C2.1 Student Booklet.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

C2.1 Student Booklet.Pdf Student Booklet C2.1 Acids and Alkalis Reactions rearrange matter Chemical substances are made up of different types of elements, compounds and mixtures, each of which have different properties and uses. Different substances can be made in chemical reactions but the atoms themselves cannot be created or destroyed, only rearranged. There are many different types of chemical reaction, such as synthesis, decomposition and combustion reactions. In this unit you will be learning about acids and alkalis and how to identify them using different indicators. You will also be learning about reactions between acids and alkalis, particularly neutralisation reactions. Atoms are the smallest unit of matter. Elements are made up of one type of atom. Compounds are two or more elements chemically bonded together. Mixtures are two or more elements or compounds not chemically bonded together. Solids, liquids and gases can be represented using the particle model. 1. Which statement describes the motion of the particles in a slab of concrete? £ A. They move when the concrete gets heated £ B. They can vibrate £ C. They do not move at all 2. Ice feels solid but water feels runny. Which idea explains this? £ A. Particles in ice are linked more tightly together £ B. Particles in ice are harder than particles in water £ C. Ice is solid particles but water is liquid particles 3. After a hot shower, water vapour from the shower condenses on the glass. Why? £ A. Particles in the water vapour have lost energy £ B. Particles in the water vapour have gained energy £ C. Glass particles in the shower have lost energy 4. Which of the following are all examples of elements. £ A .Oxygen, hydrogen, potassium £ B. Water, carbon dioxide, helium £ C. Protein, oxygen, water 5. Elements are represented by symbols. What is the symbol for sodium? £ A. NA £ B. Na £ C. So 6. The periodic Table is organised into groups and periods. Using your Periodic Table which group and period is Lithium in? £ A. Group 1, Period 2 £ B. Group 2, Period 1 £ C. Group 1, Period 1 7. Which of these is an observation showing that a chemical reaction has taken place? £ A. There was a change in state £ B. There was a colour change £ C. There was a change in texture from hard to runny 8. Which best explains the difference between an element and a compound? £ A. Elements are made up of one type of atom, compounds are 2 or more elements mixed together £ B. Elements are made up of one type of atom, compounds are 2 or more elements chemically bonded together £ C. Compounds are made up of one type of atom, elements are 2 or more compounds mixed together 9. The formula for nitric acid is HNO3. How many atoms of each element are present? £ A. 1 hydrogen atom, 1 nitrogen atom and 3 oxygen atoms £ B. 3 hydrogen atoms, 3 nitrogen atoms and 3 oxygen atoms £ C. 1 hydrogen atom and 3 nitrate atoms 10. Sugar is mixed into a cup of tea. What is the solute and what is the solvent? £ A. Sugar is the solvent, tea is the solute £ B. Sugar is the solute, tea is the solvent £ C. Water is the solute, tea is the solvent Question Answer What to do next (Fix-It task) 1 B If you answered A or C you need to review the properties of solids. Draw a particle diagram to show the arrangement of particles in a solid and describe the movement of particles. 2 A If you answered B or C you need to review the differences between solids and liquids. Explain the differences between the arrangement of particles in ice and water. 3 A If you answered B or C you need to review the process of condensation. Explain what happens during condensation by referring to the energy of particles and state the name of the opposite process. 4 A If you answered B or C you need to review the difference between elements and compounds. Explain why water and carbon dioxide are not elements. 5 B If you answered A or C you need to review how to use the Periodic Table. Find the symbols for: tin, iron, potassium and lead. 6 A If you answered B or C you need to review the meaning of groups and periods in the Periodic Table. Identify the group and period of oxygen, potassium and chlorine. 7 B If you answered A or B you need to review the differences between a physical and a chemical change. Describe the observations you may see if a chemical change (reaction) has taken place. 8 B If you answered A or C you need to review the difference between elements and compounds. State the definition and an example of each. 9 A If you answered B or C you need to review how to use chemical formulae. Determine how many of each atom are in sulfuric acid (H2SO4), calcium carbonate (CaCO3) and phosphoric acid (H3PO4). 10 B If you answered A or C you need to review the definitions of solute and solvent. State the definitions of solute, solvent, solution and saturated and give an example of a solute being added to a solvent. Great job! Now you’re ready to start learning about acids and alkalis! C2.1 Acids and Alkalis Knowledge Organiser The pH Scale 27. Acids will turn universal indicator red or orange. 1. Substances can be classified into acidic, alkaline and neutral solutions 28. Neutral solutions will turn universal indicator green. 2. The pH scale, from 0 to 14, is a measure of the acidity or alkalinity of a solution 29. Alkaline solutions will turn universal indicator blue or purple. 3. The pH scale can be measured using litmus, universal indicator or a pH probe. 4. A solution with pH 7 is neutral. 5. Aqueous solutions of acids have pH values of less than 7 6. Aqueous solutions of alkalis have pH values greater than 7 7. An aqueous solution is any solution in which the solvent is water Neutralisation 30. In neutralisation reactions an acid reacts with an alkali to form a salt and water. 8. Strong acids have a pH from 0 to 3. 31. Neutralisation forms a neutral (pH7) 9. Weak acids have a pH of 4 to 6. solution. 10. Strong alkalis have a pH from 11 to 14. 32. A salt is a metal compound made from acid. 11. Weak alkalis have a pH from 8 to 10. 33. A salt is formed when the hydrogen in an 12. Strong acids and strong alkalis are both acid is replaced by a metal. corrosive. 13. Weak acids and alkalis are less corrosive. 14. Many substances we use every day are acidic or alkaline. 15. Lemon juice is acidic. 16. Bleach (and many other cleaning agents) are alkaline. C2.1 Acids and Alkalis Knowledge Organiser Indicators Metal Carbonates 17. Indicators will show the pH of the 34. Metal carbonates react with acids in substance by a colour change. neutralisation reactions to form a salt, water and carbon dioxide 18. Litmus indicator can show if a solution is acidic or alkaline. 35. In an open system these products can escape, and the system is neutral 36. In a closed system carbon dioxide reacts with water to form carbonic acid, which makes the system acidic 19. Litmus indicator is red in an acidic solution. 20. Litmus indicator is blue in an alkaline solution. 21. Litmus indicator remains the same colour in a neutral solution. 22. If using litmus paper, blue litmus paper turns red in an acidic solution. 23. Red litmus paper turns blue in an alkaline solution. 24. To remember this, it might be helpful to memorise the rhyme Blue to red, acid is said Red to blue, acid untrue Acid Alkali 25. Universal indicator is sometimes called UI 26. Universal indicator can be used as a liquid solution or as paper strips to dip into a solution. Keyword Definition pH Acid Alkali Acidic Alkaline Solution Universal indicator Litmus paper Salts Chloride Sulphate Nitrate Citrate Carbonate Neutralisation Evaporation Crystallisation Acidification Limewater The pH Scale Starter 1. What does this symbol tell you? ______________________________________________ 2. What does this mean? _______________________________________________________ Foundation: Where might you find this hazard symbol in the lab? _______________________________________________________ Stretch: What does this symbol have to do with the title of today’s lesson? _______________________________________________________ _______________________________________________________ Substances can be classified into acidic, alkaline and neutral solutions, according to the pH scale. The pH scale ranges from 0 to 14, and is a measure of the acidity or alkalinity of a solution. The pH scale can be measured using litmus, universal indicator or a pH probe. Note: acids and alkalis are not actually these colours – the colour scale shows the colour that universal indicator turns when a few drops of it are added to an acidic or alkaline solution. Note: an aqueous solution is any solution in which water is the solvent (the liquid the solute is dissolved in). A solution with pH 7 is neutral. Aqueous solutions of acids have Aqueous solutions of alkalis have pH values of less than 7. pH values greater than 7. 1. Determine if the following statements are true or false: a. The pH scale ranges from 1 to 14 b. pH 1-7 indicates an acidic solution c. pH 7 indicates that the solution is both an acid and alkali d. Three ways to measure the pH of a solution are; using litmus indicator, universal indicator or a pH probe 2. Colour the sections to represent each pH, and then use the boxes at the top of the pH scale to label the pH scale.
Recommended publications
  • 1 Experiment 6 Determination of the Equilibrium Constant For
    Experiment 6 Determination of the Equilibrium Constant for Bromocresol Green Reading assignment: Chang, Chemistry 10th edition, Chapter 15: Acids and Bases, sections 1-5. Goals To determine the acid dissociation constant (Ka) for bromocresol green (BCG), an acid-base indicator. Discussion Acid-base indicators are often used to demonstrate the end-point of an acid-base reaction. Examples include phenolphthalein and the mixture of indicators used in universal indicator solution. Acid-base indicators are + – weak acids that dissociate into a hydronium ion (H3O ) and a conjugate base anion (In ). This dissociation can be represented through the following equation and equilibrium expression: +- +- [H3 O ][In ] HIn (aq) + H23 O (l) H O (aq) + In (aq) Ka = weak acidhydronium conjugatebase [HIn] indicatorion indicator In order for a compound to be a useful indicator, the acidic form (HIn) and the basic form (In–) of the indicator should differ in color. Since equilibrium in acidic solution favors the formation of HIn, this species is called the acidic form of the indicator. Likewise, the In– form is called the basic form since it is favored in basic solutions. An equilibrium mixture of the indicator will be colored according to the relative concentration of each form of the indicator. The position of the equilibrium and, therefore, the relative + + concentration of the two forms of the indicator will depend on the H3O concentration, [H3O ] or in shorthand notation [H+]. The absorption curve of an indicator at different pH values can be studied to determine the equilibrium constant of the indicator. In this experiment, we will determine the equilibrium constant of bromocresol green (BCG).
    [Show full text]
  • (A) Fill in the Blanks : (1) 10% Nacl Is Known As Brine. 1 (2) Very Fine Particles Mainly Scatter Blue Light
    MT 2017 ___ ___ 1100 MT - SCIENCE & TECHNOLOGY - I (72) - SEMI PRELIM - I : PAPER - 3 Time : 2 Hours Semi Prelim - I : Model Answer Paper Max. Marks : 40 SECTION - A A.1. (A) Fill in the blanks : (1) 10% NaCl is known as brine. 1 (2) Very fine particles mainly scatter blue light. 1 (3) The phenomenon of change in the direction of light when it passes 1 from one transparent medium to another is called refraction. A.1. (B) True or False : (1) False : Salts of strong acid and weak base are acidic in nature. 1 (2) True 1 A.2. Rewrite the following statements by selecting the correct alternative: (1) (d) Lichen 1 (2) (b) Ferrous chloride 1 (3) (c) passes without bending 1 (4) (a) 50º 1 (5) (a) increases 1 A.3. Answer the following in short : (Any 5) (1) Washing soda Baking soda 2 (i) It is sodium carbonate. (i) It is sodium bicarbonate or sodium hydrogen carbonate. (ii) It's molecular formula is (ii) It's molecular formula is . Na2CO3 10H2O NaHCO3. (iii) It is a crystalline substance. (iii) It is an amorphous powder. (iv) It is used in manufacturing (iv) It is used in bakery for soaps and detergent. making cakes and bread lighter and spongy. .. 2 .. PAPER 3 (2) (i) Baking soda is chemically known as sodium bicarbonate. 2 (ii) On heating, sodium bicarbonate decomposes to form sodium carbonate, water and carbon dioxide (CO2). (iii) The carbon dioxide produced is released due to which the cake becomes soft and spongy. (iv) Hence, baking soda is used to make cake spongy and soft.
    [Show full text]
  • LESSON 3 WHAT IS Ph? LESSON 3 : WHAT IS Ph?
    ENVIRONMENTAL CHEMISTRY AND OCEAN ACIDIFICATION LESSON 3 WHAT IS pH? LESSON 3 : WHAT IS pH? LESSON OBJECTIVES We are learning about how acids and alkalis are identified using the pH scale. 1 2 3 4 IDENTIFY DETERMINE EXPLAIN ANALYZE what the pH the pH of some various ways to the pH of water scale is and the everyday identify the pH samples using purpose for it substances of substances universal indicator pa IN PARTNERSHIP WITH SPONSORED BY LESSON 3 : WHAT IS pH? KEY VOCABULARY Acid A substance with a pH of less than 7 Alkali A substance with a pH of more than 7 (A soluble base) Base A substance which can neutralize an acid Litmus test A test for acidity or alkalinity using litmus Neutral Solution A substance with the pH of 7 pH A scale (0 -14) which measures the acidity or alkalinity of a solution. A solution or paper that changes color gradually over a range of pH. Universal indicator This is used to test the acidity and alkalinity of a solution. IN PARTNERSHIP WITH SPONSORED BY 1 LESSON 3 : WHAT IS pH? STARTER Take a look at these four images. Think about what substances are shown in each image. How would you categorize these images into two groups? Why did you choose to organize them this way? Explain. IN PARTNERSHIP WITH SPONSORED BY 1 LESSON 3 : WHAT IS pH? STARTER Scientists group these substances into acids and alkalis. Acids Alkalis Acids are corrosive substances. Alkalis are also corrosive substances. They are sour to taste. They feel very slippery when touched.
    [Show full text]
  • Intermediate Answer Key Chapter 21: Acids and Bases
    CK-12 Chemistry Concepts - Intermediate Answer Key Chapter 21: Acids and Bases 21.1 Properties of Acids Practice Questions Watch the video at the link below and answer the following questions: http://www.youtube.com/watch?v=uahCEZf831c 1. Which of the four solutions are acids? 2. Stop the video at 0:30 minutes and predict conductivities. 3. What color did the acids turn when universal indicator was added? Answers 1. HCl and CH3COOH (acetic acid) 2. The acids and NaCl are ionized and will conduct electricity. 3. Pink Review Questions 1. Are all acids electrolytes in water? 2. What color does blue litmus turn in the presence of an acid? 3. What does the reaction of an acid and a base produce? Answers 1. Yes. 2. Red. 3. Water and a salt. 21.2 Properties of Bases Practice Questions Read the material at the site below and answer the following questions: 1 https://sites.google.com/site/sodiumhydroxsite/Acidsandbasesbasics/chemical- properties-of-bases 1. What does the reaction between an acid and a base produce? 2. What is this reaction called? 3. What does the reaction of a base with an ammonium salt form? Answers 1. A salt and water. 2. Neutralization. 3. A metal salt, ammonia, and water. Review Questions 1. Are bases electrolytes? 2. What color does a base turn phenolphthalein? 3. Do bases react with metals the same way that acids do? Answers 1. Yes, some are strong electrolytes and some are weak. 2. Red. 3. No. 21.3 Arrhenius Acids Practice Questions Read the material at the link below and answer the following questions: http://dwb4.unl.edu/Chem/CHEM869R/CHEM869RLinks/www.nidlink.com/7Ejfromm/arr henius.htm 1.
    [Show full text]
  • Universal Indicator, Bogens in Alcohol Safety Data Sheet According to Federal Register / Vol
    Universal Indicator, Bogens in Alcohol Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 04/25/2014 Revision date: 05/15/2018 Supersedes: 04/25/2014 Version: 1.1 SECTION 1: Identification 1.1. Identification Product form : Mixtures Product name : Universal Indicator, Bogens in Alcohol Product code : LC26500 1.2. Recommended use and restrictions on use Use of the substance/mixture : For laboratory and manufacturing use only. Recommended use : Laboratory chemicals Restrictions on use : Not for food, drug or household use 1.3. Supplier LabChem Inc Jackson's Pointe Commerce Park Building 1000, 1010 Jackson's Pointe Court Zelienople, PA 16063 - USA T 412-826-5230 - F 724-473-0647 [email protected] - www.labchem.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 or +1-703-741-5970 SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Flammable liquids H225 Highly flammable liquid and vapour Category 2 Serious eye damage/eye H319 Causes serious eye irritation irritation Category 2A Specific target organ H336 May cause drowsiness or dizziness toxicity (single exposure) Category 3 Full text of H statements : see section 16 2.2. GHS Label elements, including precautionary statements GHS-US labeling Hazard pictograms (GHS-US) : GHS02 GHS07 Signal word (GHS-US) : Danger Hazard statements (GHS-US) : H225 - Highly flammable liquid and vapour H319 - Causes serious eye irritation H336 - May cause drowsiness or dizziness Precautionary statements (GHS-US) : P210 - Keep away from heat, hot surfaces, open flames, sparks.
    [Show full text]
  • Summary Sheets 7F Hazards ● a Hazard Is Something That Can Cause Harm
    Summary Sheets 7F Hazards ● A hazard is something that can cause harm. ● Chemicals are labelled with hazard symbols to warn people of potential dangers. ● Some common hazard symbols are: Risk WS ● A risk is the chance that a hazard will actually cause harm. ● Risks can be reduced by taking precautions. E.g. wearing eye protection to prevent chemicals splashing in your eyes or tying long hair back to prevent it catching fire in a Bunsen flame. Acids ● Common substances at home that contain acids include: citric acid, vinegar, fizzy drinks and car battery acid. ● Acids have a sour taste. ● Most concentrated acids are corrosive. If they are added to water they become more dilute. Dilute acids are less hazardous. Many dilute acids are irritant. Alkalis ● Common substances at home that contain alkalis include: toothpaste, drain cleaner, oven cleaner. ● Many alkalis are metal hydroxide solutions. ● An alkali can be described as a soluble base. A base is any substance, soluble or insoluble, that neutralises an acid forming a salt and water. Indicators ● Indicators change colour and can be used to detect acids, alkalis and neutral solutions. ● Litmus is a common indicator. Solution Colour of litmus acid red neutral purple alkali blue Page 1 of 3 © Pearson Education Ltd 2014. Copying permitted for purchasing institution only. This material is not copyright free. 14 Summary Sheets 7F pH scale ● A numbered scale from 1 to 14. ● Acids have a pH less than 7. The lower the pH, the more acidic the substance is. The lower the pH, the more hazardous the acid is.
    [Show full text]
  • Universal Indicator Solution
    Safety Data Sheet Bogen Universal Indicator Solution Section 1 Product Description Product Name: Bogen Universal Indicator Solution Recommended Use: Science education applications Synonyms: Universal pH Indicator Distributor: Carolina Biological Supply Company 2700 York Road, Burlington, NC 27215 1-800-227-1150 Chemical Information: 800-227-1150 (8am-5pm (ET) M-F) Chemtrec: 800-424-9300 (Transportation Spill Response 24 hours) Section 2 Hazard Identification Classification of the chemical in accordance with paragraph (d) of §1910.1200; DANGER Flammable liquid and vapor. May cause cancer. Causes damage to organs. Toxic to aquatic life. GHS Classification: Carcinogenicity Category 1A, Specific Target Organ Systemic Toxicity (STOT) - Single Exposure Category 1, Hazardous to the aquatic environment - Acute Category 2, Flammable Liquid Category 3 Other Safety Precautions: IF exposed: Call a POISON CENTER or doctor/physician. IF exposed or concerned: Get medical advice/attention. Section 3 Composition / Information on Ingredients Chemical Name CAS # % Water 7732-18-5 52.36 Ethyl alcohol 64-17-5 42.95 Isopropyl Alcohol 67-63-0 2.4 Methanol 67-56-1 2.15 Phenolphthalein 77-09-8 0.06 Bromothymol Blue, Sodium Salt 34722-90-2 0.06 Methyl Red 493-52-7 0.02 Section 4 First Aid Measures Emergency and First Aid Procedures Inhalation: In case of accident by inhalation: remove casualty to fresh air and keep at rest. Eyes: In case of contact with eyes, rinse immediately with plenty of water and seek medical advice. Skin Contact: IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower. Ingestion: If swallowed, do not induce vomiting: seek medical advice immediately and show this container or label.
    [Show full text]
  • Acids and Bases the Voyage of the Proton
    UNIT 10 Acids and Bases The Voyage of the Proton Unit Overview This unit introduces the key concepts of acids and bases. The acidity of a solution is a measure- ment of the concentration of hydrogen ions it contains, and the acidity has a great impact on the properties of the solution. Pure water contains a certain concentration of hydrogen ions. Dissolving acids in water raises the concentration of hydrogen ions, while dissolving bases in water lowers the concentration. Acidity is measured in pH units, and the acidity of a solution depends both on the concentration of acid dissolved and the strength (degree of dissociation) of the acid. Chemists use indicators to measure pH as well as titration to determine the concentration and strength of an acid. Learning Objectives and Applicable Standards Participants should be able to: 1. Explain the dissociation of water molecules into hydronium and hydroxide ions and explain the equilibrium constant (K ) for that reaction. w 2. Define acids and bases using the Arrhenius and Brønsted-Lowry (conjugate acid/base pairs) definitions of acids and bases. 3. Explain acid dissociation constants (K ). Define the pK of an acid and understand its a a relationship to the acid’s strength. 4. Write the chemical equation for neutralization reactions. 5. Calculate the pH of a solution. 6. Explain the titration curves of monoprotic acids. 7. Define acid/base indicators and explain their uses. 8. Definebuffer and explain how one works. Key Concepts and People 1. Acids and Bases: An Arrhenius acid is defined as a molecule that when dissolved in water, increases the concentration of H+ ions.
    [Show full text]
  • Intermediate Answer Key Chapter 21: Acids & Bases
    CK-12 Chemistry Concepts - Intermediate Answer Key Chapter 21: Acids & Bases 21.1 Properties of Acids Practice Questions Watch the video at the link below and answer the following questions: http://www.youtube.com/watch?v=uahCEZf831c 1. Which of the four solutions are acids? 2. Stop the video at 0:30 minutes and predict conductivities. 3. What color did the acids turn when universal indicator was added? Answers 1. HCl and CH3COOH (acetic acid). 2. The acids and NaCl are ionized and will conduct electricity. 3. Red. Review Questions 1. Are all acids electrolytes in water? 2. What color does blue litmus turn in the presence of an acid? 3. What does the reaction of an acid and a base produce? Answers 1. Yes. 2. Red. 3. Water and a salt. 21.2 Properties of Bases Practice Questions 1 Read the material at the site below and answer the following questions: https://sites.google.com/site/sodiumhydroxsite/Acidsandbasesbasics/chemical- properties-of-bases 1. What does the reaction between an acid and a base produce? 2. What is this reaction called? 3. What does the reaction of a base with an ammonium salt form? Answers 1. A salt and water. 2. Neutralization. 3. A metal salt, ammonia, and water. Review Questions 1. Are bases electrolytes? 2. What color does a base turn phenolphthalein? 3. Do bases react with metals the same way that acids do? Answers 1. Yes, some are strong electrolytes and some are weak. 2. Red. 3. No. 21.3 Arrhenius Acids Practice Read the material at the link below and answer the following questions: http://dwb4.unl.edu/Chem/CHEM869R/CHEM869RLinks/www.nidlink.com/7Ejfromm/arr henius.htm 1.
    [Show full text]
  • Rainbow in a Tube Use a Ph Indicator to Create a Chemical Rainbow Lesson Plan
    Rainbow in a Tube Use a pH indicator to create a chemical rainbow Lesson Plan Description: Visitors create “rainbows” in clear acrylic tubing, using universal indicator, a dilute solution of acid, and a dilute solution of base. Audience: Hands-on activity for families and children ages 8 and up Length: 20 minutes Learning Objectives Visitors learn: • Chemicals (including common household products) can be acids, bases, or neutral. • Acids and bases have characteristic properties. • When acids and bases react they can cancel each other out, in a process called neutralization. • Scientists measure acids and bases using the pH scale. • pH indicator is used to measure the pH of a chemical. Visitors develop skills related to chemistry and science, including: • Developing and testing predictions • Observing, communicating and discussing experimental results Learning Standards National Science Education Standards 1. Science as Inquiry K-4: Abilities necessary to do scientific inquiry K-4: Understanding about scientific inquiry 5-8: Abilities necessary to do scientific inquiry 5-8: Understanding about scientific inquiry 9-12: Abilities necessary to do scientific inquiry 9-12: Understanding about scientific inquiry 2. Physical Science K-4: Properties of objects and materials 5-8: Properties and changes of properties in matter 9-12: Chemical reactions Sciencenter, Ithaca, NY Page 1 www.sciencenter.org Rainbow in a Tube Lesson Plan Background Information When most people hear the word “acid,” they think of something very dangerous that can dissolve metal and burn skin. In fact, many acids are not dangerous at all. Some are even found in the foods we eat! Any food that tastes sour is acidic.
    [Show full text]
  • CHEMISTRY's RAINBOW: the POWER of Ph
    TEACHER GUIDE CHEMISTRY'S RAINBOW: THE POWER OF pH MATERIALS PER GROUP: • Water • Citric acid (C6H8O7) • Sodium carbonate (Na2CO3) • Universal indicator • Universal indicator color chart BASE • Nine small (3 oz.) clear plastic cups • Two mini-scoops • Two plastic pipettes • Plastic beaker (90 mL) • One quart-sized Ziploc® bag • Alka-Seltzer® tablet NEUTRAL TOTAL DURATION: 20-30 min. pre-lab prep time; 40-50 min. class time ACID LESSON OBJECTIVES: Students will be able to: 1. Use the pH scale to classify solu- tions as acids or bases. 2. Neutralize an acid and a base. LESSON OVERVIEW: 3. Determine the relative concen- In chemistry, pH is a measure of the acidity or basicity of an aque- trations of hydrogen ions in a ous solution. The concentration (or amount) of hydrogen ions (H+) solution. present in a solution determines whether the solution is acidic or basic; acidic solutions have more H+ and basic (or alkaline) solu- tions have fewer H+. ESSENTIAL QUESTION: What is the relationship of acids and bases in nature? An education and outreach program of: TOPICAL ESSENTIAL QUESTION: Can the pH of a solution be altered? Noble Research Institute, LLC • 2510 Sam Noble Parkway • Ardmore, OK 73401 • www.noble.org • 580-223-5810 TEACHER GUIDE CHEMISTRY'S RAINBOW: THE POWER OF pH STANDARDS: Middle School Science and Engineering Practices: MS-PS1-2 1. Asking questions Students who demonstrate 2. Developing and using models understanding can: Analyze and interpret data on 3. Planning and carrying out investigations the properties of substances 4. Analyzing and interpreting data before and after the substances 5.
    [Show full text]
  • Acidic Properties of CO2 in Aqueous Solutions
    WARNING NOTICE The experiments described in these materials are potentially hazardous. Among other things, the experiments should include the following safety measures: a high level of safety training, special facilities and equipment, the use of proper personal protective equipment, and supervision by appropriate individuals. You bear the sole responsibility, liability, and risk for the implementation of such safety procedures and measures. MIT and Dow shall have no responsibility, liability, or risk for the content or implementation of any of the material presented. Legal Notice Acidic Properties of CO2 in Aqueous Solutions © Wendy Maeda/The Boston Globe. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. Abstract A series of 2000 mL graduated cylinders are filled with colored solutions and several small pieces of solid dry ice (CO2) are gently added to the cylinders. Almost immediately the colors of the liquids begin to change, some slowly over a period of a few minutes, others more quickly, and some exhibiting several color changes one after the other. Materials Solid Dry Ice Dry Ice Container 6- 2000 mL graduated cylinders scooper for dry ice 6- 1 L plastic storage bottles Universal Indicator Bromothymol blue Phenolphthalein Ethanol 3',3"-dibromothymolsulfonephthalein Sodium Hydroxide Solution 6 – 100 mL stock bottles Insulated Gloves Safety Solid dry ice sublimes at -78 0C. Contact with the bare skin causes frostbite. Always use insulated gloves and wear safety goggles when handling it. Special care should be taken in handling the indicators, which could be potentially very hazardous if ingested, and cause irritation if they contact the skin or are inhaled.
    [Show full text]