bioRxiv preprint doi: https://doi.org/10.1101/708404; this version posted August 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Enhance genome editing efficiency and specificity by a quick CRISPR/Cas9 system Yingying Hu1,2,3,4#, Zhou Luo1,2,6#, Jing Li1,2,3,4, Dan Wang1,2,3,4, Hai-Xi Sun1,2,3,4, An Xiao7, Da Liu7, Zhenchao Cheng7, Jun Wu8, Yue Shen1,2,3,4,5, Xun Xu1,2,3,4, Bo Zhang7,*, Jian Wang1,2*, Ying Gu1,2,3,4*, Huanming Yang1,2,4* 1BGI-Shenzhen, Shenzhen 518083, China. 2China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China. 3Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China. 4Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China. 5Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, Shenzhen 518120, China. 6ICX Research, iCarbonX, Shenzhen 518053, China. 7Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China. 8Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. #These authors contributed equally to this work. *Corresponding author: Bo Zhang, E-mail:
[email protected]; Jian Wang, E-mail:
[email protected]; Ying Gu, E-mail:
[email protected]; Huanming Yang, E-mail:
[email protected] Abstract CRISPR/Cas9 is a powerful genome editing tool that has been successfully applied to a variety of species, including zebrafish. However, targeting efficiencies vary greatly at different genomic loci, the underlying causes of which were still elusive.