Estrellas Evolucionadas Con Planetas: Abundancias Qu´Imicasy Propiedades Planetarias

Total Page:16

File Type:pdf, Size:1020Kb

Estrellas Evolucionadas Con Planetas: Abundancias Qu´Imicasy Propiedades Planetarias Estrellas evolucionadas con planetas: abundancias qu´ımicasy propiedades planetarias por Jorge Emiliano Jofr´e Presentado ante la Facultad de Matem´atica,Astronom´ıay F´ısicacomo parte de los requerimientos para obtener el t´ıtulo de Doctor en Astronom´ıade la UNIVERSIDAD NACIONAL DE CORDOBA´ Marzo de 2015 c FaMAF - UNC - 2015 Director: Dr. Pablo J. D. Mauas Co-Directora: Dra. Mercedes G´omez ii Estrellas evolucionadas con planetas: abundancias qu´ımicasy propiedades planetarias por Jorge Emiliano Jofr´ese distribuye bajo una Licencia Creative Commons Atribu- ci´on-NoComercial-SinDerivadas 2.5 Argentina. A mis padres iv \... si quieres lanzar una caja al Sol, tienes que hacerlo t´umismo." {Hermes Conrad Futurama (temporada 5, capıtulo´ 10)0 0\The Farnsworth Parabox" (2003); creado por Matt Groening & David X. Cohen, escrito por Bill Odenkirk. vi vii ´Indice general Resumen XI Abstract XVII Introducci´on 1 1. Planetas extrasolares y estrellas hu´espedes 9 1.1. Definici´onde planetas y exoplanetas . .9 1.2. M´etodos de detecci´on. 11 1.2.1. Perturbaci´ondin´amicade la estrella: velocidad radial, astrometr´ıa y timing ............................... 13 M´etodo Doppler de velocidad radial . 13 Posici´onastrom´etrica. 16 Timing ............................... 18 1.2.2. Imagen directa . 19 1.2.3. Tr´ansitosplanetarios . 20 1.2.4. TTV: Transit Timing Variations ................. 22 1.2.5. Microlentes gravitacionales . 24 1.3. Propiedades de los planetas detectados por VR . 24 1.3.1. Frecuencia de planetas gigantes . 25 1.3.2. Distribuci´onde masa . 26 1.3.3. Distribuci´onde per´ıodo . 26 1.3.4. Relaci´onmasa-per´ıodo . 29 1.3.5. Excentricidades orbitales . 29 1.4. Propiedades de las estrellas hu´espedes . 32 1.4.1. Metalicidad de las estrellas hu´espedes . 32 Origen de la correlaci´onplaneta-metalidad . 34 1.5. Estrellas evolucionadas con planetas . 38 1.5.1. Subgigantes . 41 1.5.2. Gigantes . 42 1.5.3. Propiedades de los planetas alrededor de estrellas evolucionadas 44 Semieje mayor . 44 viii ´INDICE GENERAL Masa planetaria . 46 1.6. Formaci´on planetaria . 47 1.6.1. Modelo de acreci´onde n´ucleo . 47 1.6.2. Inestabilidad gravitacional . 49 1.7. Objetivos generales de esta tesis . 51 2. Muestra, observaciones y reducci´onde datos 53 2.1. Selecci´onde la muestra . 53 2.2. Observaciones y descripci´ondel instrumental . 55 2.2.1. HARPS . 56 2.2.2. SOPHIE . 56 2.2.3. FEROS . 57 2.2.4. ELODIE . 57 2.2.5. EBASIM . 58 2.3. Reducci´onde las observaciones . 58 2.3.1. Espectros EBASIM . 58 2.3.2. Espectros de bases de datos . 62 3. Par´ametrosestelares 65 3.1. Par´ametrosfotosf´ericosfundamentales . 65 3.1.1. Comparaci´oncon otros estudios . 68 3.2. Par´ametrosfotom´etricos y f´ısicos . 77 3.3. Componentes de velocidad espacial . 87 3.4. Rotaci´onestelar . 93 4. Metalicidad de las estrellas evolucionadas 97 4.1. Antecedentes y objetivos . 97 4.2. Distribuciones de Metalicidad . 98 4.2.1. Estrellas gigantes . 98 4.2.2. Estrellas subgigantes . 102 4.2.3. Gigantes vs. subgigantes . 102 4.3. [Fe/H] en funci´onde la Teff ........................ 105 4.4. Conclusiones . 107 5. Otros elementos 109 5.1. Introducci´on. 109 5.1.1. Objetivos . 112 5.2. Obtenci´onde las abundancias qu´ımicas . 112 5.2.1. Errores en las abundancias qu´ımicas . 129 5.2.2. Comparaci´oncon otros estudios . 129 5.3. Distribuciones de [X/H] . 132 5.4. Los cocientes [X/Fe] . 135 ´INDICE GENERAL ix 5.4.1. B´usquedade diferencias en el plano [X/Fe]{[Fe/H] . 139 5.5. Conclusiones . 144 6. Propiedades planetarias 149 6.1. Introducci´on. 149 6.1.1. Objetivos . 151 6.2. Par´ametrosplanetarios y abundancias qu´ımicas . 151 6.3. Sistemas multi-planeta y metalicidad estelar . 154 6.4. Distancia orbital . 155 6.5. Masa Planetaria . 159 6.6. Excentricidad orbital . 165 6.7. Conclusiones . 168 7. Litio 171 7.1. Introducci´on. 171 7.1.1. Estudios previos de abundancias de litio en estrellas con planetas 174 7.1.2. Objetivos del trabajo . 178 7.2. Muestra . 178 7.3. An´alisis:S´ıntesis espectral . 178 7.3.1. Correcciones NLTE . 186 7.3.2. An´alisisde errores . 187 7.4. Chequeos de consistencia . 188 7.4.1. Mediciones realizadas con distintos espectr´ografos . 188 7.4.2. Comparaci´oncon valores obtenidos por otros autores . 189 7.5. Resultados generales . 191 7.6. Discusi´on:litio en estrellas con y sin planetas . 196 7.6.1. Subgigantes . 196 A(Li) en funci´onde los par´ametrosestelares . 196 Distribuci´onde A(Li) en las subgigantes con y sin planetas . 199 7.6.2. Gigantes . 202 A(Li) en funci´onde los par´ametrosestelares . 202 Distribuci´onde A(Li) en las gigantes con y sin planetas . 204 7.7. A(Li) vs. par´ametrosplanetarios . 207 7.8. Conclusiones . 209 Conclusiones finales y perspectivas futuras 213 Ap´endices 221 A. Evoluci´onpost-secuencia principal 221 Bibliograf´ıa 231 x ´INDICE GENERAL ´Indice de Figuras 251 ´Indice de Tablas 261 Agradecimientos 265 xi Resumen Desde 1992 se ha confirmado la detecci´onde m´asde 1500 planetas extrasolares, marcando una revoluci´onen la astronom´ıamoderna. A partir del an´alisisuniforme de grandes muestras es posible estudiar la relaci´onentre los par´ametrosplanetarios y las caracter´ısticasde sus estrellas hu´espedes, lo que puede proveer informaci´onmuy importante para los modelos de formaci´ony evoluci´onplanetaria. Por ejemplo, actual- mente es un hecho casi indiscutido que las estrellas de secuencia principal que albergan planetas gigantes son, en promedio, m´asricas en metales que aqu´ellassin planetas detectados. Esto se conoce usualmente como la correlaci´onplaneta-metalicidad. Los relevamientos de b´usquedade planetas alrededor de estrellas evolucionadas per- miten estudiar la frecuencia de planetas alrededor de estrellas m´asmasivas. Los resul- tados de estos programas de b´usquedacombinados con aqu´ellosque buscan planetas en estrellas de masa baja, indican que la frecuencia de planetas aumenta con la masa estelar, sugiriendo que este par´ametrotambi´entiene un papel preponderante en la for- maci´onde planetas gigantes. De los casi 500 planetas detectados por velocidad radial hasta la fecha, aproximadamente 120 orbitan alrededor de estrellas evolucionadas (es- trellas subgigantes y gigantes). Esto ha permitido investigar tambi´ensi la correlaci´on planeta-metalicidad encontrada para las estrellas de secuencia principal se mantiene para aqu´ellasevolucionadas. Los pocos estudios que han analizado la metalicidad de las subgigantes coinciden en que se mantiene la tendencia encontrada en las estrellas de secuencia principal. Sin embargo, en el caso de las estrellas gigantes, los resulta- dos han sido m´asdispares o controvertidos. M´asa´un,el estudio de las abundancias qu´ımicasde otros elementos, adem´asdel hierro, y la exploraci´onde sus relaciones con las propiedades planetarias cuenta con varios antecedentes en estrellas de secuencia principal con planetas, pero se ha realizado s´oloocasionalmente en estrellas evolu- cionadas con planetas. Este tipo de estudio puede proveer informaci´onvaliosa acerca de los elementos que podr´ıantener un papel importante en el proceso de formaci´on planetaria. Adem´asde la bien establecida correlaci´onplaneta-metalicidad, se ha debatido otra posible correlaci´onentre la presencia de planetas y las propiedades de las estrellas hu´espedes. Varios estudios sugieren que las estrellas de secuencia principal que alber- xii RESUMEN gan planetas tienen una abundancia de litio significativamente menor en comparaci´on con aqu´ellassin planetas detectados. Sin embargo, este tipo de an´alisistiene pocos antecedentes en el caso de estrellas evolucionadas. As´ı,en este trabajo presentamos par´ametrosestelares fundamentales (temperatura efectiva, gravedad superficial, metalicidad y velocidad de microturbulencia), par´ame- tros f´ısicos(masa, edad, radio, luminosidad), velocidades de rotaci´onproyectada, veloci- dades radiales, componentes de velocidad espacial Gal´acticay abundancias qu´ımicas de 14 elementos para una muestra de 86 estrellas evolucionadas con planetas (56 gigantes y 30 subgigantes) y para una muestra de control de 137 estrellas sin planetas detecta- dos (101 gigantes y 36 subgigantes). La muestra de estrellas evolucionadas con planetas constituye una de las m´asgrandes analizadas de manera uniforme hasta el momento. El an´alisisse hizo a partir de espectros echelle de alta resoluci´ony relaci´onse~nal-ruido, tomados con los espectr´ografosHARPS, FEROS, SOPHIE, ELODIE y EBASIM. Los objetivos principales de la primera parte del trabajo consistieron en: I) investigar difer- encias qu´ımicasentre estrellas evolucionadas con y sin planetas detectados; II) explorar potenciales diferencias entre las propiedades de planetas alrededor de estrellas gigantes y subgigantes; y III) buscar posibles correlaciones entre las propiedades planetarias (f´ısicasy orbitales) y las abundancias qu´ımicas de sus estrellas hu´espedes. Los par´ametrosfundamentales se determinaron de manera homog´eneausando el programa FUNDPAR a partir de los anchos equivalentes de l´ıneasde hierro requiriendo equilibrio de ionizaci´ony excitaci´on,y la independencia entre las abundancias y los anchos equivalentes. Las abundancias qu´ımicasde 14 elementos (Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Zn y Ba) se obtuvieron a partir de la medici´onde anchos equivalentes de una serie de l´ıneas no solapadas, utilizando el c´odigoMOOG. Las velocidades rotacionales se computaron a partir de los anchos a mitad de profundidad de una serie de l´ıneasaisladas de hierro. En acuerdo con estudios previos, encontramos que las estrellas subgigantes con pla- netas son, en promedio, m´asricas en metales que aqu´ellassin planetas por ∼0.16 dex. Por el contrario, la distribuci´onde metalicidad de las estrellas gigantes con planetas est´acentrada en metalicidades ligeramente subsolares y no muestra un exceso respecto a la distribuci´onde metalicidad de las gigantes sin planetas.
Recommended publications
  • Homogeneous Spectroscopic Parameters for Bright Planet Host Stars from the Northern Hemisphere the Impact on Stellar and Planetary Mass (Research Note)
    A&A 576, A94 (2015) Astronomy DOI: 10.1051/0004-6361/201425227 & c ESO 2015 Astrophysics Homogeneous spectroscopic parameters for bright planet host stars from the northern hemisphere The impact on stellar and planetary mass (Research Note) S. G. Sousa1,2,N.C.Santos1,2, A. Mortier1,3,M.Tsantaki1,2, V. Adibekyan1, E. Delgado Mena1,G.Israelian4,5, B. Rojas-Ayala1,andV.Neves6 1 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal 3 SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK 4 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain 5 Departamento de Astrofísica, Universidade de La Laguna, 38205 La Laguna, Tenerife, Spain 6 Departamento de Física, Universidade Federal do Rio Grande do Norte, Brazil Received 27 October 2014 / Accepted 19 February 2015 ABSTRACT Aims. In this work we derive new precise and homogeneous parameters for 37 stars with planets. For this purpose, we analyze high resolution spectra obtained by the NARVAL spectrograph for a sample composed of bright planet host stars in the northern hemisphere. The new parameters are included in the SWEET-Cat online catalogue. Methods. To ensure that the catalogue is homogeneous, we use our standard spectroscopic analysis procedure, ARES+MOOG, to derive effective temperatures, surface gravities, and metallicities. These spectroscopic stellar parameters are then used as input to compute the stellar mass and radius, which are fundamental for the derivation of the planetary mass and radius.
    [Show full text]
  • Arxiv:1804.09082V3 [Astro-Ph.SR] 31 May 2019 Upr O H Oeaceinmcaimo Lntformation
    Draft version June 4, 2019 Typeset using LATEX manuscript style in AASTeX61 RETIRED A STARS REVISITED: AN UPDATED GIANT PLANET OCCURRENCE RATE AS A FUNCTION OF STELLAR METALLICITY AND MASS Luan Ghezzi,1 Benjamin T. Montet,2, ∗ and John Asher Johnson3 1Observat´orio Nacional, Rua General Jos´eCristino, 77, 20921-400, S˜ao Crist´ov˜ao, Rio de Janeiro, RJ, Brazil; [email protected] 2Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave, Chicago, IL 60637, USA 3Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 USA ABSTRACT Exoplanet surveys of evolved stars have provided increasing evidence that the formation of giant planets depends not only on stellar metallicity ([Fe/H]), but also the mass (M⋆). However, measuring accurate masses for subgiants and giants is far more challenging than it is for their main-sequence counterparts, which has led to recent concerns regarding the veracity of the correlation between stellar mass and planet occurrence. In order to address these concerns we use HIRES spectra to perform a spectroscopic analysis on an sample of 245 subgiants and derive new atmospheric and physical parameters. We also calculate the space velocities of this sample in a homogeneous manner for the first time. When reddening corrections are considered in the calculations of stellar masses and a -0.12 M⊙ offset is applied to the results, the masses of the subgiants are consistent with their space velocity distributions, contrary to claims in the literature. Similarly, our measurement of their arXiv:1804.09082v3 [astro-ph.SR] 31 May 2019 rotational velocities provide additional confirmation that the masses of subgiants with M⋆ ≥ 1.6 M⊙ (the “Retired A Stars”) have not been overestimated in previous analyses.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Giant Planets
    Lyot Conference 5 June 2007 Properties of Exoplanets: from Giants toward Rocky Planets & Informing Coronagraphy Collaborators: Paul Butler, Debra Fischer, Steve Vogt Chris McCarthy, Jason Wright, John Johnson, Katie Peek Chris Tinney, Hugh Jones, Brad Carter Greg Laughlin, Doug Lin, Shigeru Ida, Jack Lissauer, Eugenio Rivera -Stellar Sample - 1330 Nearby FGKM Stars (~2000 stars total with Mayor et al. ) Star Selection Criteria: HipparcosH-R Cat. Diagram d < 100 pc . 1330 Target Stars •Vmag < 10 mag • No Close Binaries • Age > 2 Gyr Lum 1.3 Msun Target List: 0.3 M Published SUN 1 Michel Mayor & Didier Queloz First ExoPlanet 51 Peg Now Stephane Udry plays leadership role also. Doppler Monitering Begun: 1987 Uniform Doppler Precision: 1-3 m s-1 2000 FGKM M.S. Stars Three Telescopes 8 Years 7 Years 19 Years (3.5 AU) (3 AU) (6 AU) Keck Lick Anglo-Aus. Tel. 2 Precision: 1.5 m s-1 3 Years Planets or Brown Dwarfs in Unclosed, Long-Period Orbits: Targets for Coronagraphs 3 Sep ~ 0.3 “ Sep ~ 0.2 “ 4 Sep ~ 0.2” Examples of Jupiter-mass & Saturn mass Planets Detected by RV 5 Jupiter Mass Extrasolar Planets P = 5.3 yr e = 0.47 Jupiter Mass Extrasolar Planets P = 1.3 yr 6 Sub-Saturn Masses: 30 - 100 MEarth Msini = 32 MEarth Msini = 37 MEarth Msini = 57 MEarth Old Doppler Precision: 3 m/s Sub-Saturn Masses: Detectable for P < 2 Month Multiple - Planet Systems 7 HD 12661: Sun-like Star ) (meters/sec Velocity Time (years) 2 - Planet Model 2.5 M J Weak Interactions 1.9 MJ K0V, 1Gy, 16 pc HD 128311 2:1 Resonance Inner Outer Per (d) 458 918 Msini 2.3 3.1 ecc 0.23 0.22 ω 119 212 Pc / Pb = 2.004 Dynamical Resonance (Laughlin) 8 Msini = 1.4 MJ M Dwarfs have distant giant planets.
    [Show full text]
  • Cosmological Aspects of Planetary Habitability
    Cosmological aspects of planetary habitability Yu. A. Shchekinov Department of Space Physics, SFU, Rostov on Don, Russia [email protected] M. Safonova, J. Murthy Indian Institute of Astrophysics, Bangalore, India [email protected], [email protected] ABSTRACT The habitable zone (HZ) is defined as the region around a star where a planet can support liquid water on its surface, which, together with an oxygen atmo- sphere, is presumed to be necessary (and sufficient) to develop and sustain life on the planet. Currently, about twenty potentially habitable planets are listed. The most intriguing question driving all these studies is whether planets within habitable zones host extraterrestrial life. It is implicitly assumed that a planet in the habitable zone bears biota. How- ever along with the two usual indicators of habitability, an oxygen atmosphere and liquid water on the surface, an additional one – the age — has to be taken into account when the question of the existence of life (or even a simple biota) on a planet is addressed. The importance of planetary age for the existence of life as we know it follows from the fact that the primary process, the photosynthesis, is endothermic with an activation energy higher than temperatures in habitable zones. Therefore on planets in habitable zones, due to variations in their albedo, orbits, diameters and other crucial parameters, the onset of photosynthesis may arXiv:1404.0641v1 [astro-ph.EP] 2 Apr 2014 take much longer time than the planetary age. Recently, several exoplanets orbiting Population II stars with ages of 12–13 Gyr were discovered.
    [Show full text]
  • Arxiv:0809.1275V2
    How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits Guillem Anglada-Escud´e1, Mercedes L´opez-Morales1,2, John E. Chambers1 [email protected], [email protected], [email protected] ABSTRACT The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect ex- oplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a sin- gle planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available datasets, finding that 1) around 35% percent of the published eccentric one-planet solutions are statistically indistinguishible from planetary systems in 2:1 orbital resonance, 2) another 40% cannot be statistically distinguished from a circular orbital solution and 3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets. Subject headings: Exoplanets – Orbital dynamics – Planet detection – Doppler method arXiv:0809.1275v2 [astro-ph] 25 Nov 2009 Introduction Most of the +300 exoplanets found to date have been discovered using the Doppler tech- nique, which measures the reflex motion of the host star induced by the planets (Mayor & Queloz 1995; Marcy & Butler 1996). The diverse characteristics of these exoplanets are somewhat surprising. Many of them are similar in mass to Jupiter, but orbit much closer to their 1Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd.
    [Show full text]
  • In-Depth Study of Photometric Variability and Radiative Timescales for Atmospheric Evolution in Four L Dwarfs
    Weather on Other Worlds IV: In-Depth Study of Photometric Variability and Radiative Timescales for Atmospheric Evolution in Four L Dwarfs Item Type text; Electronic Thesis Authors Flateau, Davin C. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 30/09/2021 07:25:39 Link to Item http://hdl.handle.net/10150/594630 WEATHER ON OTHER WORLDS IV: IN-DEPTH STUDY OF PHOTOMETRIC VARIABILITY AND RADIATIVE TIMESCALES FOR ATMOSPHERIC EVOLUTION IN FOUR L DWARFS by Davin C. Flateau A Thesis Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 2015 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Exoplanet Community Report
    JPL Publication 09‐3 Exoplanet Community Report Edited by: P. R. Lawson, W. A. Traub and S. C. Unwin National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California March 2009 The work described in this publication was performed at a number of organizations, including the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Publication was provided by the Jet Propulsion Laboratory. Compiling and publication support was provided by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government, or the Jet Propulsion Laboratory, California Institute of Technology. © 2009. All rights reserved. The exoplanet community’s top priority is that a line of probe­class missions for exoplanets be established, leading to a flagship mission at the earliest opportunity. iii Contents 1 EXECUTIVE SUMMARY.................................................................................................................. 1 1.1 INTRODUCTION...............................................................................................................................................1 1.2 EXOPLANET FORUM 2008: THE PROCESS OF CONSENSUS BEGINS.....................................................2
    [Show full text]
  • Planetary Companions Around the K Giant Stars 11 Ursae Minoris and HD 32518
    A&A 505, 1311–1317 (2009) Astronomy DOI: 10.1051/0004-6361/200911702 & c ESO 2009 Astrophysics Planetary companions around the K giant stars 11 Ursae Minoris and HD 32518 M. P. Döllinger1, A. P. Hatzes2, L. Pasquini1, E. W. Guenther2, and M. Hartmann2 1 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany e-mail: [email protected] 2 Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany Received 22 January 2009 / Accepted 10 August 2009 ABSTRACT Context. 11 UMi and HD 32518 belong to a sample of 62 K giant stars that has been observed since February 2004 using the 2m Alfred Jensch telescope of the Thüringer Landessternwarte (TLS) to measure precise radial velocities (RVs). Aims. The aim of this survey is to investigate the dependence of planet formation on the mass of the host star by searching for plane- tary companions around intermediate-mass giants. Methods. An iodine absorption cell was used to obtain accurate RVs for this study. Results. Our measurements reveal that the RVs of 11 UMi show a periodic variation of 516.22 days with a semiamplitude of −1 −7 K = 189.70 m s . An orbital solution yields a mass function of f (m) = (3.608 ± 0.441) × 10 solar masses (M) and an eccentricity of e = 0.083 ± 0.03. The RV curve of HD 32518 shows sinusoidal variations with a period of 157.54 days and a semiamplitude of −1 −8 K = 115.83 m s . An orbital solution yields an eccentricity, e = 0.008 ± 0.03 and a mass function, f (m) = (2.199 ± 0.235) × 10 M.
    [Show full text]
  • Arxiv:Astro-Ph/0603836V1 30 Mar 2006
    to appear in the Astrophysical Journal Two Suns in The Sky: Stellar Multiplicity in Exoplanet Systems Deepak Raghavan, Todd J. Henry Georgia State University, Atlanta, GA 30302-4106 Brian D. Mason US Naval Observatory, 3450 Massachusetts Avenue NW, Washington DC 20392-5420 John P. Subasavage, Wei-Chun Jao, Thom D. Beaulieu Georgia State University, Atlanta, GA 30302-4106 Nigel C. Hambly Institute for Astronomy, School of Physics, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, Scotland, UK [email protected] ABSTRACT We present results of a reconnaissance for stellar companions to all 131 radial- velocity-detected candidate extrasolar planetary systems known as of July 1, arXiv:astro-ph/0603836v1 30 Mar 2006 2005. Common proper motion companions were investigated using the multi- epoch STScI Digitized Sky Surveys, and confirmed by matching the trigonometric parallax distances of the primaries to companion distances estimated photometri- cally. We also attempt to confirm or refute companions listed in the Washington Double Star Catalog, the Catalogs of Nearby Stars Series by Gliese and Jahreiß, in Hipparcos results, and in Duquennoy & Mayor (1991). Our findings indicate that a lower limit of 30 (23%) of the 131 exoplanet systems have stellar companions. We report new stellar companions to HD 38529 and HD 188015, and a new candidate companion to HD 169830. We confirm many previously reported stellar companions, including six stars in five systems, that are recognized for the first time as companions to exoplanet hosts. We have found evidence that 20 entries in the Washington Double Star Catalog –2– are not gravitationally bound companions.
    [Show full text]
  • Incidental Tables
    Sp.-V/AQuan/1999/10/27:16:16 Page 667 Chapter 27 Incidental Tables Alan D. Fiala, William F. Van Altena, Stephen T. Ridgway, and Roger W. Sinnott 27.1 The Julian Date ...................... 667 27.2 Standard Epochs ...................... 668 27.3 Reduction for Precession ................. 669 27.4 Solar Coordinates and Related Quantities ....... 670 27.5 Constellations ....................... 672 27.6 The Messier Objects .................... 674 27.7 Astrometry ......................... 677 27.8 Optical and Infrared Interferometry ........... 687 27.9 The World’s Largest Optical Telescopes ........ 689 27.1 THE JULIAN DATE by A.D. Fiala The Julian Day Number (JD) is a sequential count that begins at Noon 1 Jan. 4713 B.C. Julian Calendar. 27.1.1 Julian Dates of Specific Years Noon 1 Jan. 4713 B.C. = JD 0.0 Noon 1 Jan. 1 B.C. = Noon 1 Jan. 0 A.D. = JD 172 1058.0 Noon 1 Jan. 1 A.D. = JD 172 1424.0 A Modified Julian Day (MJD) is defined as JD − 240 0000.5. Table 27.1 gives the Julian Day of some centennial and decennial dates in the Gregorian Calendar. 667 Sp.-V/AQuan/1999/10/27:16:16 Page 668 668 / 27 INCIDENTAL TABLES Table 27.1. Julian date of selected years in the Gregorian calendar [1, 2]. Julian day at noon (UT) on 0 January, Gregorian calendar Jan. 0.5 JD Jan. 0.5 JD Jan. 0.5 JD Jan. 0.5 JD 1500 226 8923 1910 241 8672 1960 243 6934 2010 245 5197 1600 230 5447 1920 242 2324 1970 244 0587 2020 245 8849 1700 234 1972 1930 242 5977 1980 244 4239 2030 246 2502 1800 237 8496 1940 242 9629 1990 244 7892 2040 246 6154 1900 241 5020 1950 243 3282 2000 245 1544 2050 246 9807 Century years evenly divisible by 400 (e.g., 1600, 2000) are leap years.
    [Show full text]