Journal of Machine Learning Research 17 (2016) 1-41 Submitted 5/14; Revised 9/15; Published 4/16 Kernel Mean Shrinkage Estimators Krikamol Muandet∗
[email protected] Empirical Inference Department, Max Planck Institute for Intelligent Systems Spemannstraße 38, T¨ubingen72076, Germany Bharath Sriperumbudur∗
[email protected] Department of Statistics, Pennsylvania State University University Park, PA 16802, USA Kenji Fukumizu
[email protected] The Institute of Statistical Mathematics 10-3 Midoricho, Tachikawa, Tokyo 190-8562 Japan Arthur Gretton
[email protected] Gatsby Computational Neuroscience Unit, CSML, University College London Alexandra House, 17 Queen Square, London - WC1N 3AR, United Kingdom ORCID 0000-0003-3169-7624 Bernhard Sch¨olkopf
[email protected] Empirical Inference Department, Max Planck Institute for Intelligent Systems Spemannstraße 38, T¨ubingen72076, Germany Editor: Ingo Steinwart Abstract A mean function in a reproducing kernel Hilbert space (RKHS), or a kernel mean, is central to kernel methods in that it is used by many classical algorithms such as kernel principal component analysis, and it also forms the core inference step of modern kernel methods that rely on embedding probability distributions in RKHSs. Given a finite sample, an empirical average has been used commonly as a standard estimator of the true kernel mean. Despite a widespread use of this estimator, we show that it can be improved thanks to the well- known Stein phenomenon. We propose a new family of estimators called kernel mean shrinkage estimators (KMSEs), which benefit from both theoretical justifications and good empirical performance. The results demonstrate that the proposed estimators outperform the standard one, especially in a \large d, small n" paradigm.