Count Data in Finance∗

Total Page:16

File Type:pdf, Size:1020Kb

Count Data in Finance∗ Count Data in Finance∗ Jonathan Cohn University of Texas-Austin Zack Liu University of Houston Malcolm Wardlaw University of Georgia March 2021 Abstract This paper examines the use of count data-based outcome variables such as corpo- rate patents in empirical corporate finance research. We demonstrate that the com- mon practice of regressing the log of one plus the count on covariates (“LOG1PLUS” regression) produces biased and inconsistent estimates of objects of interest and lacks meaningful interpretation. Poisson regressions have simple interpretations and produce unbiased and consistent estimates under standard exogeneity assumptions, though they lose efficiency if the count data is overdispersed. Replicating several recent papers on corporate patenting, we find that LOG1PLUS and Poisson regressions frequently pro- duce meaningfully different estimates and that bias in LOG1PLUS regressions is likely large. ∗Jonathan Cohn: [email protected], (512) 232-6827. Zack Liu: [email protected], (713) 743-4764. Malcolm Wardlaw: [email protected], (706) 204-9295. We would like to thank Jason Abrevaya, Andres Almazan, John Griffin, Travis Johnson, Sam Krueger, Aaron Pancost, James Scott, Sheridan Titman, Jeff Wooldridge, and participants in the Virtual Finance Seminar and seminar at the University of Texas at Austin for valuable feedback. Count Data in Finance Abstract This paper examines the use of count data-based outcome variables such as corpo- rate patents in empirical corporate finance research. We demonstrate that the com- mon practice of regressing the log of one plus the count on covariates (“LOG1PLUS” regression) produces biased and inconsistent estimates of objects of interest and lacks meaningful interpretation. Poisson regressions have simple interpretations and produce unbiased and consistent estimates under standard exogeneity assumptions, though they lose efficiency if the count data is overdispersed. Replicating several recent papers on corporate patenting, we find that LOG1PLUS and Poisson regressions frequently pro- duce meaningfully different estimates and that bias in LOG1PLUS regressions is likely large. A growing number of papers in empirical corporate finance study outcome variables that are inherently count-based. For example, 44 papers published in “top three” finance journals in recent years estimate the effects of various forces on a company’s patent and/or patent citation counts. A key challenge in working with count data is that count variables, being bounded below by zero, often exhibit strong right-skewness. To address concerns about ef- ficiency and outlier risk, researchers often log-transform highly-skewed dependent variables before estimating linear regressions. However, count data sets often contain many zero val- ues, and the logarithm of zero is undefined. The most commonly used approach in finance to addressing this complication is to add a constant - typically 1 - to the count before log-transforming it. We refer to linear regression of the log of 1 plus a count variable on co- variates as “LOG1PLUS” regression. Of the 44 papers referenced above, 25 use LOG1PLUS regression as their primary econometric approach, and 23 use it exclusively. Despite its widespread use, little work has been done to examine the properties of esti- mates based on LOG1PLUS regression and whether these properties provide a reasonable and accurate test of underlying economic hypotheses. In this paper, we analyze the LOG1PLUS approach as well as alternative approaches. We formalize the often unspoken assumptions behind different regression models, conduct simulations to explore the statistical properties of the estimates they produce, and compare these estimates using replicated data sets from existing papers. We illustrate how OLS regressions using log-transformed outcomes can pro- duce biased and incorrectly signed estimates of economic relationships and provide guidance for future research in finance-related applications involving zero-bounded count data. How does one interpret estimates from a LOG1PLUS regression? A standard log-levels regression coefficient has a simple interpretation in terms of a semi-elasticity - the percentage change in the outcome variable associated with a one unit change in the explanatory variable. While one might imagine that LOG1PLUS regression estimates have the same interpretation because the added constant is invariant to the covariates, this intuition is wrong. The semi- 1 elasticity of a variable and the semi-elasticity of the sum of a constant and variable are not equivalent, nor can one easily be transformed into the other. In univariate regressions, the addition of the constant biases LOG1PLUS regression es- timates towards zero. They may therefore be seen as representing lower bound estimates of semi-elasticities. The effect of the bias is more complex in a multivariate regression setting. We show in simulations that this bias can be large and can produce estimates with the wrong sign, even when there is no sampling error. Thus, when interpreting LOG1PLUS regression output, a researcher might incorrectly conclude that a policy variable has a particular di- rectional effect on the count outcome when it actually has no effect or even the opposite effect. The addition of the constant is not the only source of estimation bias in LOG1PLUS regression. In the context of trade model regressions, Silva and Tenreyro (2006) show that the log-transformation of an outcome variable can produce biased regression estimates if the error in the original (i.e., untransformed) variable is heteroskedastic, as is likely in most applications. The nonlinear nature of the log transformation translates a correlation between a covariate and the variance of the error in the original variable into a relationship with the mean of the implied error in the logged variable. We show that the same bias exists in LOG1PLUS regressions. Simulations suggest that this bias can also be large and can cause the expected value of estimated coefficients to have the wrong sign. We show that positive (negative) correlation between the variance of the error and a covariate results in a downward (upward) biased coefficient. One alternative to estimating an OLS regression in general is to treat the outcome vari- able as a count process and estimate a count regression model. Among count models, the Poisson model, which connects the outcome with a linear function of covariates through an exponential link function, has two unique and useful features. First, its coefficients are interpretable as semi-elasticity estimates (Wooldridge, 2010, p. 726). They also have fairly 2 simple interpretations in terms of a linear conditional expectation function (CEF). Second, the Poisson model admits separable fixed effects - effectively a prerequisite for use in cor- porate finance applications.1 While Poisson model estimates lose efficiency if the model’s conditional mean-variance equality restriction is not satisfied in the data, they remain un- biased and consistent as long as the standard conditional mean independence assumption holds. While computational constraints may have been a practical issue for estimating fixed effects Poisson models in the past, the PPMLHDFE module for Stata implements a pseudo-maximum likelihood approach based on (Correia et al., 2020) that allows for speedy convergence of even high-dimensional fixed effects Poisson regressions. More flexible count regression models such as the negative binomial model or zero-inflated models relax the conditional mean-variance restriction and are therefore likely to be more efficient in many settings. Negative binomial regression allows for overdispersion, where the conditional variance exceeds the conditional mean. Zero-inflated models (e.g., zero- inflate Poisson and zero-inflated negative binomial) estimate intensive and extensive margins separately, allowing for excessive zero values in the distribution of the outcome. However, none of these models admit separable fixed effects. While one can include group dummy variables when estimating these models, the lack of separability results in biased estimates due to the incidental parameters problem (Lancaster, 2000). Another alternative approach is to model the count outcome as a rate and estimate linear regressions where the rate is the dependent variable. Doing so requires the availability of a suitable “exposure” variable that captures the level of activity creating a baseline exposure to the outcome. For example, the number of employees at an establishment is a natural exposure variable for the number of workplace injuries at the establishment in a given period of time (Cohn and Wardlaw, 2016; Cohn et al., 2020). Scaling the count outcome by the exposure 1Poisson fixed effects are multiplicatively separable, while fixed effects in linear models are additively separable. 3 variable results in a rate of events per unit of exposure (e.g., workplace injuries per employee). OLS regression with a rate dependent variable produces estimates with a simple linear CEF interpretation. Our simulations suggest that rate regression is more efficient than Poisson regression when overdispersion is moderate. Unfortunately, a suitable exposure variable is not available in many settings. After considering the econometric properties of various estimators when working with count data, we replicate data sets from five papers in the innovation literature, all of which use patent-based dependent variables. We are able to approximately replicate the main results of all five papers using
Recommended publications
  • “Multivariate Count Data Generalized Linear Models: Three Approaches Based on the Sarmanov Distribution”
    Institut de Recerca en Economia Aplicada Regional i Pública Document de Treball 2017/18 1/25 pág. Research Institute of Applied Economics Working Paper 2017/18 1/25 pág. “Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution” Catalina Bolancé & Raluca Vernic 4 WEBSITE: www.ub.edu/irea/ • CONTACT: [email protected] The Research Institute of Applied Economics (IREA) in Barcelona was founded in 2005, as a research institute in applied economics. Three consolidated research groups make up the institute: AQR, RISK and GiM, and a large number of members are involved in the Institute. IREA focuses on four priority lines of investigation: (i) the quantitative study of regional and urban economic activity and analysis of regional and local economic policies, (ii) study of public economic activity in markets, particularly in the fields of empirical evaluation of privatization, the regulation and competition in the markets of public services using state of industrial economy, (iii) risk analysis in finance and insurance, and (iv) the development of micro and macro econometrics applied for the analysis of economic activity, particularly for quantitative evaluation of public policies. IREA Working Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. For that reason, IREA Working Papers may not be reproduced or distributed without the written consent of the author. A revised version may be available directly from the author. Any opinions expressed here are those of the author(s) and not those of IREA. Research published in this series may include views on policy, but the institute itself takes no institutional policy positions.
    [Show full text]
  • A Comparison of Generalized Linear Models for Insect Count Data
    International Journal of Statistics and Analysis. ISSN 2248-9959 Volume 9, Number 1 (2019), pp. 1-9 © Research India Publications http://www.ripublication.com A Comparison of Generalized Linear Models for Insect Count Data S.R Naffees Gowsar1*, M Radha 1, M Nirmala Devi2 1*PG Scholar in Agricultural Statistics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India. 1Faculty of Agricultural Statistics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India. 2Faculty of Mathematics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India. Abstract Statistical models are powerful tools that can capture the essence of many biological systems and investigate ecological patterns associated to ecological stability dependent on endogenous and exogenous factors. Generalized linear model is the flexible generalization of ordinary linear regression, allows for response variables that have error distribution models other than a normal distribution. In order to fit a model for Count, Binary and Proportionate data, transformation of variables can be done and can fit the model using general linear model (GLM). But without transforming the nature of the data, the models can be fitted by using generalized linear model (GzLM). In this study, an attempt has been made to compare the generalized linear regression models for insect count data. The best model has been identified for the data through Vuong test. Keywords: Count data, Regression Models, Criterions, Vuong test. INTRODUCTION: Understanding the type of data before deciding the modelling approach is the foremost thing in data analysis. The predictors and response variables which follow non normal distributions are linearly modelled, it suffers from methodological limitations and statistical properties.
    [Show full text]
  • Shrinkage Improves Estimation of Microbial Associations Under Di↵Erent Normalization Methods 1 2 1,3,4, 5,6,7, Michelle Badri , Zachary D
    bioRxiv preprint doi: https://doi.org/10.1101/406264; this version posted April 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Shrinkage improves estimation of microbial associations under di↵erent normalization methods 1 2 1,3,4, 5,6,7, Michelle Badri , Zachary D. Kurtz , Richard Bonneau ⇤, and Christian L. Muller¨ ⇤ 1Department of Biology, New York University, New York, 10012 NY, USA 2Lodo Therapeutics, New York, 10016 NY, USA 3Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, 10010 NY, USA 4Computer Science Department, Courant Institute, New York, 10012 NY, USA 5Center for Computational Mathematics, Flatiron Institute, Simons Foundation, New York, 10010 NY, USA 6Institute of Computational Biology, Helmholtz Zentrum M¨unchen, Neuherberg, Germany 7Department of Statistics, Ludwig-Maximilians-Universit¨at M¨unchen, Munich, Germany ⇤correspondence to: [email protected], cmueller@flatironinstitute.org ABSTRACT INTRODUCTION Consistent estimation of associations in microbial genomic Recent advances in microbial amplicon and metagenomic survey count data is fundamental to microbiome research. sequencing as well as large-scale data collection efforts Technical limitations, including compositionality, low sample provide samples across different microbial habitats that are sizes, and technical variability, obstruct standard
    [Show full text]
  • Generalized Linear Models and Point Count Data: Statistical Considerations for the Design and Analysis of Monitoring Studies
    Generalized Linear Models and Point Count Data: Statistical Considerations for the Design and Analysis of Monitoring Studies Nathaniel E. Seavy,1,2,3 Suhel Quader,1,4 John D. Alexander,2 and C. John Ralph5 ________________________________________ Abstract The success of avian monitoring programs to effec- Key words: Generalized linear models, juniper remov- tively guide management decisions requires that stud- al, monitoring, overdispersion, point count, Poisson. ies be efficiently designed and data be properly ana- lyzed. A complicating factor is that point count surveys often generate data with non-normal distributional pro- perties. In this paper we review methods of dealing with deviations from normal assumptions, and we Introduction focus on the application of generalized linear models (GLMs). We also discuss problems associated with Measuring changes in bird abundance over time and in overdispersion (more variation than expected). In order response to habitat management is widely recognized to evaluate the statistical power of these models to as an important aspect of ecological monitoring detect differences in bird abundance, it is necessary for (Greenwood et al. 1993). The use of long-term avian biologists to identify the effect size they believe is monitoring programs (e.g., the Breeding Bird Survey) biologically significant in their system. We illustrate to identify population trends is a powerful tool for bird one solution to this challenge by discussing the design conservation (Sauer and Droege 1990, Sauer and Link of a monitoring program intended to detect changes in 2002). Short-term studies comparing bird abundance in bird abundance as a result of Western juniper (Juniper- treated and untreated areas are also important because us occidentalis) reduction projects in central Oregon.
    [Show full text]
  • A General Approximation for the Distribution of Count Data
    A General Approximation for the Distribution of Count Data Edward Fox, Bezalel Gavish, John Semple∗ Cox School of Business Southern Methodist University Dallas, TX - 75275 Abstract Under mild assumptions about the interarrival distribution, we derive a modied version of the Birnbaum-Saunders distribution, which we call the tBISA, as an approximation for the true distribution of count data. The free parameters of the tBISA are the rst two moments of the underlying interarrival distribution. We show that the density for the sum of tBISA variables is available in closed form. This density is determined using the tBISA's moment generating function, which we introduce to the literature. The tBISA's moment generating function addi- tionally reveals a new mixture interpretation that is based on the inverse Gaussian and gamma distributions. We then show that the tBISA can t count data better than the distributions commonly used to model demand in economics and business. In numerical experiments and em- pirical applications, we demonstrate that modeling demand with the tBISA can lead to better economic decisions. Keywords: Birnbaum-Saunders; inverse Gaussian; gamma; conuent hypergeometric func- tions; inventory model. 2000 Mathematics Subject Classication: Primary 62E99, Secondary 91B02. ∗Corresponding author: [email protected] 1 1. INTRODUCTION It is often necessary to count the number of arrivals or events during an interval of time. In many applications, we can exploit the relationship between count data and the underlying interarrival times. For example, customer purchase data captured by point-of-sale systems can be used to estimate the distribution of demand, i.e. the count of transactions.
    [Show full text]
  • Models for Count Data 1 Running Head
    Models for Count Data 1 Running head: MODELS FOR COUNT DATA A Model Comparison for Count Data with a Positively Skewed Distribution with an Application to the Number of University Mathematics Courses Completed Pey-Yan Liou, M.A. Department of Educational Psychology University of Minnesota 56 East River Rd Minneapolis, MN 55455 Email: [email protected] Phone: 612-626-7998 Paper presented at the Annual Meeting of the American Educational Research Association San Diego, April 16, 2009 Models for Count Data 2 Abstract The current study examines three regression models: OLS (ordinary least square) linear regression, Poisson regression, and negative binomial regression for analyzing count data. Simulation results show that the OLS regression model performed better than the others, since it did not produce more false statistically significant relationships than expected by chance at alpha levels 0.05 and 0.01. The Poisson regression model produced fewer Type I errors than expected at alpha levels 0.05 and 0.01. The negative binomial regression model produced more Type I errors at both 0.05 and 0.01 alpha levels, but it did not produce more incorrect statistically significant relationships than expected by chance as the sample sizes increased. Models for Count Data 3 A Model Comparison for Count Data with a Positively Skewed Distribution with an Application to the Number of University Mathematics Courses Completed Introduction Student mathematics achievement has always been an important issue in education. Several reports (e.g., Kuenzi, Matthews, & Mangan, 2006; United States National Academies [USNA], 2007) have stressed that the well being of America and America’s competitive edge depend largely on science, technology, engineering and mathematics (STEM) education.
    [Show full text]
  • Assessing Logistic and Poisson Regression Model in Analyzing Count Data
    International Journal of Applied Science and Mathematical Theory ISSN 2489-009X Vol. 4 No. 1 2018 www.iiardpub.org Assessing Logistic and Poisson Regression Model in Analyzing Count Data Ijomah, M. A., Biu, E. O., & Mgbeahurike, C. University of Port Harcourt, Choba, Rivers State [email protected], [email protected] Abstract An examination of the relationship between a response variable and several predictor variables were considered using logistic and Poisson regression. The methods used in the analysis were descriptive statistics and regression techniques. This paper focuses on the household utilized/ not utilizes primary health care services with a formulated questionnaire, which were administered to 400 households. The statistical Softwares used are Microsoft Excel, SPSS 21 and Minitab 16. The result showed that the Logistic regression model is the best fit in modelling binary response variable (count data); based on the two assessment criteria employed [Akaike Information Criterions (AIC) and Bayesian Information Criterions (BIC)]. Keywords: Binary response variable, model selection criteria, Logistic and Poisson regression model 1. Introduction As a statistical methodology, regression analysis utilizes the relation between two or more quantitative variables, that is, a response variable can be predicted from the other(s). This methodology is widely used in business, social, behavioural and biological sciences among other disciplines, Michael et al. (2005). The two types of regression are Linear and Nonlinear regression. The different types of linear regression are simple and multiple linear regression (Nduka, 1999) while the Nonlinear regressions are log-linear, quadratic, cubic, exponential, Poisson, logistic and power regression. Notably, our interests in this research are the Poisson regression and Logistic regression.
    [Show full text]
  • Count Data Models
    Count Data Models CIVL 7012/8012 2 In Today’s Class • Count data models • Poisson Models • Overdispersion • Negative binomial distribution models • Comparison • Zero-inflated models • R-implementation 3 Count Data In many a phenomena the regressand is of the count type, such as: The number of patents received by a firm in a year The number of visits to a dentist in a year The number of speeding tickets received in a year The underlying variable is discrete, taking only a finite non- negative number of values. In many cases the count is 0 for several observations Each count example is measured over a certain finite time period. 4 Models for Count Data Poisson Probability Distribution: Regression models based on this probability distribution are known as Poisson Regression Models (PRM). Negative Binomial Probability Distribution: An alternative to PRM is the Negative Binomial Regression Model (NBRM), used to remedy some of the deficiencies of the PRM. 5 Can we apply OLS Patent data from 181firms LR 90: log (R&D Expenditure) Dummy categories • AEROSP: Aerospace • CHEMIST: Chemistry • Computer: Comp Sc. • Machines: Instrumental Engg • Vehicles: Auto Engg. • Reference: Food, fuel others Dummy countries • Japan: • US: • Reference: European countries 6 Inferences from the example (1) • R&D have +ve influence – 1% increase in R&D expenditure increases the likelihood of patent increase by 0.73% ceteris paribus • Chemistry has received 47 more patents compared to the reference category • Similarly vehicles industry has received 191 lower patents
    [Show full text]
  • Comparison Among Akaike Information Criterion, Bayesian Information Criterion and Vuong's Test in Model Selection: a Case Study of Violated Speed Regulation in Taiwan
    VOLUME: 3 j ISSUE: 1 j 2019 j March Comparison among Akaike Information Criterion, Bayesian Information Criterion and Vuong's test in Model Selection: A Case Study of Violated Speed Regulation in Taiwan Kim-Hung PHO1;∗, Sel LY1, Sal LY1, T. Martin LUKUSA2 1Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam 2Institute of Statistical Science, Academia Sinica, Taiwan, R.O.C., Taiwan *Corresponding Author: Kim-Hung PHO (Email: [email protected]) (Received: 4-Dec-2018; accepted: 22-Feb-2019; published: 31-Mar-2019) DOI: http://dx.doi.org/10.25073/jaec.201931.220 Abstract. When doing research scientic is- Keywords sues, it is very signicant if our research issues are closely connected to real applications. In re- Akaike Information Criteria (AIC), ality, when analyzing data in practice, there are Bayesian Information Criterion (BIC), frequently several models that can appropriate to Vuong's test, Poisson regression, Zero- the survey data. Hence, it is necessary to have inated Poisson regression, Negative a standard criteria to choose the most ecient binomial regression. model. In this article, our primary interest is to compare and discuss about the criteria for select- ing model and its applications. The authors pro- 1. Introduction vide approaches and procedures of these methods and apply to the trac violation data where we look for the most appropriate model among Pois- The model selection criteria is a very crucial son regression, Zero-inated Poisson regression eld in statistics, economics and several other ar- and Negative binomial regression to capture be- eas and it has numerous practical applications.
    [Show full text]
  • Models for Count Data and Categorical Response Data
    Models for Count Data and Categorical Response Data Christopher F Baum Boston College and DIW Berlin June 2010 Christopher F Baum (BC / DIW) Count & Categorical Data June 2010 1 / 66 Poisson and negative binomial regression Poisson regression In statistical analyses, dependent variables may be limited by being count data, only taking on nonnegative (or only positive) integer values. This is a natural form for data such as the number of children per family, the number of jobs an individual has held or the number of countries in which a company operates manufacturing facilities. Just as with the other limited dependent variable models we have discussed, linear regression is not an appropriate estimation technique for count data, as it fails to take into account the limited number of possible values of the response variable. Christopher F Baum (BC / DIW) Count & Categorical Data June 2010 2 / 66 Poisson and negative binomial regression Poisson regression The most common technique employed to model count data is Poisson regression, so named because the error process is assumed to follow the Poisson distribution. As an aside, you may notice that the insignia (colophon) of Stata Press appears to be a soldier with a horse. The Poisson distribution was first applied to data on the number of Prussian cavalrymen who died after being kicked by a horse, and the colophon refers to that historical detail. Christopher F Baum (BC / DIW) Count & Categorical Data June 2010 3 / 66 Poisson and negative binomial regression Poisson regression The technique is implemented in Stata by the poisson command, which has the same format as other estimation commands, where the depvar is a nonnegative count variable; that is, it may be zero.
    [Show full text]
  • Time Series Models for Event Counts, I
    Agenda Event Count Models Event Count Time Series Time Series Models for Event Counts, I Patrick T. Brandt University of Texas, Dallas July 2010 Patrick T. Brandt Time Series Models for Event Counts, I Agenda Event Count Models Event Count Time Series Agenda Introduction to basic event count time series Examples of why we need separate models for these kind of data PEWMA and PAR(p) introduction Fitting and interpreting PEWMA and PAR(p) models using PESTS: dynamic inferences Changepoint models for count data Some recent extensions and new models Patrick T. Brandt Time Series Models for Event Counts, I Agenda Event Count Models Event Count Time Series Preface / Getting Started Get R from your favorite CRAN mirror. The mirror list is at: http://cran.r-project.org/mirrors.html Get the R source code for PESTS from http://www.utdallas.edu/~pbrandt/code/pests.r These slides, data, and R code for examples are at http://www.utdallas.edu/~pbrandt/code/count-examples Put the pests.r and the data files you are going to use in the same folder. Patrick T. Brandt Time Series Models for Event Counts, I Agenda Event Count Models Event Count Time Series 1 Event Count Models Data Examples Poisson Models Negative Binomial Models 2 Event Count Time Series Existing approaches Models for time series of counts PEWMA PAR(p) Patrick T. Brandt Time Series Models for Event Counts, I Agenda Data Examples Event Count Models Poisson Models Event Count Time Series Negative Binomial Models Example: Mayhew's Legislation Data Patrick T. Brandt Time Series Models for Event Counts, I Agenda Data Examples Event Count Models Poisson Models Event Count Time Series Negative Binomial Models Example: Militarized Interstate Disputes (MIDS) Series 1 ACF MIDS 20 40 60 80 100 120 140 0.2 0.0 0.2 0.4 0.6 0.8 1.0 ï 1850 1900 1950 0 5 10 15 20 Time Lag Patrick T.
    [Show full text]
  • Censored Count Data Analysis – Statistical Techniques and Applications
    The Texas Medical Center Library DigitalCommons@TMC UT School of Public Health Dissertations (Open Access) School of Public Health Fall 12-2018 CENSORED COUNT DATA ANALYSIS – STATISTICAL TECHNIQUES AND APPLICATIONS Xiao Yu UTHealth SPH Follow this and additional works at: https://digitalcommons.library.tmc.edu/uthsph_dissertsopen Part of the Community Psychology Commons, Health Psychology Commons, and the Public Health Commons Recommended Citation Yu, Xiao, "CENSORED COUNT DATA ANALYSIS – STATISTICAL TECHNIQUES AND APPLICATIONS" (2018). UT School of Public Health Dissertations (Open Access). 1. https://digitalcommons.library.tmc.edu/uthsph_dissertsopen/1 This is brought to you for free and open access by the School of Public Health at DigitalCommons@TMC. It has been accepted for inclusion in UT School of Public Health Dissertations (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. CENSORED COUNT DATA ANALYSIS – STATISTICAL TECHNIQUES AND APPLICATIONS by XIAO YU, BS, MS APPROVED: WENYAW CHAN, PHD LUNG-CHANG CHIEN, DRPH JOHN M. SWINT, PHD KAI ZHANG, PHD DEAN, THE UNIVERSITY OF TEXAS SCHOOL OF PUBLIC HEALTH Copyright by Xiao Yu, BS, MS, PHD 2018 CENSORED COUNT DATA ANALYSIS – STATISTICAL TECHNIQUES AND APPLICATIONS by XIAO YU BS, Shaanxi University of Science and Technology, 2011 MS, University of Illinois at Urbana - Champaign, 2013 Presented to the Faculty of The University of Texas School of Public Health in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS SCHOOL OF PUBLIC HEALTH Houston, Texas December, 2018 ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my academic advisor Dr.
    [Show full text]