakes.Iseo,.Endine,.and.Moro.(as. limit.of.the.first.section,.while.depth.increases.to.about.220m. project.partners)..There.is.an.even.broader.degree.of.institutional. near.this.southern.limit. participation,. which. involves. the. following,. both. directly. and. Remarks In.the.section.between.“Bògn”.di.Zorzino.and.Corno.di.Predore. from.a.financial.point.of.view:.Lombardy.Regional.Government,. to.the.west.and.Corno.Trentapassi.and.Capo.Cervo.di.Monte. Province.of.Brescia,.Province.of.Bergamo,.Comunità.Montana. Sebino. Bresciano,. Consorzio. dell’Oglio,. ARPA. Lombardia. An. understanding. of. the. dynamics. of. the. many. spatial. and. it. is. currently. difficult. to. provide. a. solid. assessment. of. the. Isola.to.the.east,.the.longitudinal.axis.shifts.to.a.N-S.orientation.. [Lombardy. Environmental. Protection. Agency],Bergamo. and. temporal. changes. that. took. place. in. the. Lake. Iseo. area. effectiveness.of.the.projects. Width.increases.from.2.to.3.km.in.the.area.between.Punta.della. Valle. Camonica. Local. Health. Unit,. Agenda. 21. Ca.Lo.Pi.Cos.,. highlights.the.speed.with.which.man-made.change.takes.place,. Pietra. and. Marone;. the. lake. then. narrows. once. again. to. less. The. interventions,. which. address. existing. environmental. Ag..21.Progetto.Sebino.Franciacorta,.Consorzio.BIM.dell’Oglio,. often. evading. the. local. capacity. for. recovery. and. causing. a. than.1.5.km.between.Gallinarga.and.Capo.Cervo.di.Montisola.. problems.and.take.into.account.the.ecological.needs.of.target. Tutela.Ambientale.del.Sebino.S.p.A. sometimes. drastic. reduction. in. the. quality. of. lake. water,. the. The. banks. are. quite. steep,. both. above. and. below. the. water. fish.species,.took.place.along.selected.littoral.and.sub-littoral. most.at-risk.component.of.the.landscape. surface..The.bottom.is.nearly.flat,.and.almost.entirely.at.a.depth. areas.in.Lake.Iseo, .with.a.particular.focus.on.species.of.economic. of. less. than. 250m.. The. deepest. point. (258. m),. lies. between. ANNEX 3: Main interventions The. valorisation. of. Lake. Iseo. thus. requires. the. improvement. and.conservation.value,.with.the.purpose.of.improving.habitat. Tavernola.and.Porto.di.Siviano..Montisola.and.the.Brescia.shore. •..Conclusion.of.habitat.restoration.efforts.in.Sarnico.and.Predore. of.its.natural,.landscape,.and.cultural.heritage,.coherently.with. and.breeding.success.for.fish.. are.separated.by.the.so-called.Canale.di.Sale,.about.1.km.wide,. with.the.placement.of.160.bundles.of.sticks.and.12.trees.with. sustainable. development. principles. and. the. precepts. of. this. Even.in.light.of.the.benefits.to.the.ecosystem.and.the.feasibility. with.a.bottom.generally.less.than.90m.deep,.with.the.deepest. dense.branches; key.principle,.along.with.initiatives.to.reduce.waste.and.prevent. of.each.intervention,.the.inevitable,.albeit.limited.impact.on.the. point.lying.102.m.below.the.water.surface. damage. •..Hydraulic.cleaning. operations. and. dredging. in. the. Sarnico. lake.bottom.in.the.selected.areas.undoubtedly.produced.some. In.the.lake’s.southernmost.section,.an.isolated.mountain.rises. area.(11.500.m3.of.material.moved); For. these. reasons,. the. cross-cutting. nature. of. the. projects. degree.of.damage,.and.it.is.thus.too.early.to.say.if.the.positive. from. the. plain. and. divides. the. lake. into. two. adjacent. gulfs:. •..creation.of.850.m2.of.new.beaches.for.the.inshore.reproduction. at. hand. implies. planning. efforts. based. on. organizational,. short-term. results. achieved. by. interventions. will. be. sustained. the.Gulf.of.Iseo,.in.Brescia.province,.and.the.Gulf.of.Sarnico,. of.selected.fish.species.(such.as.Shad,.Bleak,.and.Whitefish). technical,.economic,.and.financial.factors..These .efforts.should. over. time.. It. is. fair. to. say. that. the. combination. of. careful. which. lies. partly. in. Bergamo. province.. The. lake’s. longitudinal. in.the.Sarnico.area. go.beyond.the.mere.balancing.of.security,.environmental,.and. regulation. of. water. levels. and. the. laying. of. bundles. of. sticks. orientation. shifts. strongly. towards. the. W,. and. water. depth. •..Placement.of.small.trees.underwater.to.encourage.colonization. economic.needs,.but.also.embody.and.implement.a.change.in. to. provide. reproductive. habitat. for. fish. is. a. positive. first. step. gradually. decreases.. The. lake. is. bordered. to. the. south. by. and.reproduction.on.the.part.of.selected.fish.species.in.the. development. models. through. land. use. choices.. The. projects’. towards.improving.the.lake’s.ecosystem..It.will.be.interesting.to. a. series. of. hills. made. up. of. Jurassic-Cretaceous. rocks.. The. two.areas.of.Iseo.and.Predore. dynamic.evolution.has.brought.about.an.organizational.structure. assess.the.results.of.the.“Shared.interventions.aiming.to.improve. frontal.moraine.apparatus.of.the.Camuno.glacier,.which.in.the. and.partnership.agreement.that.can.support.the.establishment. the.ecological.conditions,.the.qualitative.status.and.the.habitat. Quaternary. moulded. the. depression. that. currently. houses. the. •..Placement.of.large.trucks.with.branches.to.create.new.habitat. of. Lake Contract. explicitly. aiming. to. protect,. valorise,. and. restoration.of.Lake.Iseo”.over.time.in.order.to.fully.appraise.the. lake,.remains.only.farther.to.the.southeast,.in.the.Corte.Franca. suitable.for.colonization.on.the.part.of.lar ge.predators.in.one. promote. the. lake. and. its. environmental,. territorial,. economic,. effectiveness.of.its.actions.with.regards.to.the.biological.cycle;. area..The.lake’s.outflow.lies.at.the.western.end.of.the.Gulf.of. area.near.Iseo; and.social.systems. in.particular:. Sarnico,.where.the.emissary,.the.Oglio.river,.excavated.a.deep. •..restoration. of. the. historic. eel. fishery. in. Sarnico. -. Paratico. The. “Memorandum of Understanding” formally. signed. on. 4. •.Assessing.the.status.and.conservation.of.the.works.completed;. channel.through.the.Quaternary.moraines.and.alluvial.detritus. (elimination. of. damaged. infrastructure,..placement. of..new. October. 2010. for. the. constitution. of. a. “Permanent Steering •.Assessing.the.long-term.colonization.of.newly-created.habitat,. posts,. planting. of. additional. tree. species,. placement. of. underwater.embankments,.placement.of..bundles.of.sticks); Committee”.for.the.implementation.of.the.“Lake Iseo Strategic •..Monitoring. the. influence. of. the. interventions. on. local. Document”.marked.the.first.step.towards.the.“Lake Contract” macrophysical.dynamics.. •..beginning.of. the. construction. of. small. artificial. islands. by. and. established. three. fundamental. tasks. for. the. Steering. completing.their.wooden.support.infrastructure.in.the.Sarnico. Committee:. The. aspects. considered. so. far,. which. are. important. in. basse déf. area. environmental,. natural. history,. and. economic. terms,. may. be. •..creation. of. new. beaches. for. the. inshore. reproduction. of. •.Carrying.out.planned.actions,. able.to.influence.the.lake’s.overall.image,.which.could.be.seen. selected.fish.species.(such.as.Shad,.Bleak,.and.Whitefish).in. •.Raising.the.necessary.funds,. as.an.area.in.which.all.activities.are.efficiently.integrated.with.the. the.Paratico.area. •..Acting.as.a.venue.for.discussion.in.order.to.implement.shared. local.landscape. •..Placement.of. bundles. of. sticks. to. encourage. egg-laying. by. policies.instead.of.isolated.interventions. Working.in.the.Lake.area.means.taking.into.account.a.great.deal. selected.fish.species.(such.as.European.Perch).in.the.Sarnico. Given. the. extreme. complexity. of. the. project,. the. many. fields. of.variables.that.influence.its.living.conditions.and.evolution.(or. area. of. intervention,. the. short. time. elapsed. since. the. launching. of. decline).at.various.related.spatial.and.temporal.scales.. the.initial.works,.and.the.various.interests.centred.on.the.lake,.

40 Action Line A: - Habitat restoration and flooding of filled-in reedbeds and filter ecosystems, - Restoration of Lake Iseo’s ecosystem and natural habitats, in particular for the two shores of - Creation and launch of a fish hatchery for native lake species, 114 upper Iseo Lake, as a continuation of the efforts already undertaken in lower Sebino Lake. - Study campaign for the containment and removal of microalgae. 115 Action Line B: Action Line C - Improvement of the biological and ecological conditions at Lake Endine. In particular - Improvement of natural habitat and water quality at Lake Moro. •..Completion.of. artificial. islands. planted. with. reedbeds. and. Region Lombardy Lago.Moro Region Lombardy riparian. tree. species. as. bird. habitat,. fish. spawning. areas. Province Bergamo Province Brescia This.small.lake.in.the.lower.Valcamonica.lies.below.Mount.Pora. with.pebble.bottom.and.bundles.of.sticks,.and.completion.of. BASIN BASIN and.Mount.Altissimo,.and.adjacent.to.the.Dezzo.torrent.valley.. restoration.efforts.for.the.Sarnico.and.Iseo.areas Hydrographical.basin Oglio Hydrographical.basin Oglio Latitude 45°.46'.40".N Gauss-.Boaga.coordinates 1.587.915,5.E •..Dredging.to.improve.hydraulic.outflow.for.Lake.Iseo.in.Sarnico. The. only. lakeside. settlement. (with. a. handful. of. inhabitants). is. Longitude 9°.56'18".E Capo. di. Lago,. on. the. eastern. end. of. the. lake,. near. the. small. 5.080.984,4.N e.Paratico.for.a.total.surface.of.10,000.m2 Watershed.area.(including.lake) 36.03.Km2 Watershed.area.(including.lake) 1.741.Km2 emissary. that. flows. towards. the. Oglio. river.. The. lake. has. no. •..hydraulic.cleaning.and.littoral.dredging.for.a.total.surface.of. Max.altitude 1,381m.(M..Grione) Max.elevation 1.256.m.(M..Pora) tributary:.a.handful.of.small.streams.flow.into.it,.but.the.lake.is. 10,000.m2.in.the.Iseo.area. Type Natural-regulated Type naturals. mostly.fed.by.springs.at.the.lake.bottom. •..hydraulic.lakeshore. cleaning. in. selected. spots. for. a. total. Main.tributaries river:.- Main.tributaries lake:.Spring-fed Emissary river:.Cherio Emissary torrent:.- surface.of.3,000.m2. The.lake.lies.in.a.basin.surrounded.by.several.mountain.peaks,. Average.annual.discharge.of.the.emissary 1.4.m3/s with. steep. banks. caused. by. erosion. from. the. glaciers. that. LAKE Online.publication LAKE formed.them,.and.which.continue.to.descend.steeply.below.the. Surface.area 0.174.m2.x.103 2 Enlargement.of.database.and.website:.www.lagoiseosebino.it Surface.area 2.34.km water.surface,.contributing.to.the.lake’s.morphology..Its.waters. Average.elevation 381.m.a.s.l. Average.elevation 334.5.m.a.s.l. are.rather.dark,.and.water.temperature.is.low;.the.lake.freezes. Max.depth 43.6.m The.description.of.the.lake.restoration.interventions.was.recently. Max.depth 9.4.m.. Average.depth 24.2.m over.during.cold.winters..The.lake.is.meromictic,.meaning.that. published.by.the.Lombardy.Regional.Government.Quaderno.di. Average.depth 5.1.m Max.length 835.m deep.waters.and.surface.waters.(up.to.a.depth.of.20.meters). Ricerca. della. Regione. Lombardia. n°. 125:. “Interventi idraulici Length 6.08.km Max.width 329.m never. mix,. leading. to. a. lack. of. oxygen. and. the. production. of. ittiocompatibili: linee guida”. (January. 2011),. Chapter. 4. -. Max.width 0.67.km Average.width 209.m ammonia.and.hydrogen.sulfide,.and.the.constant.accumulation. Rinaturalizzazione.di.habitat.lacustri. Average.width 0.39.km Shoreline.length 1.998.km Shoreline.length 13.93.km of.solutes,.especially.phosphorus. Water.volume 4229.594.m3.106 The.publication.is.available.online.at:.www.agricoltura.regione. Water.volume 11.93.m3.106 Sinuosity.index 1.35 lombardia.it..in.the.“Ricerca.e.Sperimentazione”.section. The. low. elevation. at. which. the. lake. lies. and. the. presence. of. Sinuosity.index 2.57 phosphorus. makes. it. possible. for. reedbeds. (Phragmites. Use Tourism,.bathing Watershed.area/lake.area 14.4 ANNEX 4: Minor lakes australis).to.grow.on.parts.of.its.shore.. Theoretical.renewal.time 92.7 Lake.Endine Use F, .D,.N,.T,B.* The. lake. hosts. numerous. species. of. fish,. including. European. Perch (Perca fluviatilis),. Tench. (Tinca tinca),. Cavedano. Chub. Lake.Endine.is.a.shallow,.dimictic.lake.with.low.renewal.times.. * F 0 fishing, IN = industrial, D = drinking water, N = navigation, T = tourism, B=bathing (Squalius squalus),. Common. Carp. (Cyprinus carpio). and. Its. water. quality. is. gradually. improving,. with. phosphorus. European.Eel.(Anguilla anguilla). concentrations.dropping.by.about.2/3.over.the.last.two.decades.. The. lake. is. mesotrophic,. with. good. water. transparency. and. On.27.April.2010,.the.Lombardy.regional.administration.instituted. a. moderate. content. of. chlorophyll. during. winter. and. summer.. the. Lago. Moro. Nature. Park,. a. local. park. of. supramunicipal. This.improvement.is.linked..to.sewage.treatment.efforts.and.the. interest (parco locale di interesse sovracomunale - PLIS),.with. adoption,.at .the.national.level,.of.restrictions.on.phosphorus.use. a.surface.area.of.1.31.km²;.the.municipality.of.Angolo.Terme.is. in.detergents. responsible.for.its.management. Nevertheless,. reduced. hypolymnetic. oxygenation. can. sometimes.occur.during.summer.stratification. Data. on. the. lake’s. biological. state,. albeit. limited,. indicates. relatively.high.trophic.levels,.in.line.with.typical.natural.conditions. in.this.habitat.type.. Trophic state On.the.basis.of.total.phosphorus.values.(14.μg.P.l-1),.the.lake. can.be.assigned.to.the.mesotrophic.category. Fish fauna The.fish.community.has.been.heavily.impacted.by.the.introduction. of. non-native. species,. which. since. 1985. have. accounted. for. over.40%.of.the.lake’s.species..Native.species.have.also.been. affected.by.genetic.pollution.from.non-native.one,.the.case.of. the.Pike.being.emblematic..The.Italian.Barbel.and.Italian.Vairone. have.not.been.reported.since.1896.Over.the.last.few.decades,. several. exotic. species. have. appeared,. including. Zander,.Wels. Catfish,. the. abundant. Crucian. Carp. (a. pest. species),. and. the. small.Amur.Bitterling,.the.latter.still.in.limited.numbers. The.PLIS.(Local.Plan.of.Supramunicipal.Interest.-.Piano.Locale. di.Interesse.Sovracomunale).for.Lake.Endine..aims.to.implement. effective.nature.and.landscape.protection.measures.for.the.lake. and.its.surroundings,.using.integrated.planning.by.the.various. municipalities.working.together..

Tab. 1> Main morphometric and hydrological characteristics. * F = fishing, IN = industrial, D = drinking water, N = navigation, T = tourism, S=swimming. 116 117 Introduction ANNEXE 4: The implementation of Water. is. a. resource. that. plays. a. major. role. in. our. society:. Although. the. reduction. of. nutrient. loading. that. has. been. unique.good.for.life,.a.source.of.progress,.important.energetic. operated.over.the.last.decade.in.most.Italian.pre-alpine.lakes. resource.and.element.that.deeply.characterizes.the.surrounding. will.improve.the.overall.future.situation,.in.several.cases.one .is. a mathematical model for managing landscapes.. Ultimately,. no. human. activity. is. possible. without. wondering.whether.it.will.be.possible.to.match.the.time.target. it,. including. life. itself.. Until. a. few. decades. ago,. the. human. established.by.the.WFD..Similar.situations.have.already.occurred. impact. on. water. resources. has. been. insignificant. and. this. in.other.deep.pre-alpine.lakes.that.first.became.eutrophic.and. quantitative and qualitative aspects of a has. engendered. and. gradually. consolidated. the. illusion. that. eventually. entered. meromictic. condition.. As. an. instance,. in. water. resources. were. inexhaustible.. However,. since. the. 50’s,. lake.Lugano.the.situation.has.been.so.deeply.deteriorated.that. its. use. has. been. gradually. diversified. and. increased,. while. some.technical.solutions.have.been.recently.proposed.in.order. large and deep pre-alpine lake: the case of more.extensive.pollution.have.often.compromised.its.integrity.. to. prevent. vertical. mass. exchange. from. deep. waters. toward. Accordingly,.although.water.is.not.in.short.supply.on.our.planet,. surface.waters.(De.Cesare.et.al.,.2006).. more.and.more.often.there.is.a.severe.problem.of.quality.of.the. In.order.to.tune.this.type.of.effort.and.to.evaluate.the.effectiveness. water. resources. used. for. civilian. purposes. without. expensive. lake iseo and.the.timing.of.the.recovery.process.under.uncertain.forcing. pre-treatments,.so.that.we.are.running.the.risk.in.the.future.to.be. conditions.such.as.those.imposed.by.climate.change,.dynamic. in.the.situation.of.Coleridge’s.sailor,.who.dies.of.thirst,.though. modelling.is.affirming.as.an.invaluable.tool..In.this.direction.it.is. surrounded.by.a.sea.of.water: important. to. strengthen. our. current. understanding. of. the. lake. Water, water, everywhere, nor any drop to drink. ecosystem. and. develop. site-specific. models. to. simulate. the. (Coleridge, The Ancient Mariner) physical,.biogeochemical.and.biological.processes.occurring.in. Coordination Group: lakes..This.type.of.approach.could.rationally.guide.management. Although.the.percentage.of.fresh.water.stored.in.surface.waters.-. strategies.to.meet.the.established.lake.ecological.quality.targets. Prof..ing..marco.pilotti,.ph.d.(università.degli.studi.di.brescia) lakes.and.rivers.-.is.relatively.small.(about.1%.of.total.freshwater. and.has.already.been.pursued.in.previous.studies.(e.g.,.Copetti. lucia.ratti,.livio.mallia.(ersaf.-.regione.lombardia) available),.they.are,.however,.an.irreplaceable.resource.because. et.al.,.2006,.Trolle.et.al.,.2008).for.shallow.lakes.. it.is.in.the.areas.around.lakes.and.rivers.that.often.developed. Authors: civilization..Therefore.it.is.in.these.territories.which.is.essentially. This.type.of.approach.is.suggested.also.by.the.complexity.of.the. localized.water.demand..Coming.to.our.region,.it.may.be.useful. interactions.and.by.the.relevance.of.the.economic .implications.of. Prof..ing..marco.pilotti,.ph.d..(università.degli.studi.di.brescia) to.remember.that.Lombardy.is.Italian.Region.where.the.largest. every.decision.regarding.lake.management..Accordingly,.there.is. dr..ing..giulia.valerio,.ph.d..(università.degli.studi.di.brescia) Italian. lakes. are. located,. both. in. terms. of. area. (40%. of. total). a.need.for.rationale.and.scientific.tools.to.be.used.for.exploring. and.volume.(65%)..It.is.also.the.most.densely.populated.Italian. consequences.of.current.practices.and.of.their.possible.future. Date: region. variations,.also.in.the.perspective.of.uncertain.future.scenaria. regarding. climate. change.. In. order. to. provide. this. decision. June.2012 In.recent.years,.there.is.an.increased.interest.in.the.study.of.lake. support.framework,.we.suggest.moving.along.three.directions:. systems,.which.probably.might.be.used.in.future.as.increasingly. . monitoring,.modelling.and.disseminating/sharing.experience. important.source.of.drinking.water..This.possibility.is.currently. only. marginally. practiced. in. our. region. (eg,. Lake. Garda,. to. a. Monitoring.provides.evidence.of.the.leading.processes.that.are. smaller.extent.in.Monte.Isola,.Lake.Iseo),.but.we.must.not.forget. occurring.within.a.lake.and.provides.direct.possibility.of.studying. that.this.is.not.so.elsewhere..Just.this.possible.future.uses.of.the. their. cause-effect. relationship.. Modelling. is. the. following. lakes.requires.to.deal.now.with.issues.arising.from.the.strong. step,. made. possible. by. the. increase. in. computer. power. of. anthropic.pressure.which.has.been.acting.on.them.over.the.last. last.decades..By.modelling.we.have.the.possibility.to.test.the. decades. correctness. of. our. hypothesis. on. the. interactions..between. processes.and.testing.scenaria.that.are.different.from.what.we. The. growing. deterioration. of. water. quality. occurred. over. last. already.know..Finally,.dissemination.allows.a.growth.of.general. century. in. many. lakes. has. recently. focused. attention. on. the. awareness.that.is.of.paramount.importance.when.dealing.with. sustainability. of. lacustrin. environments.. This. is. a. particularly. environmental. resources. and. sharing. of. experience. allows. to. urgent. issue. because. lakes. are. slowly. responding. systems,. observe. exceedingly. complex. processes. also. from. different. and. their. recovery. time. can. be. reckoned. as. a. multiple. of. the. perspective,.taking.advantage.of.test.cases.developed.in.similar. water.renewal.time,.often.in.the.order.of.several.years,.and.is. situations. also.a.function.of.the.interaction.with.bottom.sediments,.whose. dynamics.is.even.slower.. In. the. following. pages. we. shall. present. the. development. that. we.accomplished.following.these.guidelines,.having.in.mind.the. In.addition.and.as.an.expression.of.this.increased.environmental. final.target.of.setting.up.a.tool.devised.for.decision.makers..This,. sensibility,. the. EU. Water. Framework. Directive. (WFD),. which. of. course,. does. not. necessarily. means. that. an. environmental. came.into.action.in.December.2000,.now.provides.a.new.reason. executive. will. be. able. to. use. a. modelling. tool. that. in. itself. of.interest.toward.this.type.of.problem..The.WFD.dictates.that.all. requires.an.high.level.of.specific.expertise..Rather,.it.means.that. member.countries.must.restore.good.ecological.quality.in.natural. a. modelling. tool..can. provide. answers. to. practical. questions. lakes.by.the.term.of.2015,.where.the.term.“good”.is.taken.with. that.are.typical.of.lake.governance..Lake.governance.is.a.very. reference.from.a.natural.reference.state.from.which.the.future. difficult. activity. because. when. dealing. with. lake. restoration. ecological.condition.of.the.lake.will.be.allowed.to.deviate.only. effort.it.must.take.into.account.the.dimension.of.the.involved. slightly..This.target.often.requires.a.general.reduction.of.external. environmental. problem. and. the. intrinsic. conflictual. nature. of. nutrient. loading,. an. ambitious. and. difficult. task. in. strongly. every.possible.decision..Even.before.coming.to.the.management. urbanized.watersheds.like.those.typical.of.many.European.and. level,.people.responsible.for.decision.making.must.understand. Italian.lakes. what.must.be.measured.and.known.about.the.lake..We.believe.

118 119 that.a.modelling.approach.can.provide.fundamental.support.at. variables.such.as.nutrients.or.oxygen,.and.hence.has.a.great. performance. provides. an. important. constraint. because. lakes. is. a. matter. of. debate,. particularly. because. atmospheric. both.levels.because.models.allow.to.set.in.a.rational.perspective. ecological. relevance. on. the. lake. productivity. and. biocenosis. climate.change.scenaria.can.imply.long-term.simulations.over. forcings. are. heterogeneous. over. large. water. surface. areas,. the.pros.and.cons.related.to.the.conflictual.use.of.resources.. (Imboden.1990)..During.cold.seasons,.in.particular,.the.stability. decades. and. even. centuries. (MacKay. et. al.. 2009),. requiring. and.because.horizontal.advection.is.neglected.in.the.lake.and. Accordingly.models.are.needed.for.lake.governance. of.the.stratification.controls.the.occurrence.of.complete.winter. a. computational. burden. that,. for. 3-D. approaches,. largely. seiching.motion.is.parameterized.in.a.conceptual.way.(Perroud. overturning.and.the.development.of.a.permanent.stratification. exceeds.the.usually.available.computer.resources..Though,.the. et.al..2009).. Several. European. lakes. are. in. trophic. condition. that. are. without. any. complete. circulation. during. the. annual. cycle. appropriateness.of.1-D.models.applicability.to.large.and.deep. presumably. far. away. from. their. natural. conditions;. on. the. may.have.a.decisive.impact.on.the.redistribution.of.dissolved. other. hand. EU. and. national. legislation. urges. for. a. restoration. substances.in.large.lakes.(Boehrer.and.Schultze,.2008).. of. natural. conditions. within. a. few. years. and,. due. to. the. long. time.response.of.lakes,.measurements.must.be.taken.as.soon. If. the. stratification. pattern. is. so. important. for. lake. dynamics,. Lake Iseo as.possible.to.match.the.EU.target..These.decisions.will.have. it. is. important. to. observe. that. it. can.be. altered. by. human. a. strong. conflictual. impact. on. the. whole. hydrographic. basin. impact.or.by.climatic.variability..As.a.matter.of.fact,.it.is.widely. Figure 2.1.shows.Iseo.Lake.located.at.an.average.elevation.of. valley:.the.most.important.is.the.Parco.Nazionale.dello.Stelvio. because.they.will.imply. recognized. that. pronounced. effects. of. climate. warming. are. 185.15.m.a.s.l..in.the.pre-alpine.area.of.Lombardy,.in.northern. (national. mountain. park),. that. is. the. largest. Italian. Park.. As. •.a.greater.effort.on.the.water.treatment.of.the.catchment; being. observed. in. many. inland. lakes. and. reservoirs,. in. term. Italy,.whilst.Figure 2.2.shows.its.bathimetry..As.one.can.observe,. regards. the. economy,. agriculture. has. declined. in. importance. of. changing. in. seasonal. temperature. stratification. and. mixing. a.very.interesting.morphologic.feature.of.this.lake.is.the.presence. in.recent.decades,.and.the.availability.of.water.resources.has. •.a.strict.control.of.land.use.changes; conditions,. ice-cover. duration. and. drying. up. of. water.. In. in. the. central. part. of. the. lake. of. a. large. island,. Monte. Isola,. favoured. industrial. activities. in. the. field. of. mechanical. and. •..constraints. on. economical. activities. that. must. be. particular,. in. large. temperate. central. European. lakes. decadal. which.covers.an.area.of.4.km2.and.has.a.peak.elevation.of.about.. electromechanical.engineering..Mineral.deposits.are.small.and. environmentally.sustainable; mean. water. temperatures. have. undergone. a. secular. increase. 415.m.above.the.lake.surface..The.island.locally.separates.the. mining.nowadays.is.of.little.importance..The.growth.of.industry. •..constraints.on.the.use.of.lake.water; at. all. depths. during. the. 20th. century. (Livingstone. 2003).. The. lake. into. two. branches. with. deeply. different. depths.. This. is. has. greatly. influenced. the. development. of. the. service. sector. •..economical.effort.of.the.whole.community; effects. of. changes. in. climatic. conditions. on. the. lacustrin. clearly.shown.in.Figure 2.3.that.portrays.a.cross.section.of.the. over. the. last. few. decades.. This. particular. setting. contributes. ecosystem.have.been.studied.by.several.investigators,.showing. lake.in.correspondence.of.the.summit.of.Monte.Isola..This.lake. to. increase. its. importance. also. from. the. limnological. point. of. In.this.direction.models.can.provide.unrepleaceble.help..because that. global. warming. is. expected. to. promote. the. development. drains.a.wide.mountain.district.that.is.particularly.relevant.both. view..Actually,.the.lake.transition.from.oligotrophy.to.eutrophy. •..they.may. to. evaluate. lake. original. trophic. conditions. when. of.toxic.cyanobacteria.(Shatwell.et.al..2008).and.to.intensify.the. from.the.hydrological.and.economical..point.of.view.. over.the.last.40.years.has.been.the.consequence.of.the.strong. original.data.are.not.available; thermal. stratification,. leading. to. stronger. thermal. gradients. in. economical. growth. in. the. drained. watershed.. At. the. same. Although. this. is. a. rather. densely. populated. alpine. valley,.with. •..they.help.to.identify.which.measurements.are.needed; the.thermocline.and.less.frequent.complete.winter.overturning. time,. the. relevance. of. the. surrounding. area. provides. a. strong. a. population. density. of. about. 100. inhabitants. per. km2,. (372. in. large. lakes. (Peeters. et. al.. 2002).. In. large. lakes,. this. has. legitimation. to. the. ongoing. efforts. to. recover. the. lake. to. its. •..they.help.to.interpret.measured.data;.. is. the. average. value. for. whole. Lombardy),. there. are. several. potentially.enormous.impacts.on.the.deep-water.dynamic,.that. natural.condition.. •..they.allow.to.identify.the.time.response.of.the.system; protected.areas,.that.emphasise.the.touristic.relevance.of.the. would. become. more. susceptible. to. inter-annual. variations. in. •..they.allow.to.understand.“what.if”.alternatives.that.are.typically. meteorological.conditions.(Livingstone.1997).and.more.isolated. needed..in.environmental.problems from. above,. with. possible. lack. of. deep-water. oxygenation. •..they.allow. to. evaluate. uncertainties,. e.g.,. related. to. climate. (Peeters. et. al.. 2002). and. consequent. delay. in. the. recovery. of. change,.in.this.way.acting.as.a.virtual.laboratory lakes.after.eutrophication.(Garibaldi.et.al..1999,.Matzinger.et.al.. 2007,.Trolle.et.al..2011)..Besides.air .temperature,.recent.studies. In.this.direction.the.ideal.model.must.be.able. have. shown. that. also. other. meteorological. driving. variables,. •..to.represent. the. most. significant. environmental. processes. such.as.local.wind.speed.and.cloud.cover.could.be.important. involved.in.lake.dynamics.and.water.quality,.such.as.the.time. regulator. of. lake. thermal. regimes. (Hornung. 2002,. Tanentzap. evolution. of. several. quantities. that. are. critical. for. the. lake. 2008)..Even.light.penetration.depth.could.modify.the.shortwave. evolution.(e.g.,.Dissolved.Oxygen,.Total.P.content…) energy. distribution. within. the. epilimnion. and,. accordingly,. its. •..It.must.be.able.to.simulate.these.processes.on.large.space. temperature. profile.. This. quantity. provides. an. example. of. an. and.time.scale.(e.g,.100.km2.and.100.years). interesting. direct. feedback. between. temperature. distribution. and.biology,.because.the.former.controls.phytoplankton.growth. Models. are. simplified. reproduction. of. reality. that. are. able. to. that,. in. turn,. along. with. suspended. sediments,. contributes. to. reproduce.some.leading.aspects.of.interest.in.the.investigated. light. decay. in. the. epilimnion,. so. that. these. effects. are. partly. cases.. In. the. following,. talking. about. models. we. shall. mean. interlocked.one.to.the.other.. Figure 2.1> Position of Iseo lake in , with its regulated outlet in Sarnico (yellow spot). Encircled set.of.equations.that.reproduce.mass,.momentum.and.energy. in red, the upstream alpine catchment of ValleCamonica. The red spot is the location of Brescia. balances,. along. with. the. reproduction. of. chemical. reactions. Accordingly,.a.good.understanding.of.thermal.stratification.and. capable. of. representing. the. most. relevant. aspects. of. nutrient. heat. distribution. is. fundamental. to. reproduce. the. interactions. and.population.dynamics.within.a.lake.. between.physical.and.ecological.components.of.the.ecosystem. (Trolle.et.al..2010).and.to.forecast.its.evolution..Physical.limnology. If. dynamic. modelling. is. the. tool. by. which. to. explore. different. provides. models. with. growing. levels. of. complexity,. from. environmental.managing.scenaria,.thermal.stratification,.mostly. 3-dimensional.(3-D).to.simple.box.models,.which.can.provide. set.up.by.meteorological.forcing.acting.at.the.lake.surface,.is. effective. answer. to. this. challenge.. Typically,. 1-D. modelling. the.key.dynamic.process.that.controls.the.intensity.of.vertical. approaches. (such. as. DYRESM,. AQUASIM,. DLM,. MINLAKE),. mixing. in. deep. temperate. lakes.. Accordingly,. the. ability. to. where.horizontal.averaging.of.lake.properties.is.accomplished. accurately.reproduce.the.thermal.structure.can.be.regarded.as. and.only.the.vertical.variation.is.retained,.represent.a.suitable. a. prerequisite. for. simulating. biogeochemical. processes.. As. a. choice.because.they.provide.a.compromise.between.the.actual. matter. of. fact,. thermal. structure. deeply. affects. the. ecological. physics.and.the.computational.load..The.fundamental.assumption. ecosystem,.both.directly.and.indirectly..Water.temperature.exerts. behind.the.use .of.one-dimensional.lake.models.is.that.horizontal. a.major.influence.on.the.biological.activity.and.growth.of.aquatic. gradients.are.far.smaller.than.vertical.ones,.a.condition.that.is. organisms. and. on. water. chemistry. (Reynolds. 2006).. Thermal. achieved. when. a. strong. density. stratification. is. present. and. stratification.controls.the.depth.of.inflows.intrusion,.so.affecting. three-dimensional. effects,. such. as. horizontal. advection. by. in-. residence.time.scales.of.river.water.in.reservoirs.(Rueda.et.al.. and.outflows,.earth.rotation,.differential.thermocline.deepening,. 2006).as.well.as.nutrient.distribution.at.different.depths..Besides,. Figure 2.3> Lake Iseo ovest-east cross section through the summit of . Figure 2.2> Bathimetry of Iseo lake. spatial. variations. of. wind. stress,. upwelling. and. differential. the.partitioning.of.the.water.column.and.the.related.vertical.flux. heating. play. a. secondary. role.. The. problem. of. computational. mechanisms.control.the.vertical.distribution.of.biogeochemical.

120 121 Figure 2.1 Figure 2.4.shows.lake.Iseo.within.the.framework.of.its.overall. From. the. hydrological. point. of. view,. the. average. yearly. With.its.8.billion.cubic.meter.of.fresh.water.Lake.Iseo.constitutes. warm.monomictic..During.most.of.the.year.the.lake.is.strongly. catchment.which.covers.an.area.amounting.to.1807.Km2..In.the. precipitation. is. about. 1165. mm,. varying. widely. on. the. basin,. a.strategic.environmental.and.economic.resource.for.northern. thermally.stratified..Accordingly,.although.full.circulation.of.the. same. Figure,. the. outline. of. its. most. relevant. sub-catchments. being.more.frequent.in.the.Prealpine.zone.(up.to.1500-2000.mm.. Italy..This.lake.has.been.regularly.monitored.over.the.last.20.years.. water.should.occur.once.every.year.at.the.end.of.winter,.due.to. (W1:. Valle. Camonica;. W2:. Borlezza). are. separately. shown.. annually).than.on.the.bottom.of.the.valley.and.Alpine.zones.(1200. from.the.physical.and.chemical..point.of.view.(Garibaldi.et.al.. its.morphology.water.overturn.in.reality.happens.only.irregularly.. Some. morphometric. data. regarding. these. catchments. and. mm..to.1400.mm..annually)..The.precipitation.regimes.has.two. 1999).whilst.its.hydrodynamic.has.been.extensively.investigated. In.order.to.investigate.the.structure.of.the.flow.field.within.the. obtained. from. a. 20x. 20. m. Digital. Elevation. Model,. are. also. maxima,.in.spring.and.autumn,.a.principal.minimum.in.winter.and. over.the.last.4.years.(Valerio.et.al.,.2012)...Historically.classified. epilimnion,. a. measuring. campaign. using. lagrangian. drougues. shown,.along.with.the.channel.network.obtained.by.applying.a. one.of.secondary.importance.in.summer..In.the.northern.part.of. as. warm. monomictic,. starting. from. the. end. of. ’90. only. two. has.been.started.over.the.last.two.years.in.the.northern.part.of. slope.dependent.threshold.drained.area.of.0.6.Km2.. the.basin.a.transition.regime.toward.the.continental.type,.with. complete.overturns.occurred.and.its.deep-waters.underwent.a. the.lake..This.campaign,.although.showing.interesting.patterns,. only.one.maximum.in.summer,.is.observed..Due.to.the.presence. process.of.progressive.deoxigention. has.confirmed.a.weak.hydrodynamics,.with.wind.driven.currents. As.one.can.observe,.most.of.the.catchment.area.is.occupied. of.several.large.reservoirs.around.Adamello.group,.the.glacier. usually. lower. than. 0.1. m/s.. Finally,. since. a. dam. at. Sarnico. by.Valle.Camonica.(1439.Km2),.drained.by.Oglio.river,.the.main. Figure 2.5. shows. the. average. temperature. profiles. along. the. does.not.significantly.affect.the.runoff.regime,.which.is.pluvio- (Figure.2.1.and.2.4).controls.its.outflow,.Iseo.lake.is.a.regulated. natural. inflow. to. the. lake,. that. is. mostly. fed. by. water. flowing. water. column. with. reference. to. the. winter,. mid-season. and. nival.. The. runoff. is. thus. mainly. influenced. by. snow. melting. in. lake.with.negligible.daily.water.surface.variations..The.maximum. from.the.Adamello.group..Approximately.25.kms.before.entering. summer. periods. computed. on. the. basis. of. these. long. time. spring.and.by.rainfall.in.autumn. allowed.level.variation.over.the.year.is.1.4.m,.corresponding.to. the.lake.(point.J1),.a.considerable.fraction.of.Oglio.waters.are. series..In Figure 2.5 also.the.average.yearly.dissolved.oxygen. a.volume.of.85.million.m3.of.water...This.lake.is.a.very.important. diverted.to.an.artificial.channel.(canale.industriale).that.conveys. No.stage-discharge.is.available.for.Oglio.river.upstream.of.its. content.can.be.seen..As.one.can.observe,.water.temperatures.at. resource.for.agriculture,.tourism.and.fishery.and, .although.at.a. water. to. an. hydropower. plant. before. returning. them. to. the. entrance. in. Lake. Iseo.. However,. a. regulating. dam. is. placed. the.bottom.is.about.6.5.°C,.so.that.the.lake.can.be.classified.as. more.limited.extent,.its.water.is.used.also.as.a.drinking.resource...... lake.(point.I2)..During.most.of.the.year.this.channel.transfer.to. downstream.Sarnico,.the.lake.outlet.(point.O.in.Figure 1);.here. the. lake. a. discharge. that. is. larger. than. the. one. conveyed. by. water.surface.elevation.and.discharges.have.been.continuously. the.Oglio.river.itself.(in.point.I1)..Water.entering.the.lake.from. monitored. for. more. than. sixty. years.. By. solving. the. reservoir. canale. industriale. is. a. few. degrees. colder. than. the. conveyed. continuity. equation,. the. overall. inflow. discharge. to. the. lake,. by.the.Oglio.river..This .is.particularly.evident.is.summer.when. Qin(t),.can.be.back-computed. the.difference.between.the.two.inflows.can.be.up.to.5.degrees.. Regarding.the.meteorological.conditions.acting.on.the.lake,.the. During. most. of. the. year. the. water. temperature. of. these. two. area.is.subjected.to.a.temperate.climate.and.to.periodic.winds,. inflows. is. lower. than. the. lake. surface. water. temperature. but. characterized.by.a.daily.inversion.due.to.cathabatic.effects;.their. higher.than.the.one.of.the.lake.hypolimnic.water.(approximately. predominant. directions. are. aligned. with. the. north-south. lake. 6.3.°C),.so.that.interflow.is.the.usual.hydrodynamic.condition. axis.and.their.typical.speeds.are.around.5.m/s,.when.measured. on.lake.surface.

Overall Catchment - Oglio at Sarnico Lombardy Area..A 1807.km2 Lake.Iseo.Area.a 60.88.km2 a/A 0.034.[-] Average.altitude. 1401.m.a.s.l. Maximum.altitude 3554.m.a.s.l. Minimum.altitude 185.15.m.a.s.l. Catchment W1- Valle Camonica Area..A 1439.3.km2 a/A 0.042.[-] Glaciers.area.w 10.4.km2 w/A 0.0072.[-] Average.altitude. 1596.4.m Maximum.altitude 3554.m Figure 2.5> Long term average temperature profile in winter, spring and summer (a) and yearly averaged dissolved oxygen content (b) at Tavernola Minimum.altitude 185.15.m site, lake Iseo (Courtesy of Dr. Garibaldi, University of Milan Bicocca). average.slope 0.429.m/m Oglio.length 88.km Oglio.average.slope 0.0254.m/m Drainage.density 0.350.km/m Why Lake Iseo as a test case ? Overall.drainage.network.length 503.7.km Catchment W1- Valle Camonica There.are.several.convincing.reason.to.select.Iseo.Lake.as.a.test. lake..The.potential.impact.of.climate.change.scenarios.on.the. Area..A 131.25.km2 case.for.setting.up.a.modelling.approach.that.can.be.used.to. runoff. regime. of. the. Oglio. watershed. has. been. investigated. a/A 0.464.[-] tune.environmental.strategies.. by.Barontini.et.al..(2009),.who.have.shown.that.an.increase.of. annual.precipitation.of.about.3%.and.a.temperature.increase. Average.altitude. 965.9.m •..First.of.all,.as.shown.above,.Iseo.lake.is.located.at.the.very. heart. of. a. territory. that. is. particularly. important. from. the. of.1.1.°C.are.expected.for.the.2050.scenario..In.addition,.due. Maximum.altitude 2300.m economic.point.of.view.that.is.environmentally.characterized. to.a.decrease.of.glaciated.areas.and.an.increase.of.tree-line. Minimum.altitude 185.15.m by. the. presence. of. the. lake.. Among. other. considerations,. it. altitude,. evapotranspiration. will. be. affected.. The. Authors. Average.slope 0.306.m/m is. located. upstream. of. one. of. the. most. renowned. vineyard. came.to.the.conclusion.that.a.decrease.of.about.7%.of.annual. Borlezza.length 21.9.km district. in. Italy. (Franciacorta). and. contains. the. largest. italian. runoff.volume.for.the.2050.scenario.can.be.expected,.with.an. increase.of.spring.melt.and.a.decrease.of.summer.and.autumn. Borlezza.average.slope 0.0418.m/m island.in.a.lake.. runoff.. One. may. wonder. what. will. be. the. consequences. of. Drainage.density 0.217.km/m •..Iseo.lake.is.the.outlet.of.a.watershed.where.is.located .Adamello. these.changes.on.the.thermal.structure.of.Iseo.lake,.provided. glacier,. that. with. 17.53. km2. is. the. largest. glacierised. Italian. Overall.drainage.network.length 28.47.km that.these.changes.could.imply.more.stringent.water.quality. area;.it.has.been.reckoned.(Ranzi.et.al.,.200?).that.over.the. constraints.. Due. to. these. features,. Iseo. lake. is. a. natural. Figure 2.4> Iseo lake watershed. last. decade. this. glacier. had. an. average. loss. of. 1290. mm/y,. candidate. to. study. the. effects. of. climate. change. on. deep.. so.that.one.could.expect.that.this.basin.is.a.natural.candidate. pre-alpine.lakes. for. studying. climate. change. effects. on. a. deep. pre-alpine. 122 123 •..Over. the. last. decade. Regione. Lombardia. fostered. the. a.sign.of.this.growing.interest,.in.2010.a.group.of.researchers. measurement.of.a.very.detailed.bathimetric.survey.of.the.Lake,. from.the.Centre.of.Water.Research.of.the.University.of.Western. which.clarified.important.aspects.related.to.the.origin.and.the. Australia. has. come. to. Iseo. to. cooperate. in. a. 30. days. long. prevailing.morphodynamic.processes.acting.in.the .lake.(e.g.,. experimental.and.modelling.activity.that.created.interest.and. turbidity.currents)..These.data.have.been.used.by.our.group.to. awareness..Now.a.group.of.researchers.with.competence.in. produce.a.very.detailed.morpho-bathimetric.map.of.the.lake.. all.the.scientific.fields.involved.in.limnological.studies.can.join. their. effort. to. investigate. the. future. chemical. and. biological. •..Since.the. sixties. Lake. Iseo. has. undergone. a. progressive. evolution.of.this.lake.. deterioration.of.water.quality.due.to.processes.related.to.the. increasing.trophic.state.of.its.waters..After.the.mixing.involving. •..Over.the.last.4.years,.in.the.area.of.Iseo.lake.a.dissemination. the. deepest. waters. at. the. beginning. of. 1981,. there. was. a. project.regarding.main.results.of.scientific.studies.about.the. marked.decrease.in.oxygen.concentrations.to.the.point.that. lake. has. been. started. with. great. success. (see Figure 3.1),. conditions.of.anoxia.became.established.in.the.water.below. so. far. limited. to. about. 30. classes. of. first. level. secondary. basse déf. basse déf. 200.m,.a.situation.recorded.for.the.first.time.in.August.1994.. schools...People. living. in. the. area. surrounding. the. lake. are. After. that,. Lake. Iseo. was. characterized. by. a. full. circulation. the.main.stakeholders.and.children.will.be.the.future.heirs.of. in. 2005. and. 2006.. It. is. noteworthy. observing. that. in. 1998. this. extraordinary. natural. resource. so. that. the. decision. has. and.2000,.the.other.deep.lakes.Maggiore,.Como.and.Garda,. been.taken.to.communicate.results.and.activities.in.order.to. underwent.a.complete.overturn.while.in.Lake.Iseo.the.mixing. create.environmental.awareness,.discussion.and.support.for. of.the.water.column.was.extremely.limited..Accordingly,.there. the.activities.that.will.involve.the.lake. is. a. need. of. further. studies. to. understand. whether. this. lake. is. really. moving. towards. meromixis.. A. particular. role. in. this. direction.could.be.played.by.the.increase.of.density.of.the.deep. water.due.to.the.re-dissolution.of.calcium.carbonate.forming. in.the.epilimnion.during.algal.growth.period.and.sedimenting. Figure 4.1> Chemical and thermal data measured by Bonomi and Gerletti in 1967 during two surveys in may (V) and Figure 4.2> Space density of deep benthos population per square november (XI). meter measured by Bonomi and Gerletti in 1967 during towards.the.bottom..This.hypothesis.must.be.verified.and.if. two surveys in may (V) and november (XI). this. were. the. case,. new. strategies. to. counteract. this. highly. undesirable.process.should.be.devised. •..Iseo.lake.has.been.studied.over.the.last.20.years.by.a.set.of. Present condition of Lake Iseo according to PTUA researchers.with.competence.in.the.field.of.ecology,.chemistry. and.biology..Since.2008.the.group.of.hydraulics.of.University.of. The.water.quality.of.Iseo.Lake.has.been.officially.monitored.by. As. far. as. the. Total. Phosphorous. is. concerned,. the. first. Brescia.has.started.to.investigate.its.hydrodynamics,.starting. Figure 3.1> Simple physical experiments performed by students during seminar on ARPA.since.1999;.this.Agency.regularly.monitors.the.trophic.and. measurement. was. accomplished. in. 1973. when..19. μg. P/l. Iseo Lake contributed to create awareness and interest toward the issues a.continuous.monitoring.project.that.is.going.to.grow,.raising. concerning the lake. chemical.condition.of.the.water.in.three.different.locations.of.the. were. measured. at. the. surface. and. 58. μg. P/l. close. to. the. also.the.interest.of.the.international.scientific.community..As. lake (see Figure 5.1)..In.addition,.independent.Research.Institutes. bottom.. According. to. PTUA. the. volume. average. TP. content. and.Researchers.have.monitored.the.chemical.composition.of. in. 2002. can. be. evaluated. as. 40. μg. P/l,. a. value. that. however. the.lake..Among.these,.it.must.be.noticed.the.remarkable.time. has.proved.to.have.been.underrated..According.to.recent.data. Lake Iseo natural condition series.measured.by.Prof..Letizia.Garibaldi,.former.Researcher.of. by. ARPA,. the. current. average. TP. content. is. about. 70. μg. P/l,. Università.degli.Studi.of.Milano.–.Bicocca,.who.accomplished. also. as. a. consequence. of. the. circulation. of. 2005-2006,. that. The. EU. Water. Framework. Directive. (WFD),. which. came. into. Italian.lakes.at.that.period..At.the.same.time,.the.temperature. monthly.samplings.over.the.last.20.years.and.who.presented.the. homogenised.the.concentration.throughout.the.water.column... action. in. December. 2000,. dictates. that. all. member. countries. below. 150. m. was. 5.75. °C,. a. value. that. is. particularly. low. if. results.of.her.experimental.activity.in.several.papers. . must. restore. good. ecological. quality. in. natural. lakes. by. the. compared.with.current.bottom.temperature.but.which.could.be. The.official.document.that.portrays.the.situation.of.the.lake.is. term. of. 2015,. where. the. term. “good”. is. taken. with. reference. the. consequence. of. more. frequent. deep. water. circulation,. as. Annex.16.of.the.document.PROGRAMMA.DI.TUTELA.E.USO. from. an. unimpacted. reference. state. from. which. the. future. suggested.by.the.high.oxygen.content..The.conductivity.at.the. DELLE.ACQUE.(PTUA),.-.Stato.di.qualità.ed.evoluzione.trofica. ecological.condition.of.the.lake.will.be.allowed.to.deviate.only. bottom.was.279.μS/cm.at.18.°C.(corresponding.to.321.μS/cm.at. dei. laghi,. but. it. must. be. observed. that. the. data. and. the. final. slightly..Accordingly,.it.is.of.primary.importance.to.identify.the. 25.°C)..Finally,.the.content.of.phosphates.was.very.low,.with.an. considerations.were.derived.considering.a.pseudo.meromictic. unimpacted.state.of.reference.for.Lake.Iseo..This.can.be.done. average.value.at.the.bottom.of.22.μg/l.and.about.5.μg/l.between. condition. of. the. lake,. on. the. basis. of. the. data. available. until. only. on. the. basis. of. early. studies. that. monitored. the. water. 60.m.and.200.m..On.the.basis.of.the.measured.data,.the.average. 2002..However,.in.2005.and.2006.Iseo.lake.circulated.throughout. chemistry,. the. fitoplankton,. zooplankton. and. the. benthonic. value.of.reactive.phosphorous,.weighed.according.to.the.water. the.water.column,.changing.the.overall.situation.of.the.involved. conditions.before.of.the.growth.of.environmental.pressure.that. volumes. at. the. different. depths,. can. be. reckoned. at. about. 6. variables.. characterized.last.decades.in.the.area.surrounding.the.lake..To. μg/l..Nitrate.were.present.with.apparently.high.values.ranging. As. far. as. the. dissolved. oxygen. is. concerned,. this. document. this.purpose.the.first.scientific.study.available.is.provided.by.the. between.500.and.600.μg/l.throughout.the.water.column. basse déf. shows. that. the. concentration. at. the. bottom. plummeted. from.. paper.by.Bonomi.and.Gerletti,.published.in.1967,.who.during.two. Another. very. interesting..piece. of. information. that. can. be. 70.%.of .the.saturation.in.1967.and.1976.to.almost.0.in.2002..As. survey.in.may.and.November.1967..investigated.both.thermal. obtained.by.Bonomi.and.Gerletti.paper.regards.the.population. will.be.shown.from.the.data.used.in.the.simulation,.the.oxygen. stratification,.water.chemistry,.planktonic.population.and.deep. of.deep.macrobenthos,.with.particular.reference.to.oligochaeta.. rise. that. followed. the. water. overturns. of. 2005. and. 2006. did. macrobenthos..The.most.relevant.data.are.shown.in Figure 4.1,. Table 4.2.shows.the.number.of.elements.per.square.meters.as. not. last. long. and. currently. the. oxygen. content. below. 160. m. from.which.the.following.conclusions.can.be.drawn:.the.oxygen. a.function.of.depth.and.the.Authors.underline.that.such.an.high. is. almost. 0. in. the. area. between. Siviano. and. MonteIsola.. The. content. of. deep. water. varied. between. 7.8. and. 8.2. mg/l,. with. density.is.absolutely.extraordinary.for.pre-alpine.lakes,.being.a. opposite.situation.characterizes.the.epilimnic.waters.where.the. an.oxygen.consumption.in.the.water.below.100.m.of.0.1.mg/ possible.indicator.of.an.incipient.eutrophication.process.of.the. phitoplankton.activity.often.causes.an.oxygen.oversaturation.. Figure 5.1> ARPA monitoring stations of the chemical quality of month,.a.value.that.was .comparable.to.that.of.the.other.deep. bottom.. water in Lake Iseo.

124 125 See.also Figure 5.2,.that.compares.the.situation.in.1967.with.the. Considering.the.TP.input.from.the.entering.rivers,.on.the.basis. The Water Framework Directive (WFD) present.one..Figure 5.3 shows.the.final.target.of.lake.recovery. of.the.data.measured.by.ARPA.along.Oglio.river.over.the.last. process.according.to.Allegato.16,.evidencing.that.the.temptative. decade.(2000-2009).one.can.reckon.an.average.concentration. The. Water. Framework. Directive. 2000/60/CE. establishes. a. •..Ensure. by. 2004. and. regularly. update. for. each. river. basin. target.is.still.far.away.from.being.reached. of. 0.033. mg/l. which. roughly. corresponds. to. 56.7. Tptot/year.. framework. for. the. Community. action. in. the. field. of. water. district.an.analysis.of.its.characteristics,.a.review.of.the.impact. This. contribution. is. computed. considering. the. overall. water. As.far.as.the.Nitrates.are.concerned,.the.average.concentration. policy. through. the. definition. of. management. plans. by. river. of.human.activity.on.the.status.of.surface.waters,.according.to. discharge.entering.the.lake.and.it.must.be.considered.tha.the. are.about.0.8.mg.N/l,.while.ammonium.at.the.bottom.raised.from. basins,. the. natural. geographical. and. hydrological. unit. instead. the.technical.specifications.set.out.in.Annexes.II.and.III.(art..5);. outflow.from.Costa.Volpino.sewage.treatment.plant.amounts.at. 7.μg.N/l.in.1967.to.26.μg.N/l.in.1971,.with.a.maximum.of.up.to.. of.according.to.administrative.or.political.boundaries,.aimed.to. •..Ensure.a.programme.of “basic”.and.“supplementary”.measures. about.3.TP/anno,.whilst,.on.the.basis.of.data.of.1997,.from.other. 250.μg.N/l..Higher.values.have.been.regularly.measured.by.Prof.. achieve. a. «good. status». for. all. waters. by. a. set. deadline.. The. for.each.river.basin.district.(art..11); minor.streams.one.can.evaluate.an.additional.contribution.of.8. general. purpose. of. this. Directive. is. to “establish a framework Garibaldi.close.to.the.bottom. •..Make.operational.by.2006.a.programme.for.the.monitoring.of. TP/anno.(see.table)..Eventually.one.can.reckon.an.overall.load. for the protection of inland surface waters (…) which prevents Finally,. very. few. data. are. present. as. far. as. Chlorophille. A. is. water.status.that.covers.the.volume.and.level.or.rate.of.flow. from.rivers.and.streams.of.about.70.TP.anno. further deterioration and protects and enhances the status of concerned,. with. average. yearly. value. in. the. layer. between.. to.the.extent.relevant.for.ecological.and.chemical.status.and. It.must.be.observed.that.these.data.cannot.be.considered.totally. aquatic ecosystems (…) promotes sustainable water use based 0-20.m.ranging.between.7.and.16.μg./l. ecological.potential,.and.the.ecological.and.chemical.status. on a long-term protection of available water resources (…) and reliable.because.they.are.scattered.in.time.and.the.hydrologic. and.ecological.potential.(art..8); Considering. oxygen. consumption. in. the. water. below. 100. m. conditions.prevailing.during.the.sampling.activities.are.unknown.. thereby contributes to: the provision of the sufficient supply •..Control.the.discharges.into.surface.waters.by.2012.according. after.the.2.circulation.period.of.end.of.march.2005.and.march. Actually,..it. seems. likely. that. during. high. flows. the. maximum. of good quality surface water and groundwater as needed for to.the.relevant.Community.legislation,.in.particular.96/61/EC. 2006,.on.the.basis.of.data.measured.by.Prof..Garibaldi.we.can. nutrient.load.to.the.lake.occurs.and.accordingly.there.is.a.need. sustainable, balanced and equitable water use”. reckon. a. value. of. 0.59. mg/(liter. month). (4/4/2005. –. 5/9/2005). (concerning. the. integrated. pollution. prevention. and. control),. for.a.continuous,.potentially.real.time,.monitoring.activity.of.the. This. purpose. is. made. concrete. with. the. definition. of. the. and.of.0.43.mg/(liter.month)..(14/3/2006.–.30/1/2007)..Finally,. 91/271/EEC. (concerning..the. urban. waste-water. treatment). nutrient.flux.to.the.lake. environmental. objectives. that. every. Member. State. has. to. if.one.consider.water.at.200.m.depth,.the.oxygen.depletion.in. and..91/676/EEC.(concerning.the.protection.of.waters.against. achieve.by.2015.(art.4): the.period.(13/3/2007.–.1/4/2008).can.be.reckoned.as.0.22.mg/ pollution.caused.by.nitrates.from.agricultural.sources).(art..10) (liter.month),.possibly.showing.that.the.overall.oxygen.demand. •..Prevention. of. the. deterioration. of. the. status. of. all. bodies. of. •..Provide. specific. measures. against. pollution. of. water. by. of.water.is.decreasing.in.time.after.several.circulation.events. surface.water; individual. pollutants. or. groups. of. pollutants. presenting. a. •..Achievement.of.a.good.surface.water.status.of.all.bodies.of. significant.risk.to.or.via.the.aquatic.environment.(art..16). surface.water; In. Table 6.1 a. detailed. timetable. of. the. main. actions. •..Achievement.of.a.good.ecological.potential.and.good.surface. implementation.is.provided. water. chemical. status. of. all. artificial. and. heavily. modified. bodies.of.water; The.good.surface.water.status.of.all.bodies.of.surface.water.and. the.prevention.of.quality.deterioration.have.to.be.achieved.by. Depth RP 1967 TP •..Progressive.reduction.of.pollution.from.hazardous.substances. Vol [106 m3] ΔVol [106 m3] 2005-2011 2015.with.the.derogations.listed.at.art..4(5-8).. [m] [μg/l] [μg/l] The. actions. aimed. to. reach. these. environmental. goals. have. The.following.events.shall.not.be.in.breach.of.the.requirements. 1 61 61 0.00772 0.5 0.0039 15.9 0.123 to.be.undertaken.in.every.river.basin.district.(defined.as.“area of.this.Directive: 3 181 120 0.01518 0.5 0.0076 15.9 0.242 of land and sea, made up of one or more neighbouring river 5 296.4 115.4 0.01460 0.5 0.0073 15.9 0.232 basins together with their associated groundwaters and coastal •..Temporary. deterioration. in. the. status. of. bodies. of. water. if. 10 580 283.6 0.03588 0.5 0.0179 18.9 0.676 waters, which is identified under art. 3(1) as the main unit for this. is. the. result. of. circumstances. of. natural. cause. or. force. 20 1127.6 547.6 0.06927 0.5 0.0346 18.7 1.297 management of river basins”).through.a.river.basin.management. majeure. which. are. exceptional. or. could. not. reasonably. have. 30 1643 515.4 0.06520 0.5 0.0326 22.0 1.432 plan.that.has.to.published.by.2009.and.then.regularly.updated. been.foreseen.and.if.all.the.measures.to.be.taken.under.such. 50 2613 970 0.12271 4.5 0.5522 45.3 5.553 (art..3(1))..More.specifically,.each.Member.State.shall. exceptional.circumstances.have.to.be.included.in.the.programme. 75 3723 1110 0.14042 4.5 0.6319 63.2 8.880 of.measures.and.will.not.compromise.the.recovery.of.the.quality. 100 4663 940 0.11891 5 0.5946 77.5 9.221 of.the.body.of.water.once.the.circumstances.are.over.(art..4(6)); 150 6077 1414 0.17887 5 0.8944 97.5 17.437 200 7149 1072 0.13561 7.5 1.0171 105.9 14.365 245 7905 756 0.09564 22.5 2.1518 181.9 17.401 5.95 μg/l 76.9 μg/l Issue Reference 2000 Directive.entered.into.force. Art..25 Figure 5.2> Natural reactive Phosporous concentration, computed on the basis of Bonomi and Gerletti (1967) survey and average total phosporous concentration on the basis of measured values between 2005 and 2011. Transposition.in.national.legislation. 2003 Identification.of.River.Basin.Districts.and.Authorities. Art..23

2004 Characterisation.of.river.basin:.pressures,.impacts.and.economic.analysis. Art..3 2006 Establishment.of.monitoring.network..Start.public.consultation.(at.the.latest). Art..5 2008 Present.draft.river.basin.management.plan. Art..8 2009 Finalise.river.basin.management.plan.including.progamme.of.measures. Art..14 basse déf. 2010 Introduce.pricing.policies. Art..13 2012 Make.operational.programmes.of.measures. Art..13.&.11

Meet.environmental.objectives..First.management.cycle.ends. 2015 Second.river.basin.management.plan.&.first.flood.risk.management.plan. Art..9

2021 Second.management.cycle.ends. Art..11 2027 Third.management.cycle.ends,.final.deadline.for.meeting.objectives. Art..4 Figure 5.3> Natural total Phosporous concentration, estimated with the MEI index, and final target of the lake recovery process according to Allegato 16 of Regione Lombardia water master plan (PTUA). Table 6.1> Timetable of implementation (from: http://ec.europa.eu).

126 127 •..Achievement. of. less. stringent. environmental. objectives. if. In.a.more.quantitative.way.the.ecological.classification.of.lakes. fluctuate.from.–30cm.to .+110cm.with.respect.to.the.reference. lake.. The. data. used. during. this. project. were. measured. from. it. can. be. demonstrated. that. they. are. the. highest. ecological. can.be.done.on.the.base.of.several.quality.elements: level.of.the.lake.that.is.185m.a.s.l..This.regulation.is.in.charge.to. samples.collected.at.S1.trough.a.Van.Dorn.bottle.at.depths.0.5,. and. chemical. status. possible,. given. the. environmental. and. •..Biological.elements.((i).composition,.abundance.and.biomass. Consorzio.dell’Oglio.from.1933.and.it.is.aimed.to.optimize.the. 1,.3,.5,.10,.20,.30,.50,.75,.100,.150,.200,.and.245.m;.temperature. socioeconomic.needs.of.the.site.(art..4(5)); of. phytoplankton;. (ii). composition. and. abundance. of. other. water. needs. of. the. downstream. agriculture. and. the. upstream. and.oxygen.were.measured.for.each.sample.by.the.automatic. •..Achievement.of.the.good.quality.status.with.a.time.lag.because. aquatic. flora;. (iii). composition. and. abundance. of. benthic. lake.users..From.the.continuity.equation.applied.to.the.basin,. probe. Microprocessor. Oxymeter. WTW. OXY. 196. (Garibaldi. of.reasons.of.technical.feasibility,.costs.or.natural.conditions. invertebrate. fauna;. (iv). composition,. abundance. and. age. the.whole.discharge.entering.the.lake.is.derived..On.average,. et. al.. 1997),. while. chemical. parameters. have. been. measured. that.do.not.allow.timely.improvement.in.the.status.of.the.body. structure.of.fish.fauna); 60%.of.the.overall.discharge.is.diverted.10.km.upstream.of.Oglio. in.the.laboratory..With.regard.to.the.chemistry.of.the.inflowing. entrance.in.the.lake.in.a.artificial.canal.and.used.for.hydropower. rivers,. Arpa. Lombardia. collected. monthly. samples. from. Oglio. of.water;.the.extensions.shall.be.limited.to.a.maximum.of.two. •..Hydromorphological. elements. supporting. the. biological. generation,. Regarding. the. monitoring. of. the. meteorological. river;. accordingly,. the. time. series. of. the. inflowing. nutrient. further.updates.of.the.river.basin.management.plan.except.in. elements.((i).hydrological.regime,.i.e..quantity.and.dynamics.of. data,. 4. shore. stations. are. active. not. far. from. the. lake. shore,. concentration.in.the.incoming.Oglio.river.were.available.for.the. cases.where.the.natural.conditions.are.such.that.the.objectives. water.flow,.residence.time.and.connection.to.the.groundwater. measuring. wind. intensity. and. direction,. solar. radiation,. air. period.2000-2008. cannot.be.achieved.within.this.period.(art..4(3)). body;. (ii). morphological. conditions,. i.e.. lake. depth. variation. temperature,.precipitation.and.relative.humidity..The.stations.are. The. key. point. of. the. WFD. is. the. definition. of. the. ecological. quantity,.structure.and.substrate.of.the.lake.bed.and.structure. After.a.careful.analyses.of.these.data.we.concluded.that.until. located.in.the.villages.of.Costa.Volpino,.Tavernola.Bergamasca,. status..In.the.following,.the.classification.of.the.ecological.status. of.the.lake.shore); 2009.no.enough.measurement.had.ever.been.done.specifically. Sale.Marasino.and.Corte.Franca;.these.locations.are.specified. of.lakes.is.described.in.detail.on.the.base.of.Annex.V. regarding. the. hydrodynamics. of. Iseo. lake.. The. data. already. •..Chemical. and. physico-chemical. elements. supporting. the. in. Fig. 7.1.. A. summary. of. these. meteorological. data,. freely. available.from.the.stations.located.around.the.lake.(e.g.,.wind. The.general.definition.of.the.ecological.status.is.based.on.the. biological.elements; available. on. the. websites. http://www.arpalombardia.it/meteo/ velocity. and. directions). are. measured. to. provide. a. generic. degree.of.alterations.of.the.biological.quality.elements.respect. •..General.elements.((i).transparency,.(ii).thermal.conditions,.(iii). meteo.asp. and. http://meteo.provincia.brescia.it/,. is. reported. meteorological.monitoring.of.the.area..Accordingly,.often.these. to.undisturbed.conditions: oxygenation.conditions.(iv).salinity,.(v).acidification.status,.(vi). in. Table 7.1.. Additionally,. temperature,. oxygen. and. nutrients. data.are.not.specifically.suitable.to.represent.the.actual.situation. • High: “there.are.no,.or.only.very.minor,.anthropogenic.alterations. nutrient.conditions); data.were.measured.during.sampling.in.the.deeper.part.of.the. occurring.on.the.lake.surface..Just.to.provide.an.example.it.is. to.the.values.of.the.physico-chemical.and.hydromorphological. lake (S1 in Fig. 7.1) of.the.lake.waters.collected.monthly.by.the. •..Specific. pollutants. ((i). pollution. by. all. priority. substances. interesting. to. compare. the. wind. measured. on. the. lake. at. the. quality. elements. for. the. surface. water. body. type. from. Dipartimento. delle. Scienze. dell’Ambiente. del. Territorio. of. the. identified.as.being.discharged.into.the.body.of.water.and .(ii). floating.station.LDS.and.the.nearest.shore.station,.Costavolpino. those. normally. associated. with. that. type. under. undisturbed. Università.degli.Studi.di.Milano.in.the.ar ea.of.maximum.depth. pollution.by.other.substances.identified.as.being.discharged.in. (LS1). Fig. 7.2. shows. a. comparison. between. wind. magnitude. conditions.. The.values. of. the. biological. quality. elements. for. significant.quantities.into.the.body.of.water) (S1 in Fig.1) and. by. Arpa. Lombardia. in. three. locations. of. the. the.surface.water.body.reflect.those.normally.associated.with. that.type.under.undisturbed.conditions,.and.show.no,.or.only. In. order. to. reach. a. good. biological. status,. phytoplancton,. very.minor,.evidence.of.distortion..These.are.the.type-specific. macrophytes.and.phytobenthos,.benthic.invertebrate.fauna.and. conditions.and.communities.” fish.fauna.has.to.attest.slight.changes.in.species.composition. and.abundance.compared.with.the.type-specific.communities.. • Good:. “the values of the biological quality elements for the All.the.other.quality.elements.have.to.reach.levels.that.ensure. surface water body type show low levels of distortion resulting the. functioning. of. the. ecosystem. and. the. achievement. of. the. from human activity, but deviate only slightly from those values.specified.for.the.biological.quality.elements..Regarding. normally associated with the surface water body type under the. pollutants,. a. good. quality. status. is. guaranteed. if. their. undisturbed conditions.” concentrations.not.in.excess.of.the.standards.set.in.accordance. •..Moderate:. “the values of the biological quality elements for with.the.procedure.detailed.in.the.Directive,.without.prejudice.to. basse déf. the surface water body type deviate moderately from those basse déf. Directive.91/414/EC.and.Directive.98/8/EC.. Figure 7.2> Time series of wind intensity measured by LDS and at Costavolpino (LS1) station between 05/12/2009 normally associated with the surface water body type under and 18/12/2009. The corresponding directions are synthesized by the rose diagrams, whose shading undisturbed conditions. The values show moderate signs of In. order. to. classify. a. water. body. into. one. of. the. five. class,. a. refers to the class of wind intensity (<2 – 2:4 – 4:6 – >6m/s). distortion resulting from human activity and are significantly monitoring.network.shall.be.designed.so.as.to.provide.a.coherent. more disturbed than under conditions of good status.” and.comprehensive.overview.of.ecological.and.chemical.status.. For.that.reason,.Member.States.shall.establish.both.surveillance. •. Poor: “Waters showing evidence of major alterations to the monitoring.and.operational.monitoring.programmes,.in.particular. values of the biological quality elements for the surface water in.order.to.provide.information.for.the.assessment.of.long-term. body type and in which the relevant biological communities changes. in. natural. conditions. and. to. establish. the. status. of. deviate substantially from those normally associated with the those.bodies.identified.as.being.at.risk.of.failing.to.meet.their. surface water body type under undisturbed conditions”. environmental.objectives. •..Bad:. “Waters showing evidence of severe alterations to the values of the biological quality elements for the surface water body type and in which large portions of the relevant biological communities normally associated with the surface water body type under undisturbed conditions are absent”.

Iseo Lake Monitoring Activities

This. project. is. aimed. to. use. numerical. models. to. reproduce. for. the. model. forcing.. In. addition,. monitoring. is. a. mandatory. some.aspects.of.the.internal.hydrodynamics.occurring.in.lake. requirement. specified. by. WFD,. as. explained. at. the. end. of. Iseo.as.to.understand.the.main.processes.governing.its.quality. previous.paragraph. conditions. and. use. them. to. predict. the. effects. of. different. As. a. preliminary. step. in. the. project,. a. survey. of. the. management.and.climatic.scenario..Since.the.modelling.activity. meteorological,. physical. and. chemical. data. available. for. Iseo. necessarily.implies.a.simplification.of.reality,.the.results.of.the. basin. was. developed.. Regarding. the. waver. volume. balances,. models.must.be.carefully.compared.with.real.data,.in.order.to. at.the.western.end.of.Iseo.lake,.at.Sarnico,.the.local.authority. evaluate.the.accurateness.and.the.extent.of.the.simplifications. Consorzio. dell’Oglio. measures. the. outflow. discharge. and. the. Figure 7.1> Locations of the monitoring stations installed on Iseo lake and Table 7.2> Summary of the meteorological data provided by the stations active in the surrounding of Iseo lake. that. have. been. accomplished.. This,. in. turn,. requires. a. wide. used for the modelling purpose of this project, superimposed (AT=air temperature, P = precipitation, WS = wind speed, WD = wind direction, RH = relative humidity, water.level..The.water.level.is.there.regulated.by.a.dike.and.can. to the lake bathymetry. AP = atmospheric pressure, IR = incoming radiation, NR = net radiation). measuring. activity,. also. to. provide. the. data. that. are. needed.

128 129 and.direction.for.the.period.05/12/2009.–.18/12/2009..Clearly,. factor.which.might.be.as.high.as.3.to.obtain.the.wind.on.the. •.thermal.range:.0.to.36.°C; projected.by.the.Centre.for.Water.research.of.the.University.of. whilst..station.looks.sufficiently.representative.of.wind.direction. lake. surface,. whilst. the. wind. direction. is. very. sensitive. to. the. •.response.to.temperature.of.approximately.2.seconds; Western.Australia..The.sensor.buoy.features.real-time.monitoring. and. time. evolution. at. W1,. wind. magnitude. is. significantly. surrounding.morphology.of.the.coastline..We.came.to.the.same. of. water. column. temperature. stratification. and. meteorological. •.measurement.accuracy:.+/-.0.010.°C; underestimated.. This. comparison. highlights. the. importance. conclusion,.ex.post,.by.comparing.the.data.at.the.LDS.station. parameters. of. a. careful. choice. of. the. wind. data. to. be. used. as. boundary. with.the.corresponding.data.at.Costa.Volpino.and.at.Castro. •.16.bit.resolution,.approximately.0.0005.°C; Meteorological. sensors,. that. include. net. total. and. incoming. conditions.for.the.hydrodynamic.models..In.order.to.take.into. •.data.rate:.1.scan.of.all.nodes.per.second; In.order.to.fill.this.gap,.beside.the.LDS.other.two.wind.stations. short. wave. radiation,. relative. humidity,. air. temperature,. wind. account.this.sheltering.effect,.it.is.necessary.to.compare.shore. were.installed.in.2010.at.the.two.north.and.south.extremes.of. The.chain.is.connected.to.a.data.logger..The.logger.and.chain. speed.and.direction.(represented.in.Fig. 7.6),.are.positioned.on. and.on-lake.wind.speed.and.evaluated.a.multiplicative.factor.on. the.lake..These.stations.measure.and.communicate.in.real.time. are. completely. submersible. and. the. birdcage. is. designed. to. the.lake.buoy.above.the.water.surface..Water.column.sensors,. on-lake.wind..when.modelling.lake.hydrodynamics.. wind. speed,. direction. and. atmospheric. pressure.. The. wind. connect. to. a. customer-supplied. buoy. and. cable. system.. The. instead,.are.attached.to.the.lake.buoy.below.the.water.surface. On. the. basis. of. these. consideration,. a. stations. network. has. sensor.installed.is.a.Wind.Monitor.(model.05103).provided.by. logger.must.be.brought.to.the.surface.to.refresh.the.batteries. and.include.a.thermistor.chain..All.these.sensors.are.connected. been.set.up.starting.from.January.2009.with.the.aim.to.assure. Young. (http://www.youngusa.com).. The. wind. speed. sensor. and.obtain.measurements. with.a.submerged.data.logger.(see Fig. 7.7),.that.sample.with.a. a.continuous.and.autonomous.monitoring.of.the.main.physical. is. a. four. blade. helicoid. propeller,. whose. rotation. produces. frequency.of.1/20sec-1,.memorize.and.transmit.data.via.GSM. The.installation.of.this.TC1.is.schematized.in Fig. 7.5..A.fixed. parameters.that.control.Iseo.lake.hydrodynamic..This.network. an. AC. sine. wave. voltage. signal.. The. wind. direction. sensor. cell.phone.to.a.shore.station.every.1.hour,.so.assuring.a.real- structured,.that.includes.a.steel.rope.and.a.sub-surface.buoy.and. includes:. is. a. rugged. yet. lightweight. vane.. Vane. angle. is. sensed. by. a. time.monitoring.the.lake..The.station.main.frame.is.a.free-floating. the.weights.at.the.bottom,.is.anchored.to.the.lake.bottom..The. precision. potentiometer.. Constructed. of. UV. stabilized. plastic. balanced.platform.that.is.held.in.place.by.side.anchors..Station. •..An.on-lake. complete. meteorological. station. (Lake. Dignostic. thermistor.chain,.that.consists.of.16.modes.32.m.deep,.and.the. with.stainless.steel.and.anodized.aluminium.fittings,.the.sensor. flotation.is.provided.by.four.large.polystyrene.floats;.the.station. System,.LDS.in.the.following).that.measures.the.main.thermal,. data.logger.make.a.second.line,.connected.to.the.first.one.with. mounts.on.standard.1.inch.pipe..Specifications.are: is. weighted. at. the. bottom. to. remain. upright.. Attached. to. the. radiative,. and. mechanical. fluxes. 2m. above. the. water. level. a.snap-hook.located.in.correspondence.to.the.buoy.at.about.3. station.is.a.series.of.mounting.points.above.the.water.line.where. (wind.speed.and.direction,.short.wave.incoming.radiation,.total. •.Range:.0-100.m/s.(224.mph),.0-.360°; m.of.depth..In.such.a.way.it.is.possible.to.periodically.access. meteorological.sensors.can.be.fitted..Solar.panels.are.attached. net.radiation,.relative.humidity,.air.temperature).and.the.water. •..Accuracy:.Wind.Speed:.±0.3.m/s.(0.6.mph).or.1%.of.reading,. to.the.data.logger,.e.g..to.download.the.data,.just.by.unhooking. on.the.mast.2m.above.water.level..In.its.current.location,.the. temperature. at. 21. different. depths. along. the. water. column. Wind.Direction:.±3.degrees; the.data.logger.from.the.buoy..The.distances.between.the.nodes. LDS.is.station.is.moored.at.a.point.in.the.lake.where.the.water. below.the.station; have. been. fixed. in. order. to. be. able. to. describe. the. seasonal. •.Operating.Temperature:.-50.to.50°.C; depth.is.about.220.m. •..Thermistor.chains.(TC)..that.measure.the.water.temperature.at. evolution. of. the. temperature. along. the. water. column. and. to. •.Threshold:.Propeller:.1.0.m/s.(2.2.mph).Vane:.1.1.m/s.(2.4.mph).; different.depths; have. the. maximum. vertical. resolution. across. the. thermocline. The.wind.sensor.installed.on.the.LDS.is.the.same.model.as.the. •..Signal.Output:.Wind.speed:.magnetically.induced.AC.voltage,. •..Wind.stations. (SS). located. at. the. lake. shore. that. measure. during.the.stratified.period..The.depth.of.each.thermistor.node. LS1.one.described.before. 3. pulses. per. revolution.. 1800. rpm. (90. Hz). =. 8.8. m/s. (19.7. is.daily.updated.on.the.basis.of.its.original.value.and.of.the.daily. wind. speed. and. direction,. atmospheric. pressure. and. air. The. relative. humidity. (RH). and. air. temperature. sensor. is. a. mph). Wind. direction:. DC. voltage. from. conductive. plastic. average.water.level.fluctuation.of.the.lake..The.main.features.of. temperature; VAISALA.HMP45A.whose.specifications.are: potentiometer. –. resistance. 10K. Ω,. linearity. 0.25%,. life. TC1.are.the.following:. •..River.loggers. (RL). that. control. the. incoming. and. outgoing. expectancy.–.50.million.revolutions; •.Measurement.temperature.range.-39.2.+60.°C. thermal. fluxes. by. measuring. the. water. temperature. and. the. •.16.thermistor.nodes; •..Power. Requirement:. Potentiometer. excitation:. 15. VDC. •.Measurement.humidity.range:.0.8.to.100.%RH conductivity.of.the.main.inflows.and.outflows.. •.average.depth.of.the.data.logger:.~3.5m; maximum; •..Accuracy.of. RH. at. +20. °C:. ±2. %RH. (0-90. %RH),. ±3. %RH. •..distances.of.the.nodes.from.the.upper.nodes:.[0.m,.-5.m,.-7.m,. The. locations. of. the. different. stations. are. shown. respectively. •.Dimensions:.37.cm.H.x.55.cm.L,.Propeller:.18.cm.dia..; (90-100.%RH) in. Fig. 7.1,. that. includes. also. the. locations. of. some. other. -8.m,.-9.m,.-10.m,.-11.m,.-12.m,.-13.m,.-14.m,.-15.m,.-16.m,. •.Mounting:.34.mm.dia.; •.Accuracy.of.temperature.at.+20.°C:.±0.2.°C. meteorological.stations.already.present.in.the.area.surrounding. -17.m,.-22.m,.-27.m,.-32.m]; the.lake.ì.that.have.been.used.in.the.study... •.Weight:1.0.kg; •.water.level.fluctuations.in.the.period.of.measurements:.+-.1.1.m; •.Response.time.of.RH.(90%.at.+20.°C):..10.s.with.membrane •.Shipping.weight:.2.3.kg;. •.Power.consumption.<4.mA The. most. relevant. features. of. the. new. instruments. installed. •.maximum.depth.of.the.first.thermistor:.4.6.m; on. the. lake. and. used. to. study. the. lake. hydrodynamics. are. The. wind. stations. are. equipped. with. Campbell-Scientific. •.minimum.depth.of.the.first.thermistor:.3.5.m; •.Weight.350.g.(incl..package) synthesized.in.the.following. CR1000. data. logger,. that. in. future. could. eventually. manage. •.sampling.frequency:.1/20.sec-1. •.Cable.length.3.5.m data.from.other.meteorological.sensors,.and.a.system.of.data. •.Housing.material.ABS.plastic Wind stations communication.via.GSM.that.assure.their.real-time.monitoring.. Lake Diagnostic System (LDS) •.Humidity.sensor.HUMICAP®.180 The. detailed. study. of. the. wind. data. already. available. in. the. The.LDS.is.a.complete.lake.monitoring.buoy,.stationary.floating. Thermistor chains Iseo. area. made. it. clear. the. need. to. install. wind. stations. well. system,.for.long-term.water.quality.monitoring.and.management. representative. of. the. on-lake. conditions.. Actually. all. the. pre- The.T-Chain,.produced.by.Precision.Measurement.Engineering. existing.wind.stations.are.located.rather.far.from.the.lake.shore. consists. of. a. single. electrical. cable. with. several. temperature. or.in.positions.that.are.sheltered.with.respect.to.the.prevailing. nodes. molded. at. fixed,. user-specified,. locations.. Each. node. north-south.winds.blowing.on.the.lake.. contains. a. thermistor. within. an. Inconel. protective. tube. and. (a) (b) electronics..Data.are.transmitted.up.the.chain.in.a.digital.format.. Actually,. in. the. literature. there. is. evidence. that. when. the. The.main.technical.features.of.the.thermistor.nodes.are:. wind.is.measured.on-shore,.its.value.must.be.corrected.for.a. basse déf.

basse déf. Figure 7.7> LDS data logger.

basse déf. (c) (d)

basse déf. Figure 7.4> A temperature nodes of TC1. Figure 7.6> Meteorological sensors installed on LDS to Pas les réf. visuels measure wind (a), relative humidity (b), short dans le texte ? wave radiation (c) and net radiation (d). Figure 7.5> Configuration of TC1(left) and detail of the upper part that contains the data logger and the sub surface buoy (right). Figure 7.3> Wind stations in Castro (WS1) .

130 131 The. short. incoming. wave. sensor. is. a. LI200X-COR. SILICON.. Water.temperature.is.measured.through.a.thermistor.chain.in.21. applied. forces. and. energy. fluxes.. This. is. a. field. that. strongly. model.vertical.mixing:.eddy-diffusion.models,.that.simulate.the. It. measures. sun-plus-sky. radiation. with. a. silicon. photovoltaic. points.located.at.different.depths.with.the.same.sensors.used. developed. in. the. last. decades,. providing. a. wide. variety. of. vertical.transport.of.heat.in.the.water.with.the.use.of.a.mixing. detector.mounted.in.a.cosine-corrected.head..It.is.housed.in.a. in.TC1..In.this.case,.though,.the.chain.is.hooked.at.the.surface. hydrodynamic.models.that.give.the.possibility.to.reproduce.and. parameterization. based. on. an. eddy-diffusion. approach. (e.g.,. weatherproof.anodized.aluminium.case.with.acrylic.diffuser.and. buoy.and.so.the.sensors.depths.keep.constant.in.time..The.main. look.insight.into.spatial–temporal.changes.in.physical.processes. AQUASIM,.Reichert.1994),.and.turbulence-based.models,.such. stainless. steel. hardware. and.. A. shunt. resistor. in. the. sensor’s. features.of.LDS’s.thermistor.chain.are.the.following:. observed. in. field. data.. The. water. body. characteristics,. the. as. DYRESM. (Imberger. and. Patterson. 1981),. where. vertical. cable.converts.the.signal.from.microamperes.to.millivolts..It.is. •.21.thermistor.nodes; available.computational.power,.the.available.field .data.and.the. transport.is.modelled.thought.a.turbulent.kinetic.energy.budget.. calibrated.for.the.daylight.spectrum.(400.to.1100.nm).and.the. type. of. answers. desired. should. guide. the. choice. of. the. most. These. models. have. been. widely. used. and. have. shown. to. be. •..depths.of.the.thermistor.nodes:.[0.25.m,.0.5.m,.0.75.m,.1.m,. specifications.are:. suitable. model,. between. 1-D,. 2-D,. 3-D. schemes,. modelled. able. to. predict. the. seasonal. evolution. of. water. temperature. 1.25.m,.2.25 .m,.3.25.m,.4.25.m,.5.75.m,.7.25.m,.8.75.m,.10.25. mechanisms,.approximations.of.the.solving.equations,.grid.type. profiles. with. reasonable. accuracy.. Perroud. et. al.. (2009). have. •.Light.Spectrum.Waveband:.400.to.1100.nm m,.11.75.m,.13.25.m,.14.75.m,.16.25.m,.17.75.m,.19.75.m,. and.size..As.an.illustrative.note,.Table 8.1 reports.the.names.and. shown. that. better. performances. in. reproducing. multiple. •..Accuracy:.Absolute.error.in.natural.daylight.is.±5%.maximum;. 21.75.m,.35.75.m,.49.75.m]..During.the.period.from.20/07/2010. the.main.features.of.some.of.the.most.widespread.commercial. aspects. of. the. evolution. of. water. temperature. profiles. are. ±3%.typical to.13/10/2010.the.sensors.sunk.2.9.m.deeper.. codes.in.the.field.of.lakes.studies.. provided. by. turbulence-based. models. due. to. their. capability. -2 -1 •.Sensitivity:.0.2.kW.m .mV in.parameterizing.certain.three-dimensional.processes..After.a. River loggers As. already. mentioned. in. the. introduction,. 1-D. modeling. •.Linearity:.Maximum.deviation.of.1%.up.to.3000.W.m-2 deep. analysis. of. all. the. available. possibilities,. we. choose. the. approaches,. where. horizontal. averaging. of. lake. properties. is. 3. other. autonomous. single. channel. temperature. loggers.. model.DYRESM,.developed.by.the.Centre.for.Water.Resources. •..Shunt.Resistor:.Adjustable,.40.2.to.90.2.ohm,.factory.set.to.the. accomplished.and.only.the.vertical.variation.is.retained,.represent. TR-1060. have. been. used. to. measure. the. temperature. of. the. of.the.University.of.Western.Australia...designed.to.simulate.the. above.sensitivity a.suitable.choice.because.they.provide.a.compromise.between. incoming.and.out.coming.rivers.(RL1,.RL2).at.a.sampling.rate.of. distribution.of.temperature.and.salinity.with.depth.and.time .in. •.Stability:.<±2%.change.over.a.1.year.period -1 the.actual.physics.and.the.computational.load..The.fundamental. 1.minute ...Consorzio.dell’Oglio.provided.the.water.temperature. lakes.and.reservoirs..The.forcing.terms.that.must.be.computed. -1 assumption.behind.the.use.of.one-dimensional.lake.models.is. •.Response.Time:.10.μs of.the.outflowing.Oglio.in.RL3.at.a.sampling.rate.of.30.minute .. for. applying. any. thermal. model. are. well. represented. by. the. that. horizontal. gradients. are. far. smaller. than. vertical. ones,. a. •.Temperature.Dependence:.0.15%.per.°C.maximum Starting.from.summer.2011,.at.RL1.and.RL2.location.we.installed. simplified.energy.balance.equation.. a.YSI.600LS.multiparameter.probe.that.measures.temperature. condition.that.is.achieved.when.density.stratification.is.present. •..Cosine. Correction:. Cosine. corrected. up. to. 80°. angle. of. and. conductivity. of. the. inflowing. river. at. a. sampling. rate. of.. and. three-dimensional. effects,. such. as. horizontal. advection. incidence -1 by. in-. and. outflows,. earth. rotation,. differential. thermocline. 3.minute .and.with.an.accuracy.of.±0.15°C.for.temperature.and...... (1) LDS. is. equipped. with. the. pyrradiometer. CN1-R-Net. for. the. ±0.5%.of.reading.+.0.001.mS/cm.for.conductivity. deepening,. spatial. variations. of. wind. stress,. upwelling. and. measurement.of.the.total.radiation.flux.downward.and.upward. differential.heating.play.a.secondary.role..According.to.the.final. target.of.this.project,.i.e..sensitivity.testing.to.long.term.changes. through.a.horizontal.surface..It.consists.of.one.head.cast.from. valid. for. a. control. volume. W. that. is. the. overall. volume. of. the. in. management. and. climatic. conditions. in. the. Iseo. basin,. we. epoxy.resin.and.a.double.sided.sensor.thermopile.fitted.to.the. lake.and.S.its.overall.boundary,.Cp.is.the.water.specific.heat,.. choose.a.1-D.modeling.approach.for.the.modeling.of.the.Iseo. middle.of.the.head.and.protected.from.the.wind.and.rain.by .a. xxx.is.the.water.density,.xxx.is.the.water.temperature.and.xxx. Lake.hydrodynamic..Accordingly,.the.time.scale.of .the.process. polythene.semi-rigid..Incident.radiation.from.the.sky.is.absorbed. the.water.velocity..Whilst.the.left.hand.side.represents.the.time. of. our. interest. are. larger. than. the. typical. time. of. horizontal. by.the.upper.disc,.resulting.in.an.elevation.of.its.temperature;.in. variation. of. the. overall. lake. heat. content. the. first. term. on. the. homogenization;. besides,. the. computational. performance. of. the.same.way.incident.radiation.from.the.lake.is.absorbed.by. right.side the.lower.disc.resulting.in.an.elevation.of.its.temperature..So.the. the.model.is.an.important.advantage.as.far.as.climate.change. temperature. gradient. that. forms. between. the. junctions. of. the. scenario.are.concerned.. basse déf. .(2) thermopile.results.in.an.output.proportional.to.the.difference.in. Among. the. different. 1-D. models. available,. two. kinds...... magnitude.of.the.upper.and.lower.interface..The.performance. approaches. can. be. distinguished. depending. on. the. way. they. specifications.are: Pas la réf. du visuel •.Light.Spectrum.Waveband:.0,3.a.60.μm; dans le texte ? •.Viewing.angle:.4pi.steradians; Model Main features •.Sensitivity:.35-45.Wm-2.(typical) 1D AQUASIM turbulent.transport.model •.Response.time:.15s.(1/e);.45s.(95%) 1D DLM.Dynamic.Lake.Model turbulent.transport.model •.Cosine.response.(at.80°.inclination):.-4% 1D DYRESM.Dynamic.Reservoir.Simulation.Model turbulent.transport.model •.Upwards.and.downwards.sensitivity.variation:.<3% 1D MINLAKE Advection/diffusion.transport.model 2D CE-QUAL-W2 fd,.la,.Ca •.Shortwave.and.longwave.sensitivity.variation:.<5% 2D RMA2 fe,.da,.cu •.Temperature.coefficient:.-0.05%/°C 2D HYDROSIM fe,.da,.cu •.Size:.930.x130.x.140mm Figure 7.8> Pictures of the LDS installed in Iseo lake taken during the phase of installation. 3D CH3D.Curvlinear.Hydrodynamics.in.3-Dimensions cfd,.cu,.zl/sg,.ms 3D EFDC.Environmental.Fluid.Dynamics.Code cfd,.cu,.zl,ms 3D ELCOM.Estuary.and.Lake.Computer.Model cfd,.Ca,.zl,.si Iseo Lake Modelling Activities GLLVHT.Generalized.Longitudinal.Lateral.Vertical.. 3D fd,.cu,.we,.si Hydrodynamic.and.Transport.Model Although. lakes. are. widely. studied. all. over. the. world,. the. must.be.fully.understood..This.understanding.can.be.achieved. application. to. them. of. the. environmental. regulations. such. as. only.by.an.integration.of.theory,.measurements.and.modelling. 3D ECOM.Estuary.and.Coastal.Ocean.Model cfd,.cu,.sg/zl,.ms/si the.European.Water.Framework.Directive.is.a.challenging.task. activities.. 3D POM;.Princeton.Ocean.Model; cfd,.cu,.sg/zl,.ms/si and. requires. that. several. natural. and. management. aspects. 3D RMA10.Research.Management.Associates.10 fe,.un,.zl Actually,.there.is.clear.evidence.that.the.biochemical.processes. specific.to.these.water.bodies.are.adequately.understood.and. that.control.the.quality.status.of.lake.water.and.thus.influence. 3D SI3D.Semi-Implicit.3D cfd,.cu,.zl,.si considered..In.this.perspective,.any.attempt.of.lake.restoration. its. ecological. and. economic. role. are. strongly. coupled. to. the. 2D.form:.da.:.depth-averaged;.la.:.laterally-averaged. should.not.be.accomplished.only.considering.a.nutrient.balance,. hydrodynamic.response.of.the.aquatic.system..Hydrodynamic. Numerical.Method:.cfd.:.conservative.finite.difference;.fd.:.finite.difference;.fe.:.finite.element. leaving. out. of. consideration. an. adequate. knowledge. of. the. modelling. of. lakes,. also. called. physical. limnology,. deals. with. Horizontal.Grid:.Ca.:.Cartesian.grid;.cu.:.curvilinear.grid;.un.:.unstructured.grid..Time-stepping:.ms.:. hydrodynamics.that.govern.the.system..In.particular,.this.means. mode-splitting;.si.:.semi-implicit..Vertical.Grid:.zl.:.z-level.vertical.grid;.sg.:.sigma.grid. methods. not. unlike. those. of. oceanography. and. meteorology. that.the.different.phenomena.that.govern.transport.and.mixing. but.largely.concentrates.on.the.responses.of.closed.basins.to. Table 8.1> Some of the most widely spread commercial models used for lakes modelling.

132 133 represents.the.heat.flux.related.to.the.mass.discharge.entering. where...... is.the.molecular.diffusion.coefficient.for.heat,...... the. where.the.growth.source.term.is.replaced.by.a.nutrient.uptake. phytoplankton. internal. phosphorus.. Settling. of. each. of. these. (.....).and.flowing.out.(.....).of.the.lake..The.second.term.on.the. depth,.and..N .the.buoyancy .frequency,.calculated.as.a.function. term..Each.phytoplankton.group.has.its.own.set.of.coefficients.to. nutrient.pools.is.accomplished.using.a.particle.settling.model.. right.hand. of.the.acceleration.of.gravity.g.and.the.vertical.gradient.of.water. define.its.characteristics.associated.with.the.maximum.growth. Mineralization. of. the. organic. nutrient. pools.back. to. inorganic. density : rate,. limiting. factors,. and. internal. nutrient. storage.. Vertical. nutrients. is. modelled. as. a. first. order,. temperature-dependent...... ρ (3) migration.is.simulated.for.motile.and.non-motile.phytoplankton. process.. To. clarify. the. link. between. these. processes,. in...... (7) groups. Fig. 8.1.the.conceptual.diagram.of.the.phosphorous.dynamic.is...... represented. represents. the. net. heat. exchange. (radiative. -. short. and. long. The. modelling. of. zooplankton,. fish,. macroalgae,. and. other. wave. radiation. -. and. non. radiative. -sensible. and. latent. heat). and. CLN. a. dimensionless. parameter. that. Yeats.and. Imberger. biological.species.are.similar.to.that.of.phytoplankton,.but.with. The.dissolved.oxygen.concentration.is.evaluated.as.the.sum.of. across.the.lake’s.surface.(usually.the.geothermal.flux.is.<.0.15. (2003).estimated.at.200.for.lake.Kinneret.. different.source.and.sink.terms.to.represent.different.biological. the.following.oxygen.sources.and.sinks:.surface.transfer,.inflows. W/m2.and.therefore.negligible),.whilst.the.last.integral. and.chemical.processes.involved.in.different.biological.species.. and. outflows. phytoplankton. photosynthesis. and. respiration,. Even. though. DYRESM. has. been. originally. devised. as. a. For. example,. a. weighted. grazing. function. is. included. for. biochemical. and. sediment. oxygen. demand,. and. nitrification...... calibration-free. process-based. model,. the. complexities. of. .(4) zooplankton. feeding. on. phytoplankton. and. fish. feeding. on. Surface.transfer.acts.as.a.source.of.oxygen.when.surface.water. three-dimensional.mixing.processes.imply.that.some.degree.of. zooplankton..With.regard.to.the.nutrients,.uptake.of.phosphorus. concentrations. are. below. saturation. and. as. a. sink. when. they. calibration.can.be.expected.to.improve.model.fit.to.observed.data. and. nitrogen. by. phytoplankton. is. linked. to. concentrations. of. exceed.saturation..Determination.of.oxygen.flux.at.the.surface- is. an. heat. source. term. within. the. volume. due. to. shortwave. (Tanentzap.et.al..2008)..Especially.in.deep.lakes,.lack.of.sufficient. these.nutrients.internally.and.to.concentrations.of.the.dissolved. water.interface.is.regulated.by.a.transfer.velocity.at.the.interface,. radiation. absorption. according. to. Beer’s. law.. DYRESM. uses. heat.penetration.resulted.before.calibration;.improvements.have. inorganic.nutrients.in.the.water.column..The.terms.that.describe. dependent. on. wind. velocity. and. the. resultant. wave. action,. a. Lagrangian. layer. subdivision. according. to. which. the. lake. been.obtained.by.intensifying.the.mixing.process.by.means.of. loss.of.phytoplankton.by.respiration.and.excretion,.mortality.and. and. water. viscosity.. With. regard. to. the. variations. of. oxygen. volume.W.is.modelled.by.a.series.of.horizontally.averaged.layers. increased.CLN.values.up.to.5.times.higher.than.what.found.for. settling. are. also. used. to. describe. losses. of. internal. nutrients.. connected.to.photosynthesis.and.respiration,.they.are.regulated. of.uniform.property.but.variable.thickness.. Lake. Kinneret. (Hornung. 2002,. Perroud. et. al.. 2009).. Besides,. Phytoplankton. mortality. contributes. the. minimum. assigned. by. the. equations. that. govern. the. changes. in. chlorophyll. a,. the. model. performance. demonstrated. high. sensitivity. to. the. The.terms.of.(3).and.(4).are.computed.by.DYRESM.using.equations. internal.nutrient.pool.to.the.pool.of.organic.nutrients.in.the.water. except. for. the. inclusion. of. a. constant. stoichiometric. factor. to. maximum.layer.thickness,.with.calibrated.values.ranging.from. that.are.well.documented.in.the.literature.(Imerito,.2007).and.so. column,.while.any.luxury.storages.contribute.directly.to.dissolved. convert.changes.in.phytoplankton.carbon.to.dissolved.oxygen. 0.6.(Tanentzap.et.al..2007).to.3.(Perroud.et.al..2009),.and.to.the. their.description.here.will.be.omitted..Heat.is.transferred.within. inorganic. phosphorus. and. ammonium. in. the. water. column.. produced. or. respired.. The. effect. of. nitrification. on. dissolved. stirring.efficiency.parameter,.set.to.0.06.(Antenucci.and.Imerito. the.water.column.W.by.wind.stirring,.convective.overturn,.and. Nitrification.and.denitrification.influence.the.dissolved.inorganic. oxygen.is.handled.similarly..Oxygen.demand.of.sediments.in.the. 2003),.0.4.(Yeates.and.Imberger.2003),.and.0.8.(Hornung.2002;. shear. mixing.. In. DYRESM,. these. processes. are. regarded. as. nitrogen.fraction,.which.includes.ammonium.and.nitrate.as.state. euphotic.zone.is.assumed.to.be.met.through.primary.production. Gal.et.al..2003)..Finally,.several.Authors.agree.that.improvement. a. source. of. turbulent. kinetic. energy. by. means. of. efficiencies. variables..These.processes.are.represented.as.first.order,.oxygen- associated. with. benthic. production.. In. the. subeuphotic. zone,. in. the. model. performance. could. be. achieved. by. taking. into. coefficients.. When. this. energy,. stored. in. the. topmost. layers,. dependent. reactions. .. Ammonium. and. dissolved. inorganic. the.sediment.oxygen.demand.in.a.specific .layer.is.determined. account.seasonal.variation.of.light.extinction.coefficient.(Han.et. exceeds. a. potential. energy,. layer. mixing. occurs. and. adjacent. phosphorus.concentrations.are.also.influenced.by.release.from. from.the.contact.area.of.the.water.and.the.sediments,.and.the. al..2000, .Tanentzap.et.al..2007,.Perroud.et.al..2009)..The.same. layers.are.combined.. the. sediments,. with. enhancement. of. release. rates. under. low. water.temperature.and.dissolved.oxygen.concentration.of.the. conclusions. have. been. obtained. during. the. calibration. phase. oxygen.conditions,.to.account.for.progressive.sediment.anoxia.. layer..To.model.biochemical.oxygen.demand.the.detrital.mass. To. overcome. the. problem. of. most. mixed. layer. models. in. that.has.been.performed.for.Iseo.lake. representing. the. temperature. profile. in. the. hypolimnion,. The. organic. phosphorus. pool. available. for. mineralization. is. is. considered. in. terms. of. its. equivalent. oxygen. consumption.. In.order.to.evaluate.the.multiannual.thermal.dynamics.of.Iseo. DYRESM. models. hypolimnetic. mixing. through. an. effective. given. by. the. difference. between. the. concentrations. of. total. Changes.in.chlorophyll.a.due.to.mortality.are.therefore.converted. lake. a. period. of. 16. years. has. been. considered.. As. will. be. vertical.eddy.diffusion.coefficient...parameterization..Moreover,. phosphorus.and.the.sum.of.dissolved.inorganic.phosphorus.and. to.an.increment.in.the.biochemical.oxygen.demand.. detailed. in. the. following,. the. model. has. been. calibrated. for. a. to.overcome.the.difficulties.of.the.evaluation.of.this.coefficient,. 1.year.long.period.during.which.all.the.relevant.data.have.been. DYRESM.uses.the.Lake.Number.to.estimate.and.parameterize. measured.by.our.instruments.and.then.used.in.validation.for.the. the.turbulence.created.by.the.damping.of.the.motion.of.basin- remaining.period. scale.internal.waves.on.the.bottom.boundary.and.in.the.interior. of. the. lake. (Yeats. and. Imberger. 2003).. The. dimensionless. DYRESM. is. the. hydrodynamic. module. that. can. be. coupled. Lake.Number.has.been.originally.introduced.by.Imberger.and. with. a. chemical-ecological. module,. CAEDYM. (Computational. Patterson.(1991).to.quantify.the.relative.strength.of.the.restoring. Aquatic. Ecosystem. DYnamics. Model),. that. is. capable. of. forces.by.the.stratification.and.of.the.overturning.forces.by.wind: reproducing. the. time. evolution. of. the. dissolved. oxygen. along. with.the.most.important.chemical.compounds.within.the.lake,...... (5) as. well. as. of. phytoplanctonic. groups. and. of. zooplancton.. At...... its. most. basic,. CAEDYM. is. a. set. of. library. subroutines. that. contain.process.descriptions.for.primary.production,.secondary. production,. nutrient. and. metal. cycling,. and. oxygen. dynamics. where....is.the.acceleration.due.to.gravity,....is.the.thermocline. and.the.movement.of.sediment.. depth,...... the.depth.of.the.centre.of.volume,.....the.maximum. water.depth,...... the.surface.shear.velocity.due.to.surface.wind. Phytoplankton. biomass. is. represented. in. terms. of.. stresses,...... the.surface.density,...... the.surface.area.of.the.lake,. chlorophyll. a.. The. rate. of. change. of. chlorophyll. a. can. be. and...... the.Schmidt.stability.parameter,.given.by...... thought. of. as. consisting. of. source. terms. forgrowth. (limited. ... by. environmental. conditions). and. sink. terms. for. mortality,. respiration,. and. zooplankton. consumption.. Phytoplankton...... Figure 8.1> Conceptual diagram of the phosphorous dynamic in CAEDYM model, growth.is.dependent.on.both.environmental.factors.and.internal. nutrient. storage.. The. first. limiting. factor. accounts. for. growth. Here,...... and...... are.the.area.and.density.at.the.depth..... dependence.on.water.temperature,.while.the.second.considers. When..LN>1. stratification. prevails. on. forces. tending. to. force. the.minimum.of.limitations.due.to.the.presence.of.sunlight.and. circulation.. internal.nutrient.storage..Uptake.of.nutrients.by.phytoplankton. is.regulated.by.maximum.storage.levels;.i.e.,.the.rate.of.nutrient. The.parameterization.suggested.by.Yeats.and.Imberger.is: replenishment. decreases. as. maximum. storage. levels. are...... (6) approached..When.calculating.the.internal.stores,.the.sink.terms. applied. to. phytoplankton. biomass. also. apply. to. their. internal. nutrient.concentrations..The.overall.rate.of.change.equations.for. internal. nutrients. is. similar. to. that. for. phytoplankton. biomass,.

134 135 Reproduction of Iseo lake thermal evolution back-calculate.the.overall.incoming.discharge.and.to.evaluate. LS1. and. compared. with. the. measured. one.. The. comparison. the. Oglio. contribution.. In. spite. of. their. importance. for. lake. proved.satisfactory (see Fig. 9.1).and.the.procedure.was.then. First. of. all,. we. evaluated. the. capability. of. the. hydrodynamic. and. direction,. humidity,. air. temperature. and. radiation.. Finally. hydrodynamics,. inflows. temperature. haven’t. been. recorded. used.to.compute.the.time.series.of.the.temperatures.for.the.two. model.DYRESM.alone.to.the.thermal.evolution.of.the.lake.. measurements.of.the.output.quantities.(currents,.temperature,. before.2009,.but.only.during.occasional.samplings..Accordingly,. tributaries. during. the. whole. validation. period,. being. the. Oglio. tracer.fields,.turbulence.etc.).are.of.paramount.importance.for. RL1. and. RL2. sensors. provided. the. data. needed. for. the. systematically. more. saline. than. Canale.. Since. salinity. affect. Even. though. DYRESM. has. been. originally. devised. as. a. the.calibration.of.the.model..Typically.these.data.can.be.achieved. calibration.period..It.might.be.interesting.to.observe.the.integral. density.and,.in.turn,.the.inflow.plunge.point,.we.used.the.1-year. calibration-free. process-based. model,. the. complexities. of. by.mooring.at.fixed.stations.electronic.instruments.that.measure. contribution.of.the.two.inflows.to.the.lake.temperature time. series. of. conductivity. measured. at. RL1. and. RL2. to. and. three-dimensional.mixing.processes.imply.that.some.degree.of. the.time.evolution.of.local.lake.currents.and.water.temperature. extrapolate.it.to.the.whole.time.series... calibration.can.be.expected.to.improve.model.fit.to.observed...... at. different. depths,. as. well. as. through. spatially-varying. (8) data..Accordingly,.the.model.has.been.calibrated.for.a.1.year. measurements. of. velocity. by. means. of. lagrangian. drogues. or...... Lake water temperature long. period. (25/10/2009. –. 25/10/2010). when. high. resolution. of. the. main. physical. and. chemical. quantities,. through. probes. It.is.difficult.to.overstate.the.importance.of.the.continuous.time. water.temperature.data.were.available.for.a.detailed.evaluation. that,.according.to.eq..1,.would.be.the.equilibrium.T.of.the.lake. deployment.. With. regard. to. the. simulation. of. the. long-term. series. of. lake. temperature. over. the. first. 40. m. of. depth.. The. of.the.model.performance.and.meteorological.forcing.variables. surface.if.no.other.radiative/non.radiative.heat.fluxes.were.acting. thermal.profile.in.Lake.Iseo,.we.used.measurements.provided.by. thermistor.chains.installed.on.the.lake.provided.high.resolution. were.properly.measured..Once.calibrated,.the.model.was.used. through.the.surface.. the.stations.network.described.above.were.integrated.with.the. water.temperature.data.suitable.for.the.evaluation.of.the.model. in.validation.for.the.remaining.period.(1995-2010). other.parameters.monitored.by.the.stations.in.the.area.around. In. order. to. cover. the. validation. period,. it. has. been. necessary. performance. during. the. calibration. period.. These. data. also. the.lake..The.complete.set.of.data.available.during.the.period. to. supplement. these. data. with. some. correlations.. Several. allowed. to. observe. for. the. first. time. the. relevance. of. internal. Initial and boundary conditions of. simulation. for. the. hydrodynamic. modelling. of. Lake. Iseo. is. studies. have. shown. that. river. temperature. can. be. evaluated. waves.within.Iseo.lake.(Valerio.et.al.,.2012).and.to.compute.in. As. already. mentioned. in. the. previous. section,. the. modelling. synthesized.in Tab. 9.1.and.described.in.the.following.. from.meteorological.variables.(Rueda.et.al..2006,.Tanentzap.et. a.continuous.way.the.Brunt-Vaisala.buoiancy.frequency.which. activities. can. be. considered. reliable. when. based. on. a. sound. al.. 2007,. Bartholow. 1989).. Following. the. approach. proposed. is. needed. for. the. computation. of. the. effective. vertical. eddy. calibration.in.conjunction.with.sensitivity.analyses..This,.in.turn,. Inflow and outflow data by. Smith. (1981),. after. several. attempts. air. temperature. at. the. diffusion.coefficient. implies.a.strong.effort.in.field.measurements..Lakes.modelling,. LS1.land.station.has.been.found.to.be.the.variable.that.has.the. In. order. to. compute. the. heat. flux. of. inflowing. and. outflowing. With. regard. to. the. validation. period,. we. used. temperature. so,.can.develop.only.when.supported.by.field.data,.necessary. strongest. correlation. with. the. mean. daily. Oglio. and. Industrial. tributaries,.both.discharge.and.water.temperature.are.needed.. data. measured. monthly. by. the. Dipartimento. delle. Scienze. for. the. input. of. the. model. and. for. the. calibration/verification. canal. temperatures.. The. 2009. time. series. of. air. temperature. Outflow.water.level,.discharge.and.temperature. are.measured.by. dell’Ambiente.del.Territorio.of.the.Università.degli.Studi.di.Milano. of.their.results..First.of.all,.vertical.profiles.of.temperature.and. (LS1). and. Oglio. (RL1). present. a. high. correlation,. especially. Consorzio.dell’Oglio,.a.private.Authority.that.manages.the.water. in.the.area.of.maximum.depth (S1 in Fig.1)..Samples.have.been. conductivity. provide. the. spatial. and. temporal. distribution. of. when. subdivided. into. 2. periods. (I:. 1/03-22/06. and. II:. 23/06- release.from.Lake.Iseo,.in.correspondence.of.the.Sarnico.dam. collected.through.a. Van.Dorn.bottle.at.depths.0.5,.1,.3,.5,.10,. density,. necessary. for. a. correct. initialization. and. parameters. 28/02).and.a.least.squares.interpolation.between.them.provided. (RL3)..Regarding.the.main.inflows,.no.continuous.series.of.the. 20,. 30,. 50,. 75,. 100,. 150,. 200,. and. 245. m;. temperature. and. set-up.of.the.model..With.regards.to.the.boundary.conditions,. the. coefficients. reported. in Tab. 9.2.. Although. the. water. from. Oglio.discharge.is.available,.while.the.industrial.canal.discharge. oxygen.were.measured.for.each.sample.by.the.automatic.probe. instead,. they. should. be. supplied. by. meteorological. buoys. the. industrial. canal. has. been. diverted. from. the. Oglio. river,. is. provided. by. data. of. energy. production. of. the. hydropower. Microprocessor.Oxymeter.WTW.OXY.196.(Garibaldi.et.al..1997).. positioned. at. fixed. points. on. the. lake. surface. and. equipped. it. flows. in. a. more. compact. and. regular. cross-section. and. station..By.solving.the.continuity.equation.of.the.lake,.knowing. with.electronic.recording.units.such.as.the.ones.for.wind.speed. receives.relevant.contributions.from.lateral.valleys..As.a.result,. the.outflow.discharge.and.lake.level.data,.it.has.been.possible.to. Meteorological parameters its. temperature. (RL2),. although..very. well. correlated. for. the. whole.year.with.the.temperature.of.Oglio.(RL1),.is.on.average. With.regard.to.the.calibration.period,.we.used.the.meteorological. 1.9. °C. lower.. Accordingly,. we. determined. the. coefficients. of. data. measured. by. the. LDS. data,. occasionally. integrated. with. the.linear.equations.to.predict.the.Oglio.temperature.from.the. other. data. measured. close. to. the. lake. shore.. This. integration. LS1.air.temperature.and.then.the.industrial.canal.temperature. was.needed.in.the.period.before.the.LDS.installation.(25/10/2009. from. the. Oglio. one. .. In. order. to. verify. the. effectiveness. of. –. 05/12/2009). and. during. some. occasional. events. when. part. this. procedure,. the. water. temperature. series. at. RL1. and. RL2. of. instrumentation. was. damaged.. In. particular,. we. had. to. in. 2010. were. predicted. from. the. air. temperature. measured. at. considered.additional.short-wave.radiative.measurements.from.

Fig. 9.1> Comparison between the inflows water temperature measured (M) and predicted (P) from the air temperature (C). August temperature of the Industrial channel has been excluded because no volume is diverted in the channel in this period of the year.

SS1 vs RL1 RL2 vs RL1 1 2

Intercept 6.291 5.900 -2.921

Slope coefficient 0.263 0.357 1.073

R2 0.905 0.937 0.973

Table 9.2> Results of the linear regression between the time series of air temperature (LS1) and Oglio temperature (RL1) Table 9.1> Data availability during the period of simulation used for the modeling of the thermal structure of Iseo Lake in the periods 1/03/2009 - 22/06/2009 (I) and 23/06/2009 - 28/02/2010 (II) and of Oglio temperature (RL1) in the period 1995-2010. and Industrial channel temperature (RL2).

136 137 Costavolpino,. . and. Darfo. (LS1,. LS3. and. LS4),. having. (Cortefranca).stations,.that,.among.the.land.stations.available,. The.observed.and.simulated.time.series.of.the.mean.temperature. calibration.and.the.need.to.increase.the.intensity.of.the.mixing. verifying. the. quality. and. compatibility. of. these. data. trough. a. are.all.located.in.open.areas.far.enough.from.the.influence.of.the. of. the. first. 40m. of. water. column,. 10. days-averaged,. have. processes.to.correctly.reproduce.Iseo.lake.hydrodynamics..By. comparison.with.the.LDS.ones.during.the.overlapping.periods.. perimeter.topography..In.order.to.derive.a.reasonable.indication. been.compared.in.Fig. 9.2..The.simulations.do.not.differ.much. comparing.all.the.parameter.combinations,.the.best.fit.between. With. regard. to. the. validation. period,. LS1. provided. rain,. air. of.the.on-lake.speeds,.wind.multiplication.factors.(WMF).were. until. June. 2010,. since. they. fit. well. the. winter. cooling. and. the. averaged. simulated. and. measured. data. was. achieved. with. temperature. and. relative. humidity;. LS2. measurements. were. calculated.for.each.time.bands.(1-4).in.the.overlapping.period.. early. spring. warming,. underestimating. of. about. 0.3-0.4°C. Hmax.=.3m.and.CLN.=.5000..Fig. 9.3 reports.the.comparison. used. to. complete. the. series. when. data. were. not. available.. (see Tab. 9.3 and Tab. 9.4).and.applied.to.the.whole.time.series. the. minimum. temperatures. measured. in. February. and. March. of.the.time.series.of.the.temperature.averaged.in.the.4.layers. SWR. was. obtained. mainly. from. LS1. station. and. completed. 2010.. The. two. parameters. under. consideration. appear. to. observed.in.the.field.and.simulated.with.the.calibration.values. with.the.data.measured.by.LS2,.LS3.and.LS5..Finally,.LWR.was. Results: model calibration have.a.strong.influence.in.summer,.that.is.when.internal.waves. and.Fig. 9.4.shows.the.contours.of.the.measured.and.simulated. calculated.for.CCF.data.measured.by.Orio.al.Serio.airport.(A1),. A. sensitivity. analysis. together. with. the. review. of. the. literature. phenomena.becomes.particularly.evident.in.lake.Iseo..For.Hmax. daily.averaged.temperature..As.one.can.observe,.the.model.well. integrated.with.Ghedi.airport.(A2).when.data.were.not.available. values.led.to.identify.two.calibration.parameters:.the.maximum. =.1m.the.averaged.temperature.grows.too.fast.starting.from.the. reproduces.the.observed.vertical.temperature.structure.during. end.of.May,.leading.to.overestimated.values.in.July.and.August. winter.and.spring..Between.June.and.September.discrepancies. A. thorough. knowledge. of. the. wind. field. is. needed. for. lake. permissible. layer. thickness. Hmax,. that. control. the. vertical. 2010.. Higher. values. of. the. maximum. layer. height. provide. a. are.present.due.to.the.fact.that.in.the.simulations.heat.is.kept.in. modelling. because,. in. addition. to. its. role. in. convective. heat. resolution.of.the.numerical.grid,.and.the.mixing.coefficient.CLN,. better.description.of.the.warming.phase.and,.accordingly,.of.the. the.upper.layers.instead.of.being.distributed.below..Accordingly,. fluxes,. this. is. the. primary. force. acting. on. the. lake. surface.. In. that. controls. the. amount. of. turbulent. diffusion. as. a. function. averaged.temperature.trend..However,.in.such.a.case,.care.is. temperature.reduces.faster.with.depth.than .expected,.leading.to. 2010. the. LDS. station. provided. a. clear. picture. of. the. on-lake. of.the.Lake.Number.(see eq. 7)..All.the.other.parameters.were. needed.when.choosing.CLN..As.a.matter.of.fact,.Fig. 9.2.clearly. stronger.vertical.temperature.gradients. wind.conditions..Under.ordinary.meteorological.conditions.the. kept.constant.(see Tab. 9.5)..A.total.number.of.30.simulations. shows.an.increased.sensitivity.of.the.model..when.Hmax.gets. hourly-averaged.wind.speed.had.a.pronounced.daily.periodicity,. were. run. for. one. year. with. a. time. step. of. 1. hour,.varying. the. higher..With.regard.to.the.vertical.distribution.of.heat,.the.model. Results: model validation characterized.by.two.distinctive.maxima,.the.daytime.one.(“Ora”. two.calibration.variables.within.the.ranges.1.–.3m.for.Hmax.and. errors.and.standard.deviations.calculated.at.the.different.water. wind).being.stronger.with.respect.to.the.night.time.(“Vet”).one.. 1000.–.6000.for.CLN..The.model.performances.were.evaluated. Once. calibrated,. DYRESM. was. run. at. 1-h. time. steps,. with. a. depths.highlighted.that.the.worst.model.performance.are.around. They. correspond. to. the. two. preferential. directions. the. wind. by. comparing. the. time. series. of. the. mean-daily. temperature. daily.output,.to.provide.the.continuous.simulation.of.the.thermal. the. thermocline. between. 10m. and. 20m.. Here. the. maximum. blows.from,.N-NNE.and.S...Accordingly,.4.conditions.used.to.be. data. given. by. the. model. were. averaged. over. the. layers. 0. -.. structure.of.Lake.Iseo.from.1995.to.2010.. deviations.from.the.observed.data.occurs.in.correspondence.of. verified.during.a.typical.day: .1).Vet.blowing.northerly.from.22.to. 10.m,.10.–.20.m,.20.–.30.m.and.30.–.40.m.with.the.corresponding. the.lower.values.of.CLN.and.of.the.maximum.values.of.Hmax..A. For.validation.purposes,.the.output.of.the.model.was.compared. 06,.2).calm.between.06.and.11,.3).Ora.blowing.southerly.from. observed. ones,. and. by. computing. the. corresponding. mean. general.improvement.of.the.simulation.results.can.be.observed. with. the. field. temperature. data. collected. at. S1. and. with. the. 11.to.18,.and.4).calm.between.18.and.22..These.measurements. and.maximum.error.and.error.standard.deviation..Besides,.the. for.CLN>3000,.that.reflects.the.lack.of.heat.penetration.before. continuous.series.of.temperature.measured.at.RL3..Regarding.. differ.greatly.with.respect.to.the.ones.provided.by.the.other.land. capability.of.the.model.to.reproduce.correctly.the.main.features. stations.present.in.the.area.surrounding.the.lake,.because.of.to. of. the. stratification,. i.e.. the. duration,. the. thermocline. location. the.considerable.spatial.variability.of.the.wind.field.acting.on.Lake. and.the.strength.of.the.stratification.was.evaluated..Following. Iseo.induced.by.the.surrounding.topography.(see.Valerio.et.al.. the.approach.proposed.by.Jaquet.(2005),.the.beginning.(end).of. 2012)..Land.data.strongly.underestimate.the.on-lake.wind.speed. the.stratification.period.was.determined.when.more.(less).than. and.capture.some.wind.flows.better.that.others.depending.on. 2.°C.was.observed.between.2.and.50m.of.depth..During.this. their.position..Accordingly,.in.order.to.get.a.complete.1995-2011. period,.the.strength.of.the.stratification.was.characterized.by.the. wind.time.series,.we.decided.to.integrate.LDS.measurements. maximum.of.the.buoyancy.frequency.and.by.the.depth,.called. with.the.data.from.WS1.(Castro),.LS1.(Costavolpino).and.LS2. thermocline,.where.this.maximum.is.located.(see.e.g..Perroud. et.al..2009).

Time band Parameter Value 1 2 3 4 Light.extinction.coefficient.(m-1) 0.35 WMF 2.2 1.7 1.3 1.7 Fig. 9.2> Comparison between the mean temperature of the first 40m of water column, 10 days-averaged, Mean.albedo.of.water.(-) 0.08 observed and simulated for different values of Hmax (1-3m) and CLM (1000-6000).

Table 9.3> Wind multiplication factors applied to the wind data measured 0.96 by WS1 in correspondence of the different time bands ((1): Water.surface.emissivity.(-) 22 - 06 , (2): 06 - 11, (3): 11 - 18, (4): 18 – 22). Bulk.aerodynamic.transport. coefficients.for..momentum,. 1.3.10-3 sensible.and.latent.heat.(-) Critical.wind.speed.(m/s) 3

Month Shear.production.efficiency.(-) 0.08 01 02 03 04 05 06 07 08 09 10 11 12 Potential.energy.mixing.efficiency.(-) 0.2

LS2 (1) 3.51 2.52 3.30 2.40 2.48 3.82 3.15 3.91 3.49 4.47 4.85 5.28 Wind.stirring.efficiency.(-) 0.8 Fig. 9.3> Comparison between the time series of the observed and simulated ( =5000 and = 3m) temperature, 2 LS1 (2) 3.26 4.04 3.64 3.67 2.96 2.83 2.89 2.96 3.01 3.35 3.70 4.02 Effective.surface.area.coefficient.(m ) 107 averaged over the first 4 layers of the water column

LS1 (3) 2.63 2.39 2.37 2.31 2.07 2.05 2.14 2.12 2.21 2.32 2.64 2.96 BBL.dissipation.coefficient.(-) 1.4.105

LS1 (4) 3.02 2.57 2.36 2.20 2.27 2.33 2.30 2.39 2.48 2.48 2.87 3.23 Vertical.mixing.coefficient.(-)* 5000

Table 9.4> Wind multiplication factors applied to the wind data measured by the land stations and applied to each Minimum.layer.thickness.(m) 0.5 month of the time series divided into 4 time bands ((1): 22 - 06 , (2): 06 - 11, (3): 11 - 18, (4): 18 – 22). Maximum.layer.thickness.(m)* 3

Table 9.5> List and valued of the DYRESM parameters used in the simulation. Fig. 9.4> Contours of (a) the measured (5-d averaged) and (b) the simulated temperature ( =5000 and = 3m) The asterisk marks calibration parameters. temperature field.

138 139 the. S1. series,. temperature. was. analyzed. in. terms. of. depth. hand,. can. be. very. significative:. temperature. daily. fluctuations. Reproduction of Iseo lake chemical evolution averages;.the.depth.classes.were.0-10m,.10-50m,.50m-bottom,. up.to.4.°C.are.expected.to.be.observed.in.this.location.under. which. correspond. to. the. average. location. of. epilimnion,. ordinary.summer.conditions.(Valerio.et.al..2012)..The.simulated. Given.the.capability.of.the.hydrodynamic.module.to.provide.a. Additionally,.this.analysis.have.evidenced.that.the.phytoplankton. metalimnion.and.hypolimnion.during.summer..The.comparative. hypolimnetic. temperatures. departed. within. less. than. 0.8°C. satisfactory.reproduction.of.the.thermal.evolution.of.the.lake.and. shows.an.high.degr ee.of.spatial.variability.in.the.lake,.highlighting. analysis. of. the. temperature. at. TC2. and. RL3. shows. that. the. from. the. observed. temperatures,. the. underestimation. starting. of.its.internal.overturn.processes,.DYRESM.was.coupled.with. the.difficulties.in.understanding.and.simulating.the.real.dynamic. measurement.at.TC2.provides.a.good.proxy.of.the.epilimnetic. from. 1999. and. being. amplified. after. 2006.. With. regard. to. the. CAEDYM.to.simulated.the.evolution.of.the.chemical.parameters. of. this. component. of. the. ecosystem.. This. lies. outside. the. temperature. at. the. surface. (see Fig. 9.5).. With. regard. to. the. seasonal. variability,. DYRESM. did. not. capture. the. weak. but. of. interest,. i.e.. oxygen,. chlorophyll. and. nutrients. over. the. purposes.of.this.project,.whose.aim.to.is.the.reproduction.of.the. S1. data,. Fig. 9.6. shows. that. DYRESM. correctly. captured. the. regular.annual.trend.that.affects.the.water.between.50.and.150. validation.period.1995-2010.. thermal.and.chemical.evolution.of.the.lake..As.a.matter.of.fact,. general.thermal.structure.of.the.lake.over.the..entire.15-years. m.. Instead. of. tracking. a. gradual. temporal. variation. over. each. due.to.the.model.chosen.and.the.data.available,.the.introduction. The. conceptual. ecosystem. encompassed. by. DYRESM– time. period,. characterized. by. a. periodic. annual. trend. with. an. year,.the.model.simulates.a.constant.temperature.with.a.peak. of.the.phytoplankton.is.aimed.to.reproduce.the.overall.amount.of. CAEDYM. can. be. made. more. or. less. complex. by. the. user. average. maximum. epilimnetic. temperatures. of. 21.8. ±. 1.2. °C. occurring. in. the. period. of. minimum. stability. in. response. to. a. chlorophyll.present.in.the.lake.and.its.vertical.distribution.that.is. depending.on.the.purpose.of.the.model.and.the.availability.of. recorded. between. July. and. August. and. by. a. nearly. uniform. partial.mixing.of.the.water .column..With.regard.to.the.longer- mutually.interdependent.on.the.oxygen.and.nutrients.dynamic... data..In.the.most.ambitious.case,.simulations.can.be.made.with. profile. between. February. and. March,. when. temperatures. term. trends,. the. model. succeeded. in. simulating. the. strong. . up. to. seven. different. phytoplankton. groups,. five. zooplankton. approach. the. bottom. temperature. (6.4. °C. on. average).. This. and.quick.decrease.of.the.temperatures.observed.in.this.layer. Initial and boundary conditions seasonal. trend. progressively. dampens. with. depth,. becoming. between. 2005. and. 2006;. as. a. consequence. of. these. events,. groups,. fish. and. submerged. vegetation.. Though,. to. make. it. The.available.quality.data.needed.by.the.model.were.integrated. almost. indistinguishable. under. 150. m,. where. water. reacts. to. the. observed. (simulated). averaged. hypolimnetic. temperatures. successful,. it. necessary. to. have. enough. measurements. to. with.the.meteorological.ones.already.described.in.the.previous. longer-term. trends. rather. than. shorter-term. meteorological. lowered. from. 6.7. (6.4). (1995-2004). to. 6.4. (5.9). (1997-2010).. make. the. equations. that. govern. these. processes. correctly. section,.in.order.to.provide.the.initial.and.boundary.conditions. variability.. DYRESM. successfully. reproduces. the. strong. This. trend. may. be. clearly. justified. by. analyzing. the. bottom. parameterized..If.it.is.not.the.case,.a.possibility.is.to.simplify.the. requested.by.the.ecological.model. seasonal. variability. in. the. upper. layers. temperatures,. with. a. temperatures:.both.field.and.simulated.data.show.comparable. model.neglecting.the.direct.simulation.of.some.of.the.processes;. mean. absolute. error. of..0.6. °C. (5%). in. the. epilimnion. and. of. jumps.in.temperature.on.March.2005.and.March.2006.(see.Table. this.essentially.implies.that.the.other.model.parameters.included. Boundary condition at the inflows 0.6. °C. (7%). in. the. metalimnion.. It. is. interesting. to. notice. that. 9.6),.when.also.a.sudden.increase.in.oxygen.concentration.was. in.the.remaining.algorithms.should.compensate.for.this..In.the. in. the. intermediate. layer. the. maximum. errors. occurred. in. measured..Accordingly,.the.model.was.capable.of.reproducing. case.of.Lake.Iseo,.nutrients.data.were.complete.and.available. With.regard.to.the.quality.boundary.conditions,.ARPA.Lombardia. correspondence. of. the. warmer. temperatures,. remarking. the. the. occurrence. of. circulation. events. that. penetrated. more. with.enough.temporal.resolution..On.the.contrary,.some.of.the. collects. monthly. samples. from. the. Oglio. river. and. measuring. difficulties. of. the. model. in. simulating. accurately. the. structure. deeply.with.respect.to.the.other.years,.inducing.a.deep-water. needed. quality. data. regarding. benthos,. metals,. submerged. the.main.water.chemical.properties..Accordingly,.the.time.series. of.the.thermal.profiles.around.the.thermocline.under.stratified. temperature. decrease.. This. is. of. particular. relevance. in. this. vegetation.and.fish.were.either.very.sparse.or.incomplete,.while. 2000-2009. of. Oglio. dissolved. oxygen,. BOD,. total. nitrogen,. conditions,.already.observed.during.the.calibration.period..An. geographical. area,. where. the. deep-water. mixing. of. several. the.data.on..phytoplancton.and.zooplancton..were.characterized. nitrates,.ammonia,.total.phosphorous.and.orthophosphates.are. additional. intrinsic. reason. of. some. occasional. discrepancies. deep. lakes. resulted. susceptible. to. inter-annual. variations. by.a.such.high.degree.of.complexity.and.variability.that.made. available..In.2010.was.also.possible.to.compare.the.chemical. between.model.results.and.field.data.in.the.metalimnion.during. in. meteorological. conditions,. tending. to. be. dominated. by. unrealistic.the.goal.of.a.precise.reproduction.of..their.dynamics.. properties. in. Oglio. river. and. Industrial. canal,. thanks. to. a. the.straified.period.could.also.be.ascribed.to.the.fact.that.the. superposed.«saw-tooth».structures,.each.consisting.of.several. On.the.basis.of.these.considerations,.we.set.up.a.model.that. measuring. campaign. developed. by. Prof.. Garibaldi.. From. this. measured.data.are.affected.by.the.fluctuations.at.the.sampling. years. of. gradual. warming. at. an. approximately. constant. rate. was.able.to.simulate.the.dynamic.of: comparison. it. was. possible. to. observe. a. general. agreement. location.due.to.vertical.seiching..These.fluctuations.cannot.be. followed.by.abrupt.cooling.(Livingston.1997,.Salmaso.2005). •.Nutrients.(nitrogen,.phosphorus.and.silicates);. between.the.concentrations.in.the.two.inflows,.so.legitimating. the.extrapolation.of.the.Oglio.time.series.to.the.Industrial.canal.. taken.into.account.in.a.one-dimensional.model.and,.on.the.other. •.Oxygen;. In.absence.of.any.data.available.for.the.period.1995-2000,.the. •.Carbon;. yearly. averaged. data. measured. in. 2000. were. applied. to. the. •..3.prevailing. phytoplancton. groups:. microcystis,. greens. and. previous.5.years.. diatoms;. DO T (°C), M T (°C), S Initial condition and validation data (mg/l), M The.effects.of.all.the.other.components.of..the.food-chain.on.the. nutrient.dynamic.were.indirectly.taken.into.account.in.the.model. At. a. monthly. basis,. ARPA. Lombardia. measures. the. chemical. 15/12/2004 6.5 6.1 0 parameterization. parameters.at.different.depths.of.the.water.column.in.3.different. locations.of.the.Lake.(Castro,.Montisola.and.Predore),.providing. Fig. 9.5> Comparison between simulated (solid line) and observed (dots) temperature 20cm below the water 02/03/2005 6.1 5.7 5.4 surface at the exit of the Oglio river. With. regard. to. the. phytoplancton. groups,. the. groups. choice. the.time.series.over.the.period.2000-2009.of.temperature,.salinity,. 05/09/2005 6.3 5.7 0 are.based.on.the.analysis.carried.out.by.Premazzi.in.the.period. chlorophyll,. oxygen,. phosphorus. (total. and. orthophosphate),. 1996-1997,that. provided. the. concentration. of. the. different. 14/03/2006 5.7 5.5 7.9 nitrogen. (total,. nitrate. and. ammonia). at. the. depths. 0-25-50- species.measured.in.3.different.stations.(Zorzino,.Tavernola.and. 100-120m.in.Castro,.0-25-50-100-200-258m.in.Tavernola.and. 14/11/2006 6.2 5.5 1 Iseo)..The.different.phytoplankton.species.have.been.grouped. 0-25-50-80m. in. Predore.. Prof.. Garibaldi. monitored. the. same. in.the.6.classes.model.by.Caedym.and.their.concentration.have. Table 9.6> Measured (M) and simulated (S) temperature and oxygen parameters. in. Taveronola. at. the. depths. of. .5,. 1,. 3,. 5,. 10,. 20,. concentration at a depth of 250m between 2004 and 2006. been. expressed. in. term. of. Chlorophyll-a. on. the. basis. of. their. 30,.50,.75,.100,.150,.200,.and.245.m..Given.the.higher.vertical. bio.volume..According.to.the.obtained.values (see tab 10.1).we. resolution.and.time.extension.of.the.Prof..Garibaldi.data,.we.used. choose. to. model. only. the. 3. prevailing. phytoplancton. groups:. the.profiles.measured.on.January.1995.for.the.initial.condition. microcystis,.greens.and.diatoms. of.the.model.and.the.whole.1995-2010.series.to.evaluate.the. model.performance..

Fig. 9.6> Comparison between measured and simulated temperature averaged in the (a) epilimnion (0-10m), (b) metalimnion (10-50m) and (c) hypolimnion (50m-bottom).

Table 10.1> Average phytoplancton concentration, expressed in term of Chlorophill-a , measured between 1996 and 1997 (data from Premazzi 1998).

140 141 Results: 1 - model calibration flux.in.2006..If.phosphates.are.released.by.the.sediment.in.the. Results: 2 - model validation. concentrations. lie. between. 0.1. and. 0.15. mgP/l;. in. the. upper. On.the.basis.of.a.sensitivity.analysis.and.of.a.literary.review,.it. deep.water,.on.the.contrary.nitrates.are.absorbed.by.them.and. The.calibrated.model.was.used.to.simulate.the.lake.chemistry. 50m,. instead,. the. concentration. is. always. lower. than. 0.05. used.as.electron.acceptors;.for.these.reason.the.flux.of.NO .has. mgP/l..The.dynamic.of.this .nutrient.component.is.correlated.with. was.possible.to.identify.the.main.site-specific.parameters.that. 3 over. the. period. 1995-2010.. The. resulted. values. of. oxygen,. mostly.controls,.directly.and.indirectly,.the.oxygen.and.nutrients. been. set. as. negative. and. its. values. calibrated. as. to. correctly. chlorophyll,. organic. and. inorganic. nutrients. were. averaged. the. oxygen. one,. because. it. is. similarly. affected. by. circulation. reproduce.the.decr easing.trend.of.deep.NO .that.occurs.when. events. that. drive. downward. superficial. water. with. lower. dynamic.. These. were. chosen. as. calibration. parameters. (see. 3 over. 50m. deep. layers. and. compared. with. the. corresponding. Tab.10.1)..With.regard.to.the.other.constants,.we.kept.the.values. oxygen. is. not. available. anymore.. Other. important. parameters. measured. data. (see Fig. 10.1-10.4).. The. model. was. able. to. orthophosphates. concentration.. Accordingly,. spring. partial. or. according.to.literature.. that. influence. the. nutrients. dynamics. along. the. whole. water. provide.the.correct.order.of.magnitude.of.the.variables.under. complete.circulations.induce.a.net.reduction.in.orthophosphates. column. are. the. rate. of. mineralization,. i.e.. the. conversion. of. consideration.in.the.different.layer.and,.in.most.cases,.also.their. under.100m,.followed.by.a.more.gradual.increase..The.model. Jan.2005.–.Jan.2007.was.chosen.as.a.calibration.period,.since. nitrogen.and.phosphorous.from.organic.to.inorganic.forms,.and. temporal.trend.with.reasonable.accuracy.. generally.well.reproduce.this.dynamic..Though,.if.in.the.deeper. in.this.year.a.full.circulation.occurred..Accordingly,.the.oxygen. the.rate.of.nitrification.and.the.denitrification,.that.regulate.the. layer.the.calibrated.PO4.sediment.flux.assures.a.very.good.fit. dynamic.occurring.on.the.lake.bottom.was.particularly.suitable.for. ration.between.ammonia.and.nitrates..Finally,.the.grow.rate.of. The.simulated.and.measured.dissolved.oxygen.concentrations. between. the. measured. and. simulated. values,. the. model. tend. the.determination.of.the.constants.that.control.the.consumption. phytoplankton.has.been.calibrated.as.to.reproduce.the.correct. are.represented.in. Fig. 10.1..Under.ordinary.condition,.the.water. to. underestimate. them. between. 100. and. 200m.. As. already. of.oxygen.at.the.lake.bottom..The.obtained.values.are.listed.in. growth. seasonal. trend. and. to. provide. the. correct. average. below.100m.is.poorly.oxygenated.and.characterized.by.a.deeper. observed.for.the.oxygen,.the.model.tends.to.overestimate.the. Tab 10.2..The.parameters.referred.to.the.sediments.controlled. value.of.the..chlorophyll.measured.in.the.first.20m;.with.regard. layer.that.is.constantly.anoxic..Occasionally,.this.situation.can. strength.and.the.vertical.extent.of.the.partial.spring.circulations,. the. oxygen. and. nutrient. dynamics. in. the. deeper. layers.. In. to.the.other.phytoplankton.parameters,.such.as.the.ones.that. be.modified.by.the.occurrence.of.a.complete.lake.overturn,.as. leading. to. higher. drops. in. PO4.. Also,. in. these. layer. it. cannot. particular,.the.sediment.oxygen.demand.controls.the.decrease. parameterize. the. light. and. nutrient. limitation,. we. assumed. a. it.happened.in.2006,.when.8mg/l.of.oxygen.concentration.were. reproduce. effectively. the. gradual. increases. that. follows. these. of.oxygen.observed.after.the.2006.lake.circulation,.while.the.PO4. value.for.each.group.according.to.the.literature.. measured.along.the.whole.water.column..The.model.succeeded. events. sediment.flux.controls.the.corresponding.increase.of.phosphate. in.the.simulation.of.the.whole.circulation.events.that.occurred.in. 2006.and.the.calibrated.value.of.the.sediment.oxygen.demand. With. regard. to. nitrogen,. ammonia. (N-NH4+). and. nitrates.. (N-NO . ). concentrations. are. represented. in Fig. 10.3. and.. assured.to.correctly.reproduce.the.oxygen.trend.in.the.deeper. 3 COMPONENT PARAMETER CALIBRATED VALUE UNIT layer. that. followed. this. event (see Fig. 10.1e).. With. regard. to. Fig. 10.4.. Ammonia. is. the. nutrient. that. shows. the. stronger. gradients,. the. concentration. in. the. deeper. water. (200-250m). Sediment.oxygen.demand.SOD 6.5 g/m2/day the. intermediate. layer. (100-150m),. on. average. the. model. being.around.10.times.the.one.in.the.upper.water..(0-200m)..With. Half.saturation.const..for.SOD 1.5 g/m3 overestimates.the.water.oxygenation,.indicating.that.it.tends.to. Sediments overestimate.the.strength.and.the.vertical.extent.of.the.partial. regard.to.the.deeper.water,.the.first.10.years.are.characterized. NO .flux -0.8 g/m2/day 3 spring.circulations. by. a. decreasing. trend. that. the. model. reproduces. correctly.. 2 On. the. contrary,. it. does. not. capture. the. strong. increase. that. PO4.flux 0.11 g/m /day The. simulated. and. measured. orthophosphate. (P-PO4). Nitrification.rate 0.05 1/day characterized. the. years. after. the. 2006. overturn.. Nitrates. are. concentrations. are. represented. in. Fig. 10.2...Orthophosphate. more. uniformly. distributed. along. the. water. column;. different. Half.saturation.const..for.nitrif. 0.5 g/m3 Nutrients are. a. key. parameter. for. the. evaluation. of. the. water. quality. of. dynamics. characterize. the. upper. 100m. with. respect. to. the. Denitrification.rate 0.5 1/day the.lake.since.they.represent.the.main.contribution.of.the.total. lower. one:. the. former. almost. constant. over. time,. while. the. P.mineralization.rate 0.01 1/day phosphorous. in. Iseo.. Orthophosphates. increase. with. depth,. latter.showing.a.decreasing.trend.due.to.the.consumption.for. Greens.max.growth.rate 1.9 1/day reaching. the. maximum. values. in. the. deeper. layer,. where. the. biomass.degradation.when.oxygen.is.not.available..Obviously,. Phytoplancton Cyanobact..max.growth.rate 2.4 1/day

Table 10.2> List and valued of the CAEDYM parameters calibrated in the simulation of Lake Iseo chemistry.

Fig. 10.1> Simulated (continuos line) and measured (black dots) dissolved oxygen concentrations Fig. 10.2> Simulated (continuous line) and measured (black dots) phosphates concentrations Fig. 10.3> Simulated (continuos line) and measured (black dots) nitrates concentrations (N-NO3 Fig. 10.4> Simulated (continuous line) and measured (black dots) nitrates concentrations (mg/l) averaged between 0-50m (a), 50-100m (b), 100-150m (c), 150-200m (d) and (P-PO4 mg/l) averaged between 0-50m (a), 50-100m (b), 100-150m (c), 150-200m (d) mg/l) averaged between 0-50m (a), 50-100m (b), 100-150m (c), 150-200m (d) and (N-NH4 mg/l) averaged between 0-50m (a), 50-100m (b), 100-150m (c), 150-200m (d) 200-250m (e). and 200-250m (e). 200-250m (e). and 200-250m (e).

142 143 this.decreasing.trend.gets.stronger.as.the.water.becomes.closer. partial.circulations.occur,.most.noticeably.in.2021.and.2037,.as. the. modified. distribution. during. the. year..Air. temperature. was. Additionally,.it.is.very.important.to.observe.that.the.differential. to.the.sediment.where.biomass.degradation.takes.place...This. can.be.observed.by.the.sudden.increase.of.the.P.concentration. increased.0.0275°C/year,.so.becoming.in.2050.1.1°C.higher.with. warming.along.the.water.column.has.an.important.implication. phenomena.tend.to.create.a.gradient.between.the.upper.and. in.the.0-50.m.layer..Due.to.the.sudden.increase.of.superficial. respect.to.the.actual.one..Inflows.temperature.was.extrapolated. in. term. of. stability. of. the. water. column,. that. expresses. the. lower. concentration;. accordingly,. sudden. increase. of. nitrates. TP.concentration,.every.circulation.make.faster.the.outflow.of. from.these.modified.values.on.the.basis.of.the.correlation: resistance.of.a.lake.to.mechanical.mixing:. can. be. observed. in. the. deeper. waters. after. overturn. events.. phosphorous.from.the.lake,.so.contributing.to.the.improvement...... All.these.processes.are.very.well.reproduced.by.CAEDYM,.that. of.the.overall.phosphorous.concentration.that,.as.can.be.seen. correctly.captures.the.nitrates.evolution.over.time.and.depth.with. by.the.thick.lines,.has.a.more.limited.but.clear.reduction.after. the.exception.of.a.certain.overestimation.of.the.concentrations. the.circulation..Accordingly,.this.image.also.emphasises.the.role. reaching.an.increase.of.0.3-0.4°C.at.the.end.of.the.simulation. where.. . is. the. acceleration. due. to. gravity,.....the. surface. in.the.first.150m.. of.climate..The.slowness.of.the.process.is.clearly.also.related.to. g period.. area,...... and..ρ ..the.area.and.the.water.density.at.the.depth. ,.. the.significative.internal.load.input.present.in.the.lake,.that.is.a. Z z .the.maximum.depth.of.the.lake,.and... Results: 3 - nutrient reduction scenaria critical.point.that.must.be.assessed.in.future.researches. The.modified.boundary.conditions.induced.an.overall.warming. z0 of. the. water. column,. whose. temperature. increased. with. an. The. calibrated. model. has. proved. effective. in. reproducing. the. Results: 4- climate change scenaria average.rate.of.0.012°C/year,.the.most.part.(60-70%).ascribable. the.centre.of.volume..Fig. 10.7.clearly.shows.that.the.climate. historical. series. of. the. most. relevant. chemical. and. physical. to.air.temperature.variations..Fig. 10.6 shows.the.temperature. change.progressively.strengths.the.thermal.stability.of.the.lake,. parameters.. Accordingly. it. can. be. used. to. provide. some. As. widely. demonstrated. before,. the. quality. condition. of. lake. differences. between. the. simulations. s5. and. s4. in. the. 3. lake. especially. during. stratified. seasons. when. S. increases. up. to. indications. regarding. the. response. of. the. lake. phosphate. Iseo. are. strongly. correlated. with. its. hydrodynamic. behavior.. layers,.showing.that.in.the.last.5.years.of.simulation.(2045-2050). 15%.with.respect.to.s0.results..With.regard.to.the.winter.period,. concentration. (P-PO4. mg/l). to. two. different. scenaria. of. future. Accordingly,. when. considering. these. long-term. future. the. epilimnetic,. metalimnetic. and. ipolimnetic. temperature. had. it. is. possible. to. observe. a. general. increase. in. stability,. even. nutrient.load.reduction..This.shows.very.clearly.how.a.model.can. management. scenario,. it. could. be. important. to. investigate. an. average. increase. of. 0.79°C,. 0.62°C,. 0.37°C,. respectively.. though.much.weaker.with.respect.to.the.summer.one..This.is.of. be.used.for.lake.governance.purposes..In.this.simulations.only. the. potential. effects. of. a. climate. change. scenario. on. the. Both. increased. air. temperature. and. different. inflowing. regime. particular.relevance.for.lake.Iseo.whose.quality.conditions.are. the.nutrient.loads.have.been.changed.whilst.the.forcing.series. hydrodynamics.of.Iseo.Lake.. contribute. to. this. warming. effect.. On. one. side,. the. simulated. strongly.correlated.to.the.occurrence.of.whole.overturns. has.been.reproduced.on.the.basis.of.the.calibration.period,.to. The.potential.impact.of.climate.change.scenarios.on.the.runoff. air. temperature. increase. changes. the. amount. of. atmospheric. take.into.account.the.variability.of.the.real.time.series. regime.of.the.Oglio.watershed.has.been.investigated.by.Ranzi. radiation.incident.on.the.lake.surface.and.the.rates.of.exchange. The. first. case. makes. reference. to. the. limiting. situation. when. et.al..(2009),.who.have.used.for.the.2000–2099.period.the.PCM. of.both.latent.and.sensible.heat..The.consequent.variation.in.the. the. total. phosphorus. load. is. set. to. zero. and. is. shown. by. the. Global.Circulation.Models.with.the.IPCC.SRES.A2.scenario.as. vertical.heat.distribution.within.the.water.column.alters.indirectly. blue.. lines. in Figure 10.5...Here. the. concentration. is. averaged. a.meteorological.forcing..Their.study.shows.that.an.increase.of. the.rate.of.emission.of.long-wave.radiation.from.the.lake.to.the. over. two. layer:. 0-250. m. (thick. line). and. 0-50. m. (thin. line).. annual.precipitation.of.about.3%.and.a.temperature.increase.of. atmosphere. and. the. rates. of. exchange. of. latent. and. sensible. Accordingly,. the. first. line. provides. the. time. evolution. of. the. 1.1.°C.are.expected.for.the.2050.scenario..In.addition,.due.to.a. heat..On.the.other.side,.since.the.inflow-outflow.regime.induces. average.concentration.of.total.phosphorous.in.the.lake,.whilst. decrease.of.glaciated.areas.and.an.increase.of.tree-line.altitude,. an.heat.loss.for.the.lake.because.incoming.water.temperature. the.thin.line.shows.the.time.series.of.the.concentration.in.the. evapotranspiration. will. be. affected.. Using. the. WATFLOOD. is. usually. lower. that. the. outflowing. one,. both. the. simulated. most.superficial.layer,.where.phosphorous.is.effective.to.support. hydrological. model. the. Authors. came. to. the. conclusion. that. reduction.in.the.inflowing.discharge.and.the.increase.of.inflowing. algal.blooms..Although.unrealistic,.this.first.case.shows.the.best. a.decrease.of.about.7%.of.annual.runoff.volume.for.the.2050. temperatures.are.expected.to.give.rise.to.an.overall.warming.of. possible. reduction. that. one. could. imagine. to. obtain. for. Iseo. scenario.can.be.expected,.with.an.increase.of.spring.melt.and.a. the.lake.water. lake.and.it.is.interesting.that.even.in.this.case.an.average.TP. decrease.of.summer.and.autumn.runoff. concentration.comparable.to.the.one.measured.by.Bonomi.and. In. order. to. evaluate. the. consequences. of. these. changes. Gerletti.(1967).can.be.obtained.only.in.2040.. predicted. at. the. catchment. scale. on. the. thermal. structure. of. A. more. realistic. scenario. is. portrayed. by. red. lines,. that. are. Iseo. basin,. we. used. the. model. DYRESM. to. predict. the. lake. related.to.the.case.proposed.by.PRRA.as.a.final.target,.where.a. temperature.evolution.in.the.period.2011-2050.under.different. total.phosphorous.load.of.32.5.tP/year.is.assumed,.a.value.that. climatic. forgings.. As. a. reference. undisturbed. condition,. we. is.25%.higher.than.the.natural.load.to.the.lake..In.this.case.the. assumed.that.the.meteorological.conditions.observed.between. recovery. toward. natural. conditions. is. slower. and. in. 2040. the. 1995. to. 2010. would. cyclically. repeat. till. 2050.. The. results. of. final.average.concentration.will.be.about.23.μg/l. this. simulation. have. been. compared. with. the. ones. where. the. boundary. conditions. were. modified. according. to. the. climatic. These.results.show.the.slowness.of.the.lake.recovery.process. scenario. described. above.. More. precisely,. the. incoming. and.are.strongly.controlled.by.lake.recirculation..Actually,.has.one. discharges. where. modified. by. applying. monthly. coefficients,. can.see,.on.the.basis .of.the.adopted.forcing.time.series,.several. that.introduce.an.overall.7%.r eduction.of.the.annual.runoff.and.

Fig. 10.6> Difference DT between the temperature simulated in the climate change scenario and the reference undisturbed condition. Temperature values have been averaged in the (a) epilimnion (0-10m), (b) metalimnion (10-50m) and (c) hypolimnion (50m-bottom). A running average over 365 days has been superimposed to the daily values.

Fig. 10.5> Simulated phosphates concentrations (P-PO4 mg/l) under two different nutrient load scenaria. The blue lines makes reference to the limiting case when the total posphorus load is set to zero. The red line makes reference to a 50% reduction of the load entering from the affluents to the lakes. The thick lines are Fig. 10.7> Difference DS between the stability of the water column simulated in the climate change scenario and the reference undisturbed condition. A running the average concentration between 0-250m and the thin lines are average concentrations between 0-50m. average over 365 days has been superimposed to the daily values.

144 145 Han, B., J., Armengol, J.C.m García, M. Comerma, M., Roura, Perroud, M., S. Goyette, A. Martynov, M. Beniston, O. Anneville. Activity conclusions and needs for future research J., Dolz, and M., Straskraba. 2000..The.thermal.structure.of.Sau. 2009..Simulation.of.multi-annual.thermal.profiles.in.deep.Lake. reservoir.(NE:.Spain):.a.simulation.approach..Ecol..Modell..125:. Geneva:.a.one-dimensional.lake-model.intercomparison.study.. The. results. obtained. within. the. SILMAS. WP5.2. action. shows. nutrient.reduction.policies.will.be.jeopardized.by.this.process,.in. 109-122. Limnol..Oceanogr.,.55:.1574-1594. that.a.1D.model.is.effective.in.providing.very.useful.information. order.to.prevent.excessive.expectations.regarding.the.recovery. for.lake.governance.also.in.the.case.of.deep.and.complex.lakes. policy..At.the.same.time,.models.are.needed.to.understand.what. Henderson-Sellers, B., Engineering Limnology, Pitman Ranzi, R., Barontini S., Grossi G., Faggian P., Kouwen N., Maran as.lake.Iseo..The.model.reproduces.very.effectively.the.thermal. the.evolution.of.the.lake.will.be.if.we.shall.not.engage.ourselves. Publishing Limited, 1984. S. (2009)..Impact.of.climate.change.scenarioson.water.resources. evolution.and.reproduces.in.a.reasonably.accurate.way.the.time. in. this. recovery. effort.. Accordingly,. we. think. that. a. specific. management.in.the.Italian.Alps,.Proceedings.of.the.33rd.IAHR. Hornung, R. 2002..Numerical.modelling.of.stratification.in.Lake. series.of.the.most.relevant.physical.and.chemical.parameters.. research.directed.to.clarify.this.role.must.be.devised. Congress:. WaterEngineering. for. a. Sustainable. Environment,. Constance.with.the.1-D.hydrodynamic.model.DYRESM..Masters. Vancouver,. 9-14. Agosto. 2009,. 377-384,. ISBN978-94-90365-. The.quality.of.the.model.results.is.highly.dependent.on.the.quality. The.results.related.to.the.nutrient.load.reduction.also.show.the. Thesis,.University.of.Stuttgart. 01-1. of.the.input.data,.whose.amount.is.certainly.very.significative.. slowness.of.the.lake.recovery.process.so.that.it.is.evident.that. Huber, A., Ivey, G.N., Wake, G. and Oldham, C., 2008, Near- Actually,. one. of. the. fundamental. indication. that. comes. from. the. natural. condition. for. Iseo. Lake. cannot. be. matched. within. Reichert, P. 1994..AQUASIM.-.a.Tool.for.Simulation.and.Data- surface.wind-induced.mixing.in.a.mine.lake,.Journal.of.Hydraulic. the.application.of.a.modelling.approach.to.the.Iseo.lake.case. the.temporal.deadlines.pre-established.by.WFD..These.results. Analysis.of.Aquatic.Systems..-.Water.Science.and.Technology. Engineering,.134:.1464-1472. is. what. must. be. known. in. order. to. give. a. better. reliability. to. have. also. shown. the. role. of. circulation. on. nutrient. reduction,. 30:.21-30. so.that.the.lake.recovery.process.is.strictly.tied.to.the.climatic. Imberger, J., and J.C., Patterson. 1981..A.Dynamic.Reservoir. a. modelling. effort.. The. presence. of. our. monitoring. station. on. Premazzi G., 1998.. Il. lago. d’Iseo,. condizioni. ambientali. e. Simulation.Model.–DYRESM5..In.Fischer,.H.B..[Ed.],.Transport. the. lake. surface. has. made. this. research. possible. because. it. evolution,.that,.as.the.model.climatic.scenaria.have.shown,.is. prospettive.di.risanamento. provided.the.vital.data.for.the.thermal.model.calibration..At.the. in. itself. going. to. increase. the. lake. stability.. In. this. direction. a. models.for.inland.and.coastal.waters,.Academic.Press,.NewYork,. same. time. it. must. be. emphasised. that. the. nutrient. load. from. fundamental. research. that. has. not. been. considered. in. this. 310–361. Rinke, K., Eder, M., Peeters, F., Kuemmerlin, R., Gal, G., and Rothhaupt, K.,.Simulating.phytoplankton.community.dynamics. the.affluent.to.the.lake.seems.poorly.sampled.and.a.real.time. SILMAS.activity.but.that.could.strongly.modify.the.model.results. Imberger, J. 2004. A.lake.diagnostic.system.for.managing.lakes. in. Lake. Constance. with. a. coupled. hydrodynamic-ecological. monitoring. activity. should. be. organised. in. order. to. clarify. the. is. the. progressive. evolution. of. a. density. gradient. within. the. and.reservoirs..Water.Resources.Impact,.6:.7-10. role. of. the. actual. input. from. Valle. Camonica.. In. this. direction. deepest.part.of.the.lake..It.is.very.likely.that.the.density.of.the. model,. Verhandlungen. der. Internationalen. Vereinigung. für. a.primary.effort.must.be.accomplished.to.measure.in.a .regular. deep. water. is. increasing. due. to. the. re-dissolution. of. calcium. Imberger, J., and J.C., Patterson. 1990. Physical. Limnology.. Theoretische.und.Angewandte.Limnologie.30.(2009),.Part.5,.pp.. way.the.nutrient.flux.entering.into.the.lake,.monitoring.the.two. carbonate. forming. in. the. epilimnion. and. sedimenting. towards. Adv..Appl..Mech.,.27:.303–475. 701.704. main. incoming. tributaries. (Oglio. river. and. Canale. Industriale).. the. bottom.. The. increased. density. could. in. perspective. lead. Imboden, D. M. 1990..Mixing.and.transport.in.lakes:.Mechanisms. Reynolds, C. 2006. Ecology. of. phytoplankton.. Cambridge. Another.priority.regards.testing.the.actual.effectiveness.of.flood. to. conditions. of. meromixis. in. the. lake.. This. possibility. is. also. and. ecological. relevance.. In. M.. Tilzer. and. C.. Serruya,. [eds.],. University.Press,.Cambridge. overflow.weirs.built.along.the.already.existing.collecting.sewers.. supported.by.the.fact.that.between.February.1998.to.May.2000,. Large.lakes:.Ecological.structure.and.function,.Springer,.47-80.. the. other. deep. lakes. Maggiore,. Como. and. Garda,. underwent. Rueda, F., E., Moreno-Ostos, and J., Armengol. 2006.. The. At. the. same. time,. the. lake. sediments. behaviour. in. anoxic. a.complete.overturn.while.in.Lake.Iseo.the.mixing.of.the.water. Imerito, A. 2007..Dynamic.Reservoir.Simulation.Model.DYRESM. residence.time.of.river.water.in.reservoirs,.Ecol..Modell.,.191:. conditions. is. unknown.. A. study. must. be. accomplished. to. column.was.extremely.limited.. v4.. Science. Manual.. Centre. for. Water. Research.. University. of. 260-274.. understand. to. what. extent. sediments. are. going. to. contribute. Western.Australia. to. the. internal. load. of. this. lake.. This. is. a. vital. information. In. conclusion,. the. modelling. approach. proved. a. complex. Salmaso, N., 2005..Effects.of.climatic.fluctuations.and.vertical. because. in. perspective. the. internal. load. could. exceed. the. but. invaluable. tool. for. taking. rational. decision. regarding. lake. Jacquet, S., Briand, J.F., Leboulanger, C., Avois-Jacquet, C., mixing.on.the.interannual.trophic.variability.of.Lake.Garda,.Italy.. load.entering.from.the.river..The.model.clearly.shows.that.the. governance. and. also. for. understanding. the. potential. role. of. Oberhaus, L., Tassin, B., Vinçon- Leite, B., Paolini, G., Druart, Limnol..Oceanogr..50:.553-565. J.-C., Anneville, O. & Humbert, J.F. 2005..The.proliferation.of. rise. of. phosphorous. content. at. the. bottom. that. follows. after. uncertain.future.climatic.variations..It.proved.able.of.representing. Shatwell, T., J. Köhler, and A. Nicklisch. 2008. Warming. the. toxic. cyanobacterium. Planktothrix. rubescens. following. full. circulation. can. be. explained. only. in. terms. of. a. flux. from. in. a. rationale. way. the. leading. environmental. processes. so. promotes.cold-adapted.phytoplankton.in.temperate.lakes.and. restoration.of.the.largest.natural.French.lake.(Lac.du.Bourget).. the.sediments.that.is.unmeasured.and.poorly.modelled.within. providing.the.direction.along.which.to.move.in.order.to.get.the. opens.a.loophole.for.Oscillatoriales.in.spring..Glob..Change.Biol.. Harmful.Algae,.4.:.651-672. CAEDYM..However,.it.must.be.know.in.advance.to.what.extent. desired.final.target... 14:.1–7. Livingstone, D.M., 1997. An. example. of. the. simultaneous. Smith K. 1981. The. prediction. of. river. water. temperatures.. occurrence.of.climate-driven.‘‘sawtooth’’.deep-water.warming/ Hydrological.Sciences.Bulletin.26:.19–32. References cooling.episodes.in.several.Swiss.lakes..Verh..Int..Ver..Limnol.. 26:.822–828. Tanentzap, A.J., D.P. Hamilton, and N.D., Yan. 2007. Calibrating. the. Dynamic. Reservoir. Simulation. Model. (DYRESM). and. Ambrosetti, W., and L., Barbanti. 2005.. Evolution. towards. De Cesare, G., J. L. Boilat, and J. Schleiss. 2006..Circulation. Livingstone, D.M. 2003..Impact.of.secular.climate.change.on. filling. required. data. gaps. for. one-dimensional. thermal. profile. meromixis.of.Lake.Iseo.(Northern.Italy).as.revealed.by.its.stability. in. stratified. lakes. due. to. flood-induced. turbidity. currents.. the.thermal.structure.of.a.large.temperate.central.European.lake.. predictions.in.a.boreal.lake,.Limnol..Oceanogr..Methods,.5:.484- trend..J..Limnol.,.64:.1-11.. J.. Env.. Eng.. 132:. 1508–1517,. doi:10.1061/(ASCE)0733-. Clim..Change.57:.205-225. 9372(2006)132:11(1508).. 494. Antenucci, J., and A., Imerito. 2003.. The. CWR. Dynamic. MacKay, M. D., P.J., Neale, C. D., Arp, L. N., De Senerpont Tanentzap, A.J., N.D., Yan, B., Keller, R., Girard, J., Heneberry, Reservoir.Simulation.Model.DYRESM..User.Manual..Centre.for. DiToro,.D..M.,.and.Fitzpatrick,.J..J. .«Chesapeake.Bay.sediment. Domis, X., Fang, G., Gal, K. D., Jöhnk, G., Kirillin, J. D., J.M., Gunn, D.P., Hamilton, P.A., Taylor. 2008.. Cooling. lakes. Water.Research..University.of.Western.Australia. flux.model,».Contract.Report Lenters, E., Litchman, S., MacIntyre, P., Marsh, J., Melack, while.the.world.warms:.effects.of.forest.regrowth.and.increased. W. M., Mooij, F., Peeters, A., Quesada, S. G., Schladow, M., Bartholow, J. M. 1989..Stream.temperature.investigations:.field. EL-93-2, U .S. A m y E ngineer Waterways Experiment Station, dissolved.organic.matter.on.the.thermal.regime.of.a.temperate,. Schmid, C., Spence, and , S. L., Stokes. 2009..Modeling.lakes. and.analytic.methods..In.stream.Flow.Information.Paper.No..13.. Vicksburg, MS, 1993. urban.lake..Limnol..Oceanogr..53:.404-410. U.S..Fish.and.Wildlife.Service.Biological.Report.89:.139. and. reservoirs. in. the. climate. system.. Limnol.. Oceanogr.,. 54:. Gal, G., J., Imberger, T., Zohary, J., Anttenucci, A., Ayal, and 2315-2329. Trolle, D., D.P., Hamilton, C.A., Pilditch, I.C., Duggan, and E., Boehrer, B., and M. Schultze. 2008. Stratification.of.lakes..Rev.. T., Rosenberg. 2003..Simulating.the.thermal.dynamics.of.Lake. Jeppesen. 2011,. Predicting. the. effects. of. climate. change. on. Matzinger, A., M., Schmid, E., Veljanoska-Sarafiloska, S., Geophys.,.46:.1-27. Kinneret..Ecol..Modell..162:.69-86. trophic.status.of.three.morphologically.varying.lakes:.Implications. Patceva, D., Guseska, B., Wagner, B., Muller, M., Sturm, and for.lake.restoration.and.management,.Environmental.Modelling. Bonomi, G. & M. Gerletti. 1967..Il.Lago.d’Iseo:.primo.quadro. Garibaldi, L., M.C. Brizzio, V. Mezzanotte, A. Varall, and R. A.,Wüest. 2007.. Eutrophication. of. ancient. Lake. Ohrid:. global. and.Software,.26:.354-370. limnologico. generale. (termica,. chimica,. plancton. e. benton. Mosello. 1997..Evoluzione.idrochimica.e.trofica.del.Lago.d’Iseo.. warming. amplifies. detrimental. effects. of. increased. nutrient. profondo)..Mem..Ist..Ital..Idrobiol.,.22:.149-175. Documenta.Ist..ital..Idrobiol.,.61:.135-151. inputs..Limnol..and.Oceanogr.,.52:.338–353. Valerio, G., M., Pilotti., C.L., Marti, and J. Imberger. 2012.. The.structure.of.basin.scale.internal.waves.in.a.stratified.lake. Copetti, D., G. Tartari, G. Morabito, A. Oggioni, E. Legnani and Garibaldi, L., V., Mezzanotte, M.C., Brizzio, M., Rogora, and R., Patterson, J.C., P.F., Hamblin, and J., Imberger. 1984. in.response.to.lake.bathymetry.and.wind .spatial.and.temporal. J. Imberger. 2006..A.Biogeochemical.model.of.the.Lake.Pusiano. Mosello. 1999..The.trophic.evolution.of.Lake.Iseo.as.related.to. Classification. and. dynamic. simulation. of. the. vertical. density. distribution:.Lake.Iseo,.Italy..Limnol..Oceanogr..In.press.. (North. Italy). and. its. use. in. the. predictability. of. phytoplankton. its.holomixis..J..Limnol..62:.10-19. structure.of.lakes,.Limnol..and.Oceanogr..29:.845-861. blooms:. first. preliminary. results.. Journal. of. Limnology... Yeates, P.S., and J., Imberger. 2003..Pseudo.two-dimensional. Peeters, F., D. M. Livingstone, G. H. Goudsmit, R. Kipfer and 65:.59-64. simulations.of.internal.and.boundary.fluxes.in.stratified.lakes.and. R. Forster. 2002. Modeling. 50. years. of. historical. temperature. reservoirs,. International. Journal. of. River. Basin. Management,.. profiles.in.a.large.central.European.lake..Limnol..Oceanogr.,.47:. 1:.297-31. 146 186-197. 147 Situation at the outset

Alpine. Space. in. terms. of. a. reservoir. of. water. for. Europe. In.the.light.of.climate.change,.the.modification.of.laws.concerning. shoulders.a.particularly.heavy.responsibility.with.regard.to.the. water.can.deepen.already.existing.conflicts.of.interest..Increased. management.of.water.in.all.its.forms.. needs. for. hydraulic. energy. for. the. production. of. renewable. energies,. water. for. industry,. agriculture. and. tourism. as. well. Water.as.a.renewable.raw.material.is.of.crucial.importance.to. as. increased. use. of. groundwater. tables. for. the. production. of. Alpine.Space..It.is.a.vital.resource.and.an.economic.factor..But. thermic.energy.represent.many.additional.challenges. water.is.equally.a.source.of.risk.for.Alpine.Space..In.practice,.the. use.and.the.protection.of.water.as.well.as.the.protection.against. A. large. number. of. pipes. and. installations. designed. to. supply. water.often.generates.conflict.. drinking. water. or. evacuate. waste. water. are. antiquated.. But. whoever. says. replace. the. entire. infrastructure. also. says. the. investment.needed.will.be.considerable.

Advantages of an inter-regional analysis

•..The.functional.interactions.between.the.regions.with.regard.to. •..Exchanges. of. information. and. experiences. contribute. to. water.use,.water.supply,.evacuation.of.water.from.urban.areas. a. more. efficient. use. of. financial. resources. when. common. and. damage. prevention. as. well. as.the. resources. of. water. European.objectives.are.undertaken. from.the.Alps,.the.importance.of.which.is.paramount.to.the. whole.of.Europe,.necessitate.strict.cooperation.between.the. ANNEXE 5: macro-regional regions. concerned. and. a. protection. of. common. interests. in. strategy for alpine space roadmap the.European.context.. of the alpine regions Sub-objectives •..Preserve.the.sustainability.of.water.resources.in.the.Alps.by. •..Establish.modern.and.efficient.water.infrastructures.financed. strengthening. the. rights. public. authorities. have. over. water. by.agreement.with.a.view.to.maintaining.and.conserving.the. resources. and. make. it. possible. for. the. Alpine. regions. to. be. value.of.the.water.infrastructure... more.autonomous.in.the.way.in.which.they.deal.responsibly. •..Optimise.damage.prevention.and.draw.up.emergency.plans. with.their.own.water.resources. inter-regionally.; The Alps - capacities for economic •..Oversee.long.term.management.of.water.resources.with.the. •..Raise. awareness. amongst. the. Alpine. population. of. the. aim. of. promoting. regional. development. and. improving. the. importance. of. the. water. resource. by. means. of. a. regional. innovation in a pristine environment quality.of.life.and.the.quality.of.the.surroundings.in.the.Alpine. policy.using.information.campaigns.and.inter-regional.training.. regions,. develop. common. strategies. with. regard. to. water. in. order.to.coordinate.the.actions.of.the.diverse.range.of.parties. Water and energy, environment and climate with.an.interest.in.water.resources.. •..Encourage.the.use.of.hydraulic.energy.and.the.production.of. energy.suited.to.needs,.by.e.g..common.concepts.of.use.and. Protect water as a vital resource and common.maps.of.water.courses.and.rivers.. oversee long term coordinated management of it •..Agree. on. concepts. for. the. following. thematic. areas:. the. optimisation.of.the.supply.and.use.of .non-drinkable.water.for. tourism,. agriculture. and. industry;. a. supply. of. drinking. water. qualitatively.produced,.reliable.and.low.cost.for.the.whole.of. the.area;.the.optimisation.of.the.use.of.the.groundwater.tables. as.a.source.of.drinking.water,.non-drinkable.water.and.energy;. clean.water.courses.and.rivers.and.water.cycles.as.natural.as. Author: possible; xxxxxxxxxx

148 149 150 151 Conception et réalisation nov. 2012