Reproductionreview

Total Page:16

File Type:pdf, Size:1020Kb

Reproductionreview REPRODUCTIONREVIEW Placental PAGs: gene origins, expression patterns, and use as markers of pregnancy Rhianna M Wallace, Ky G Pohler, Michael F Smith and Jonathan A Green Division of Animal Sciences, 163 Animal Sciences Research Center, University of Missouri, Columbia, Missouri 65211, USA Correspondence should be addressed to J A Green; Email: [email protected] Abstract Pregnancy-associated glycoproteins (PAGs) are abundantly expressed products of the placenta of species within the Cetartiodactyla order (even-toed ungulates). They are restricted to this order and they are particularly numerous in the Bovidae. The PAGs exhibit a range of temporal and spatial expression patterns by the placental trophoblasts and probably represent a group of related proteins that perform a range of distinct functions in the epitheliochorial and synepitheliochorial placental forms. This review presents an overview of the origins of the PAGs, a summary of PAG expression patterns, and their use as markers of pregnancy status. Speculations about their putative role(s) in pregnancy are also presented. Reproduction (2015) 149 R115–R126 Introduction Garbayo et al. 2000, Green et al. 2000, Majewska et al. 2006, Brandt et al. 2007, Barbato et al. 2008, Majewska Pregnancy-associated glycoprotein (PAG) was identified et al. 2011, Be´riot et al. 2014). They are represented by three independent research groups, explaining the in current sequence databases comprising Suidae process of its purification from bovine placental extracts (e.g. swine), Cetacea (e.g. orca), and Pecora (e.g. deer, and its accumulation in maternal blood (Butler et al. domestic cattle, and giraffe) genome sequences, cDNAs, 1982, Sasser et al. 1986, Zoli et al. 1991, 1992, Mialon and ESTs. et al.1993, 1994). Other names for PAG include Phylogenetic analyses have indicated that PAGs can be pregnancy-specific protein B (PSPB) and PSP of 60 000 segregated into at least two groupings that were loosely molecular weight (PSP60). For the purposes of this defined as ‘ancient’ and ‘modern’ based on the time when review, we will use the acronym ‘PAG’ or ‘PAG1’ (when each group arose (Hughes et al. 2000). The ancient PAGs referring to the first, or archetypal, member of the are predicted to have originated w87 million years ago, family). After the initial discovery of PAG, subsequent while the modern PAGs were estimated to have arisen studies revealed an unanticipated complexity in the 52 million years ago (Hughes et al. 2000; Fig. 1). The number of PAGs as well as in the nature of their majority of PAGs belong to the modern group and these expression by the placenta. It has become clear that the have only been observed in the Ruminantia, with a PAGs represent an unusual gene family that probably particularly large expansion in the Bovidae (cattle, sheep, plays important roles in the function of the placenta in etc.; Telugu et al. 2009). Indeed, the current bovine and even-toed ungulates. This review attempts to give the ovine genome builds contain at least two dozen intact reader an appreciation for the size and scope of the PAG PAG genes as well as numerous PAG gene models that family. It will present an overview of PAG production may encode functional proteins. Perhaps not unexpect- by the placenta. It will also provide some speculation edly, the sheer number and complexity of the PAG family about their putative roles in pregnancy and describe how leads to difficulty in nomenclature. For the most part, PAGs can serve as useful markers for pregnancy individual PAGs have been named using a numerical detection and placental viability. approach based on the order in which PAG cDNAs were subcloned and sequenced. Other PAGs are known only by their unique accession or locus identifier numbers. The PAG family Some confusion can arise from this naming approach PAGs are abundantly expressed products of the placenta because the names of individual PAGs are rarely reflective of species within the Cetartiodactyla order (even-toed of orthology (e.g. bovine PAG10 is not the ortholog for ungulates; Szafranska et al. 1995, Xie et al. 1997, caprine PAG10, etc.). As the number and type of PAGs q 2015 Society for Reproduction and Fertility DOI: 10.1530/REP-14-0485 ISSN 1470–1626 (paper) 1741–7899 (online) Online version via www.reproduction-online.org Downloaded from Bioscientifica.com at 09/26/2021 06:30:41AM via free access R116 R M Wallace and others 66 Sheep PAG4 (U94790.1) Goat PAG10 (NM 001285564.1) Cattle PAG1 (NM 174411.2) Goat PAG6 (NM 001285560.1) 95 Cattle PAG9 (AF020511.1) 100 Sheep PAG1 (M73961) Modern PAGs White-tail deer PAG1 (AY509865.1) 94 100 Wapiti PAG1 (KJ624912) 79 Wapiti PAG5 (KJ624916) Giraffe PAG1 (KJ631415) Ruminant PAGs 96 White-tail deer PAG3 (AY509868.1) Cattle PAG10 (NM 176621.3) 54 100 Bison bison PAG2 (JQ609346.1) 100 Sheep PAG2 (U30251) Cattle PAG11 (AF020513.1) 79 Cattle PAG2 (NM 176614.1) 100 Bison bison PAG1 (JQ609345.1) White-tail deer PAG5 (AY509870.1) 84 82 Cattle PAG8 (AF020510.1) 72 Orca PAG (XM 004264176.1) 100 Yangtze river dolphin PAG (XM 007462186.1) Cetacean PAGs Yangtze river dolphin PAG (XM 007462188.1) 75 Pig PAG3 (NM 213809.1) 98 Pig PAG (XM 003122659.1) 100 Pig PAG mRNA (AK349045.1) Porcine PAGs 99 Pig PAG6 (NM 001001536.2) 100 Pig PAG (XM 003480693.1) 100 Dromedary camel pepsin F (JQ612168.1) Alpaca pepsin F (XM 006214887) 60 Cat pepsin F (NM 001009868.1) Pepsin F 99 Horse pepsin F (L38511) 56 Rat pepsin F (NM 021753.1) Orca pepsin A (XM 004264177.1) Cattle pepsin A (NM 001001600.2) 100 Pepsin A Dromedary camel pepsin A (AJ13678.1) Pig pepsin A (NM 213873.2) Rat cathepsin D (NM 134334.2) Cathepsin D 100 Orca cathepsin D (XM 004278076.1) 0.1 Figure 1 Phylogenetic tree of representative PAGs and other aspartic proteinases. Selective PAG-coding sequences were translated and aligned with representatives of the pepsin F, pepsin A, and cathepsin D families of proteolytic enzymes. A minimum evolution tree was used to represent the phylogenetic relationships. Genomic sequences and mRNAs that encode PAGs have been identified in three suborders within the Cetartiodactyla (Ruminantia, Cetacea, and Suidae). The majority of PAGs have been identified in the Ruminantia. The PAGs in this grouping consist of ‘modern’ PAGs that arose relatively recently; these are particularly well represented in the Bovidae. The ‘ancient’ PAGs are fewer in number and may reflect an origin that corresponds to around a time when the suborders within the Cetartiodactyl began to diverge. The PAGs chosen for the tree are displayed with a common name along with their unique GenBank accession number. The optimal tree from the analysis is shown. The percentage of replicate trees in which the associated members clustered together in the bootstrap test (1000 replicates) is shown next to the branches (only those with values O50% are shown). The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the tree. The evolutionary distance, which is shown in the key at the bottom, is reflective of the number of amino acid substitutions per site. The phylogenetic analyses were conducted in the MEGA6 program (Tamura et al. 2013). Reproduction (2015) 149 R115–R126 www.reproduction-online.org Downloaded from Bioscientifica.com at 09/26/2021 06:30:41AM via free access Review of pregnancy-associated glycoproteins R117 across the Cetartiodactyla become more clear, a more by the fusion of trophoblast binucleated cells with informative and useful nomenclature will need to be uterine epithelial cells; and iii) regions of placenta– established for this grouping. uterine interactions (in pecoran ruminants) that consist The extensive PAG gene family appears to have arisen of villous chorionic ‘cotyledons’ that interdigitate with by duplication and the subsequent expansion of a gene aglandular maternal uterine caruncles to form ‘placen- known as ‘pepsinogen F’, which itself arose from tomes’. Interestingly, there is an exception in the duplication of an ancestral pepsinogen A-like gene Ruminantia suborder with regard to the third feature. (Hughes et al. 2003; Fig. 1). Both pepsin F and pepsin A Species in the Tragulidae family (chevrotain or mouse are enzymes that belong to the aspartic proteinase family deer) have a diffuse placenta with no placentomes, (Davies 1990, Dunn 2002). The aspartic proteinases although they do possess binucleated giant trophoblasts possess a roughly symmetrical bilobed conformation within their trophectodermal villi (Kimura et al. 2004). that contains a cleft used to bind substrate proteins. Each lobe These binucleated cells express PAGs that cross-react contributes an aspartic acid within a highly conserved immunologically with those from the ‘modern’ grouping sequence motif (Asp–Thr/Ser–Gly–Thr/Ser–Thr/Ser). The of other ruminants (Wooding et al. 2007). aspartic acids, along with a water molecule that is In domestic cattle, binucleated giant trophoblasts first complexed between them, are critical for hydrolysis of begin to appear around the end of the 3rd week of substrate peptides. The central role of the aspartic acids pregnancy. They arise from mononucleated trophoblasts in the catalytic mechanism is the reason for the name via mitotic polyploidy (Wathes & Wooding 1980, of this particular group of enzymes (Davies 1990). Wooding 1983, 1984). At some point after they form, Interestingly, the first PAGs that were cloned (bovine each mature binucleated cell will migrate through the and ovine PAG1) either lacked one of the catalytic microvillar junction (between the trophoblasts and the aspartates (ovine PAG1) or lacked one of the adjacent uterine epithelia) and fuse with a uterine epithelial cell conserved residues (bovine PAG1)(Xie et al. 1991, Green to form a syncytial fetal–maternal cell. Subsequent fusion et al.
Recommended publications
  • Digital Reconstruction of the Inner Ear of Leptictidium Auderiense
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Published in "Paläontologische Zeitschrift 90(1): 153–171, 2016" which should be cited to refer to this work. Digital reconstruction of the inner ear of Leptictidium auderiense (Leptictida, Mammalia) and North American leptictids reveals new insight into leptictidan locomotor agility Irina Ruf1,2 • Virginie Volpato1,3 • Kenneth D. Rose4 • Guillaume Billet2,5 • Christian de Muizon5 • Thomas Lehmann1 Abstract Leptictida are basal Paleocene to Oligocene semicircular canals than the leptictids under study. Our eutherians from Europe and North America comprising estimations reveal that Leptictidium was a very agile ani- species with highly specialized postcranial features mal with agility score values (4.6 and 5.5, respectively) including elongated hind limbs. Among them, the Euro- comparable to Macroscelidea and extant bipedal saltatory pean Leptictidium was probably a bipedal runner or jum- placentals. Leptictis and Palaeictops have lower agility per. Because the semicircular canals of the inner ear are scores (3.4 to 4.1), which correspond to the more gener- involved in detecting angular acceleration of the head, their alized types of locomotion (e.g., terrestrial, cursorial) of morphometry can be used as a proxy to elucidate the agility most extant mammals. In contrast, the angular velocity in fossil mammals. Here we provide the first insight into magnitude predicted from semicircular canal angles sup- inner ear anatomy and morphometry of Leptictida based on ports a conflicting pattern of agility among leptictidans, but high-resolution computed tomography of a new specimen the significance of these differences might be challenged of Leptictidium auderiense from the middle Eocene Messel when more is known about intraspecific variation and the Pit (Germany) and specimens of the North American pattern of semicircular canal angles in non-primate Leptictis and Palaeictops.
    [Show full text]
  • Classification of Mammals 61
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORCHAPTER SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Classification © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 4 NOT FORof SALE MammalsOR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 2ND PAGES 9781284032093_CH04_0060.indd 60 8/28/13 12:08 PM CHAPTER 4: Classification of Mammals 61 © Jones Despite& Bartlett their Learning,remarkable success, LLC mammals are much less© Jones stress & onBartlett the taxonomic Learning, aspect LLCof mammalogy, but rather as diverse than are most invertebrate groups. This is probably an attempt to provide students with sufficient information NOT FOR SALE OR DISTRIBUTION NOT FORattributable SALE OR to theirDISTRIBUTION far greater individual size, to the high on the various kinds of mammals to make the subsequent energy requirements of endothermy, and thus to the inabil- discussions of mammalian biology meaningful.
    [Show full text]
  • Evolutionary and Functional Implications of Incisor Enamel Microstructure Diversity in Notoungulata (Placentalia, Mammalia)
    Journal of Mammalian Evolution https://doi.org/10.1007/s10914-019-09462-z ORIGINAL PAPER Evolutionary and Functional Implications of Incisor Enamel Microstructure Diversity in Notoungulata (Placentalia, Mammalia) Andréa Filippo1 & Daniela C. Kalthoff2 & Guillaume Billet1 & Helder Gomes Rodrigues1,3,4 # The Author(s) 2019 Abstract Notoungulates are an extinct clade of South American mammals, comprising a large diversity of body sizes and skeletal morphologies, and including taxa with highly specialized dentitions. The evolutionary history of notoungulates is characterized by numerous dental convergences, such as continuous growth of both molars and incisors, which repeatedly occurred in late- diverging families to counter the effects of abrasion. The main goal of this study is to determine if the acquisition of high-crowned incisors in different notoungulate families was accompanied by significant and repeated changes in their enamel microstructure. More generally, it aims at identifying evolutionary patterns of incisor enamel microstructure in notoungulates. Fifty-eight samples of incisors encompassing 21 genera of notoungulates were sectioned to study the enamel microstructure using a scanning electron microscope. We showed that most Eocene taxa were characterized by an incisor schmelzmuster involving only radial enamel. Interestingly, derived schmelzmusters involving the presence of Hunter-Schreger bands (HSB) and of modified radial enamel occurred in all four late-diverging families, mostly in parallel with morphological specializations, such as crown height increase. Despite a high degree of homoplasy, some characters detected at different levels of enamel complexity (e.g., labial versus lingual sides, upper versus lower incisors) might also be useful for phylogenetic reconstructions. Comparisons with perissodactyls showed that notoungulates paralleled equids in some aspects related to abrasion resistance, in having evolved transverse to oblique HSB combined with modified radial enamel and high-crowned incisors.
    [Show full text]
  • AFROTHERIAN CONSERVATION Newsletter of the IUCN/SSC Afrotheria Specialist Group
    AFROTHERIAN CONSERVATION Newsletter of the IUCN/SSC Afrotheria Specialist Group Number 10 Edited by PJ Stephenson September 2014 Afrotherian Conservation is published annually by the Speaking of our website, it was over ten years old IUCN Species Survival Commission Afrotheria Specialist and suffering from outdated material and old technology, Group to promote the exchange of news and inform- making it very difficult to maintain. Charles Fox, who ation on the conservation of, and applied research into, does our web maintenance at a hugely discounted cost golden moles, sengis, hyraxes, tenrecs and the aardvark. (many thanks Charles), has reworked the site, especially the design of the home page and conservation page Published by IUCN, Gland, Switzerland. (thanks to Rob Asher for his past efforts with the latter © 2014 International Union for Conservation of Nature material, which is still the basis for the new conservation and Natural Resources page). Because some of the hyrax material was dated, Lee ISSN: 1664-6754 Koren and her colleagues completely updated the hyrax material, and we have now linked our websites. A similar Find out more about the Group on our website at update is being discussed by Tom Lehmann and his http://afrotheria.net/ASG.html and follow us on colleagues for the aardvark link. The sengi web material is Twitter @Tweeting_Tenrec largely unchanged, with the exception of updating various pages to accommodate the description of a new species from Namibia (go to the current topics tab in the Message from the Chair sengi section). Galen Rathbun Although a lot of effort has focused on our Chair, IUCN/SSC Afrotheria Specialist Group group's education goals (logo, website, newsletter), it has not over-shadowed one of the other major functions that There has been a long time gap since our last newsletter our specialist group performs: the periodic update of the was produced in October 2012.
    [Show full text]
  • Dating Placentalia: Morphological Clocks Fail to Close the Molecular Fossil Gap
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE ORIGINAL ARTICLE provided by White Rose Research Online doi:10.1111/evo.12907 Dating placentalia: Morphological clocks fail to close the molecular fossil gap Mark N. Puttick,1,2 Gavin H. Thomas,3 and Michael J. Benton1 1School of Earth Sciences, Life Sciences Building, Tyndall Avenue, University of Bristol, Bristol, BS8 1TQ, United Kingdom 2E-mail: [email protected] 3Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom Received January 31, 2015 Accepted March 7, 2016 Dating the origin of Placentalia has been a contentious issue for biologists and paleontologists. Although it is likely that crown- group placentals originated in the Late Cretaceous, nearly all molecular clock estimates point to a deeper Cretaceous origin. An approach with the potential to reconcile this discrepancy could be the application of a morphological clock. This would permit the direct incorporation of fossil data in node dating, and would break long internal branches of the tree, so leading to improved estimates of node ages. Here, we use a large morphological dataset and the tip-calibration approach of MrBayes. We find that the estimated date for the origin of crown mammals is much older, 130–145 million years ago (Ma), than fossil and molecular clock data (80–90 Ma). Our results suggest that tip calibration may result in estimated dates that are more ancient than those obtained from other sources of data. This can be partially overcome by constraining the ages of internal nodes on the tree; however, when this was applied to our dataset, the estimated dates were still substantially more ancient than expected.
    [Show full text]
  • Eutheria (Placental Mammals)
    Eutheria (Placental Introductory article Mammals) Article Contents . Introduction J David Archibald, San Diego State University, San Diego, California, USA . Basic Design . Taxonomic and Ecological Diversity Eutheria includes one of three major clades of mammals, the extant members of which are . Fossil History and Distribution referred to as placentals. Phylogeny Introduction have supernumerary teeth (e.g. some whales, armadillos, Eutheria (or Placentalia) is the most taxonomically diverse etc.), in extant placentals the number of teeth is at most of three branches or clades of mammals, the other two three upper and lower incisors, one upper and lower being Metatheria (or Marsupialia) and Prototheria (or canine, four upper and lower premolars, and three upper Monotremata). When named by Gill in 1872, Eutheria and lower molars. Except for one fewer upper molar, a included both marsupials and placentals. It was Huxley in domestic dog retains this pattern. Compared to reptiles, 1880 that recognized Eutheria basically as used today to mammals have fewer skull bones through fusion and loss, include only placentals. McKenna and Bell in their although bones are variously emphasized in each of the Classification of Mammals, published in 1997, chose to three major mammalian taxa. use Placentalia rather than Eutheria to avoid the confusion Physiologically, mammals are all endotherms of varying of what taxa should be included in Eutheria. Others such as degrees of efficiency. They are also homeothermic with a Rougier have used Eutheria and Placentalia in the sense relatively high resting temperature. These characteristics used here. Placentalia includes all extant placentals and are also found in birds, but because of anatomical their most recent common ancestor.
    [Show full text]
  • The Neogene Record of Northern South American Native Ungulates
    Smithsonian Institution Scholarly Press smithsonian contributions to paleobiology • number 101 Smithsonian Institution Scholarly Press The Neogene Record of Northern South American Native Ungulates Juan D. Carrillo, Eli Amson, Carlos Jaramillo, Rodolfo Sánchez, Luis Quiroz, Carlos Cuartas, Aldo F. Rincón, and Marcelo R. Sánchez-Villagra SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of “diffusing knowledge” was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: “It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge.” This theme of basic research has been adhered to through the years in thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions to History and Technology Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Museum Conservation Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology In these series, the Smithsonian Institution Scholarly Press (SISP) publishes small papers and full-scale monographs that report on research and collections of the Institution’s museums and research centers. The Smithsonian Contributions Series are distributed via exchange mailing lists to libraries, universities, and similar institutions throughout the world. Manuscripts intended for publication in the Contributions Series undergo substantive peer review and evaluation by SISP’s Editorial Board, as well as evaluation by SISP for compliance with manuscript preparation guidelines (available at https://scholarlypress.si.edu).
    [Show full text]
  • A Radiation of Arboreal Basal Eutherian Mammals Beginning in the Late Cretaceous of India
    A radiation of arboreal basal eutherian mammals beginning in the Late Cretaceous of India Anjali Goswamia,b,1, Guntupalli V. R. Prasadc, Paul Upchurchb, Doug M. Boyerd, Erik R. Seifferte, Omkar Vermaf, Emmanuel Gheerbrantg, and John J. Flynnh aDepartment of Genetics, Evolution, and Environment, bDepartment of Earth Sciences, University College London, London WC1E 6BT, United Kingdom; cDepartment of Geology, Centre for Advanced Studies, University of Delhi, Delhi 110 007, India; dDepartment of Anthropology and Archaeology, Brooklyn College, City University of New York, Brooklyn, NY 11210; eDepartment of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-8081; fSchool of Sciences, Indira Gandhi National Open University, New Delhi 110 068, India; gUnité Mixte de Recherche 7207 du Centre National de la Recherche Scientifique (CR2P), Département Histoire de la Terre, Muséum National d’Histoire Naturelle, 75005 Paris, France; and hDivision of Paleontology and Richard Gilder Graduate School, American Museum of Natural History, New York, NY 10024 Edited* by Elwyn L. Simons, Duke University, Durham, NC, and approved August 15, 2011 (received for review June 6, 2011) India’s Late Cretaceous fossil mammals include the only undis- cluding placentals and their stem relatives) are known from the puted pre-Tertiary Gondwanan eutherians, such as Deccanolestes. Late Cretaceous of Laurasia (North America, Europe, and Asia) Recent studies have suggested a relationship between Deccano- (9), and although a few have been suggested as possible pla- lestes and African and European Paleocene adapisoriculids, which centals [e.g., Protungulatum (10)], none are unequivocally sup- have been variably identified as stem euarchontans, stem pri- ported as a Cretaceous placental mammal (2).
    [Show full text]
  • Eutheria (Placental Mammals) Thought of As More Primitive
    Eutheria (Placental Introductory article Mammals) Article Contents . Introduction J David Archibald, San Diego State University, San Diego, California, USA . Basic Design . Taxonomic and Ecological Diversity Eutheria includes one of three major clades of mammals, the extant members of which are . Fossil History and Distribution referred to as placentals. Phylogeny Introduction doi: 10.1038/npg.els.0004123 Eutheria (or Placentalia) is the most taxonomically diverse each. Except for placentals that have supernumerary teeth of three branches or clades of mammals, the other two (e.g. some whales, armadillos, etc.), in extant placentals, the being Metatheria (or Marsupialia) and Prototheria (or number of teeth is at most three upper and lower incisors, Monotremata). When named by Gill in 1872, Eutheria in- one upper and lower canine, four upper and lower premo- cluded both marsupials and placentals. It was Huxley in lars and three upper and lower molars. Pigs retain this pat- 1880 who recognized Eutheria basically as used today to tern, and except for one fewer upper molar, a domestic dog include only placentals. McKenna and Bell in their Clas- does as well. Compared to reptiles, mammals have fewer sification of Mammals published in 1997, chose to use Pla- skull bones through fusion and loss, although bones are centalia rather than Eutheria to avoid the confusion of variously emphasized in each of the three major mammalian what taxa should be included in Eutheria. Others such as taxa. See also: Digestive system of mammals; Ingestion in Rougier have used Eutheria and Placentalia in the sense mammals; Mesozoic mammals; Reptilia (reptiles) used here. Placentalia includes all extant placentals and Physiologically, mammals are all endotherms with var- their most recent common ancestor.
    [Show full text]
  • The Earliest Known Eutherian Mammal
    articles The earliest known eutherian mammal Qiang Ji*, Zhe-Xi Luo†, Chong-Xi Yuan*, John R. Wible†, Jian-Ping Zhang‡ & Justin A. Georgi† * Chinese Academy of Geological Sciences, Beijing 100037, China † Carnegie Museum of Natural History, 4400 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA ‡ Geoscience University of China, Beijing 100083, China ........................................................................................................................................................................................................................... The skeleton of a eutherian (placental) mammal has been discovered from the Lower Cretaceous Yixian Formation of northeastern China. We estimate its age to be about 125 million years (Myr), extending the date of the oldest eutherian records with skull and skeleton by about 40–50 Myr. Our analyses place the new fossil at the root of the eutherian tree and among the four other known Early Cretaceous eutherians, and suggest an earlier and greater diversification of stem eutherians that occurred well before the molecular estimate for the diversification of extant placental superorders (104–64 Myr). The new eutherian has limb and foot features that are known only from scansorial (climbing) and arboreal (tree-living) extant mammals, in contrast to the terrestrial or cursorial (running) features of other Cretaceous eutherians. This suggests that the earliest eutherian lineages developed different locomotory adaptations, facilitating their spread to diverse niches in the Cretaceous. Placental
    [Show full text]
  • Rapid Morphological Evolution in Placental Mammals Post-Dates the Origin of the Crown Group
    Rapid morphological evolution in placental mammals post-dates the origin of the crown group Thomas J.D. Halliday1,2, Mario dos Reis3, Asif U. Tamuri1,4, Henry Ferguson-Gow1, Ziheng Yang1 & Anjali Goswami1,5,6 1 – Department of Genetics, Evolution, and Environment, University College London, Gower Street, London, WC1E 6BT, UK 2 – School of Geography, Earth, and Environmental Science, University of Birmingham, Edgbaston, B15 2TT, UK 3 – School of Biological and Chemical Sciences, Queen Mary University London, Mile End Road, London, E1 4NS, UK 4 – EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK 5 – Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK 6 – Faculty of Life Sciences, Natural History Museum, Cromwell Road, London, SW9 5DJ, UK Correspondence: [email protected], @tjdhalliday SUMMARY Background Resolving the timing and pattern of early placental mammal evolution has been confounded by conflict among divergence date estimates from interpretation of the fossil record and from molecular-clock dating studies. Despite both fossil occurrences and molecular sequences favouring a Cretaceous origin for Placentalia, no unambiguous Cretaceous placental mammal has been discovered. Investigating the differing patterns of evolution in morphological and molecular data reveals a possible explanation for this conflict. Here, we quantified the relationship between morphological and molecular rates of evolution. We show that, independent of divergence dates, morphological rates of evolution were slow relative to molecular evolution during the initial divergence of Placentalia, but substantially increased during the origination of the extant orders. The rapid radiation of placentals into a highly morphologically disparate Cenozoic fauna is thus not associated with the origin of Placentalia, but post-dates superordinal origins.
    [Show full text]
  • Paleurafrica Origin of the European Modern Faunas Through Palaeogene Central Africa Collections
    PalEurAfrica Origin of the European modern faunas through Palaeogene Central Africa collections BR/121/A3/PalEurAfrica Thierry SMITH (Royal Belgian Institute of Natural Sciences, Belgium) - Thierry DE PUTTER (Royal Museum for Central Africa, Belgium) - Stephen LOUWYE (Ghent University, Ghent, Belgium) - Johan YANS (Namur University, Namur, Belgium) - Nancy STEVENS (Ohio University, Athens, USA) - Annelise FOLIE (Royal Belgian Institute of Natural Sciences, Belgium) Axis 3: Cultural, historical and scientific heritage 11 Project BR/121/A3/PalEurAfrica - Origin of the European modern faunas through Palaeogene Central Africa collections NETWORK PROJECT PALEURAFRICA Origin of the European modern faunas through Palaeogene Central Africa collections Contract - BR/121/A3/PalEurAfrica FINAL REPORT PROMOTORS: Thierry SMITH (Royal Belgian Institute of Natural Sciences, Belgium) Thierry DE PUTTER (Royal Museum for Central Africa, Belgium) Stephen LOUWYE (Ghent University, Ghent, Belgium) Johan YANS (Namur University, Namur, Belgium) Gregg F. GUNNELL† (Duke University, Durham, USA) Nancy STEVENS (Ohio University, Athens, USA) AUTHORS: Thierry SMITH (RBINS), Thierry DE PUTTER (RMCA), Stephen LOUWYE (UGhent), Johan YANS (UNamur), Nancy STEVENS (Ohio Univ.), Annelise FOLIE (RBINS) BRAIN-be (Belgian Research Action through Interdisciplinary Networks) 2 Project BR/121/A3/PalEurAfrica - Origin of the European modern faunas through Palaeogene Central Africa collections Published in 2021 by the Belgian Science Policy Office WTCIII Simon Bolivarlaan 30 Boulevard Simon Bolivar B-1000 Brussels Belgium Tel: +32 (0)2 238 34 11 - Fax: +32 (0)2 230 59 12 http://www.belspo.be http://www.belspo.be/brain-be Contact person: Maaike VANCAUWENBERGHE Tel: +32 (0)2 238 36 78 Neither the Belgian Science Policy Office nor any person acting on behalf of the Belgian Science Policy Office is responsible for the use which might be made of the following information.
    [Show full text]