Solving 1Odes with Elementary Functions

Total Page:16

File Type:pdf, Size:1020Kb

Solving 1Odes with Elementary Functions SOLVING 1ODES WITH ELEMENTARY FUNCTIONS L.G.S. Duartea, L.A.C.P. da Motaa,∗, A.B.M.M. Queiroza,b aUniversidade do Estado do Rio de Janeiro, Instituto de F´ısica, Depto. de F´ısica Te´orica, 20559-900 Rio de Janeiro – RJ, Brazil bInmetro - Instituto Nacional de Metrologia, Qualidade e Tecnologia. Abstract Here we present a new approach to deal with first order ordinary differential equations (1ODEs) presenting functions. This method is an alternative to the one we have presented in [1, 2]. In [3], we have establish the theoretical background to deal with rational second order ordinary differential equations (2ODEs) (the S-function method). In this present paper, we combine the technique used in [3] with an idea analogous to that used in [1, 2] in order to produce a method that is much more efficient in a great number of cases. Directly, the appoach we present here for solving 1ODEs is applicable to any problem presenting parameters to which the rate of change is related to the parameter itself and, in addition, the theoretical results are on a more solid mathematical basis than those presented in [1, 2]. The method is implemented in a Maple package LeapS1ode and it includes commands that allow obtaining all the intermediate steps of the process of solving the 1ODEs. Keywords: 1ODEs with elementary functions, Polynomial vector fields, Liouvillian functions, S-function method arXiv:1710.00674v2 [math.CA] 10 May 2021 ∗Corresponding author L.G.S. Duarte and L.A.C.P. da Mota wish to thank Funda¸c˜ao de Amparo `aPesquisa do Estado do Rio de Janeiro (FAPERJ) for a Research Grant. Email addresses: [email protected] (L.G.S. Duarte), [email protected] or [email protected] (L.A.C.P. da Mota), [email protected] (A.B.M.M. Queiroz) Preprint submitted to Computer Physics Communications 11 de maio de 2021 PROGRAM SUMMARY Title of the software package: LeapS1ode – Liouvillian, elementary, algebraic and polyno- mial Solutions of 1ODEs (first order ordinary differential equations). Catalogue number: (supplied by Elsevier) Software obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ire- land. Licensing provisions: none Operating systems under which the program has been tested: Windows 10. Programming languages used: Maple 17. Memory required to execute with typical data: 200 Megabytes. No. of lines in distributed program, including On-Line Help, etc.: 1037 Keywords: 1ODEs with functions, Polynomial vector fields, Liouvillian functions, S- function method. Nature of mathematical problem Search for general solutions of first order ordinary differential equations (1ODEs) with (elementary) functions. Methods of solution The method of solution is based on an algorithm described in this paper. Restrictions concerning the complexity of the problem If the 1ODE that is being analysed presents a very high degree in (x,y,θ), then the method may not work well. Typical running time This depends strongly on the 1ODE that is being analysed. Unusual features of the program Our implementation can find solutions in many cases where the 1ODE under study can not be solved by other powerful solvers nor by other powerful methods. Besides that, the program can perform (in a very natural way) an analysis of the integrability region of the 1ODE’s parameters. Finally, the package presents some useful research commands. 2 LONG WRITE-UP Apart from their mathematical interest, dealing with first order differen- tial equation (1ODEs) has its more direct application. Any physical (or, for that matter, any scientific question) that can be formulate as a relationship between the rate of change of some quantity of interest and the quantity itself can be formulated as solving an 1ODE (at some stage). There are many well known phenomena which fall into this category: Concentration and dilution problems are quickly remembered examples. Population models are another such example. More specifically, of non-linear 1ODEs and, as a final example, Astrophysics [4], etc. There are many others and there can be many more lurking around the corner of the many scientific endeavours being pursuit. In this sense, any novel mathematical approach, technique to deal with such 1ODEs are welcome and could prove vital to solve a funda- mental question. So, due to this great importance (theoretical and practical) of solving 1ODEs, many methods have been improved in the last decades. Regarding the search for elementary and Liouvillian solutions1, the methods that use the Darboux-Prelle-Singer approach stand out. In this ‘direction’ we can highlight: [5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20]. We have been studying the existence of (and methods to search for) elementary and Liouvillian first integrals of vector fields in R2 since 2002 [1, 2, 12, 35, 36, 37]. In particular, we tackled the problem of looking for general solutions for 1ODEs with functions in [1, 2]. However, the mathema- tical basis was not laid out in such a solid way and, in addition, the method did not deal well (it was computationally expensive) with the problem of determining Darboux polynomials in three or more variables. This time, we managed to combine the technique we used in [3]2 with a reasoning very close to the idea used in [1, 2]3. Our method basically starts with an assumption (the existence of a general solution of a specific type) to arrive at an alge- braic result: the existence (or not) of a Liouvillian first integral (of a certain type) for a polynomial vector field in three variables and, in the case of a positive answer, the determination of that first integral (and, consequently, 1The methods that use the Lie symmetry approach have also been greatly improved. See, for example [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. 2In that work we use the (so-called) S-function (introduced in [38] and used by us and other people [3, 39, 40, 37, 41, 42, 44, 45, 46, 47]) that improves greatly the efficiency on the searching for Liouvillian first integrals of 2ODEs. 3The central idea is to ‘transform’ elementary functions into rational functions. 3 of the 1ODE’s general solution). Briefly, we associate the 1ODE (presenting an elementary function) with a polynomial vector field in three variables and then analyze the (possible) existence of a Liouvillian first integral. If the first integral is found we only have to perform the inverse transformation to obtain the general solution of the 1ODE in implicit form. This paper is organized as follows: In the first section, we present some basic concepts involved in the Darboux- Prelle-Singer (DPS) approach and in the S-function method. In the second section, we show how we can associate a 1ODE with an ele- mentary function to a polynomial vector field in three variables and develop a technique similar to the one we built in [3] (to search for Liouvillian first integrals of rational 2ODEs using the S-function method) in order to search for a Liouvillian first integral of the vector field. We use these two steps to propose a procedure that can succeed even in cases where the integrating fac- tors have Darboux polynomials of very high degree. In the end of this section (after a few examples in order to clarify the steps of the procedure), we pro- pose a semi algorithm to deal with solving 1ODEs presenting an elementary function and we describe it in a more formal way. In the third section, we present a computacional package (in Maple) to search for Liouvillian solutions of 1ODEs presenting an elementary function. We start by giving an overview of the package and presenting a summary of the commands. Then, we go deeper into the description of each command and, in the last subsection, we present an example of the usage of the commands to show how they work in practice. In the fourth section, we discuss the performance of the method. We begin by presenting a set of 1ODEs that the method solves without problems but, we believe, would not be easily solved by any other method. In the following, we present some special features of the package we use to solve / study more complicated cases. Finally, we show a case of a 2ODE (in principle, not treatable by the method) that the package can successfully handle. Finally, we present our conclusions. 1. Basic concepts and results In this section we will set the mathematical basis for presenting our method. In the first subsection we will present the Darboux-Prelle-Singer ap- 4 proach in a nutshell and, in the second, the basics of the S-function method. 1.1. The Darboux-Prelle-Singer approach When we talk succinctly about the Darboux-Prelle-Singer approach to se- eking Liouvillian first integrals of autonomous systems of polynomial 1ODEs in the plane, we can summarize the central idea in one paragraph: Find the Darboux polynomials (DPs) associated with the 1ODE system and use them to determine an integrating factor. Without exaggeration, the determination of the DPs is the most impor- tant and (unfortunately) the most complex part (by far) of the whole process. Thus, with a couple of definitions and results, we can describe (briefly) the DPS approach when applied to vector fields in the plane. To begin, let’s define more formally the concepts we referred to. Consider the following system of polynomial 1ODEs in the plane: x˙ = f(x, y) (1) ( y˙ = g(x, y), where f and g are coprime polynomials in (x, y) and the dot means derivative with respect to a parameter t (u ˙ ≡ du/dt). Definition 1.1. A function I(x, y) is called a first integral of the system (1) if I is constant over the solutions of (1).
Recommended publications
  • Elementary Functions: Towards Automatically Generated, Efficient
    Elementary functions : towards automatically generated, efficient, and vectorizable implementations Hugues De Lassus Saint-Genies To cite this version: Hugues De Lassus Saint-Genies. Elementary functions : towards automatically generated, efficient, and vectorizable implementations. Other [cs.OH]. Université de Perpignan, 2018. English. NNT : 2018PERP0010. tel-01841424 HAL Id: tel-01841424 https://tel.archives-ouvertes.fr/tel-01841424 Submitted on 17 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par l’Université de Perpignan Via Domitia Préparée au sein de l’école doctorale 305 – Énergie et Environnement Et de l’unité de recherche DALI – LIRMM – CNRS UMR 5506 Spécialité: Informatique Présentée par Hugues de Lassus Saint-Geniès [email protected] Elementary functions: towards automatically generated, efficient, and vectorizable implementations Version soumise aux rapporteurs. Jury composé de : M. Florent de Dinechin Pr. INSA Lyon Rapporteur Mme Fabienne Jézéquel MC, HDR UParis 2 Rapporteur M. Marc Daumas Pr. UPVD Examinateur M. Lionel Lacassagne Pr. UParis 6 Examinateur M. Daniel Menard Pr. INSA Rennes Examinateur M. Éric Petit Ph.D. Intel Examinateur M. David Defour MC, HDR UPVD Directeur M. Guillaume Revy MC UPVD Codirecteur À la mémoire de ma grand-mère Françoise Lapergue et de Jos Perrot, marin-pêcheur bigouden.
    [Show full text]
  • What Is a Closed-Form Number? Timothy Y. Chow the American
    What is a Closed-Form Number? Timothy Y. Chow The American Mathematical Monthly, Vol. 106, No. 5. (May, 1999), pp. 440-448. Stable URL: http://links.jstor.org/sici?sici=0002-9890%28199905%29106%3A5%3C440%3AWIACN%3E2.0.CO%3B2-6 The American Mathematical Monthly is currently published by Mathematical Association of America. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/maa.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Mon May 14 16:45:04 2007 What Is a Closed-Form Number? Timothy Y. Chow 1. INTRODUCTION. When I was a high-school student, I liked giving exact answers to numerical problems whenever possible. If the answer to a problem were 2/7 or n-6 or arctan 3 or el/" I would always leave it in that form instead of giving a decimal approximation.
    [Show full text]
  • Symbolic Computations of First Integrals for Polynomial Vector Fields Guillaume Chèze, Thierry Combot
    Symbolic Computations of First Integrals for Polynomial Vector Fields Guillaume Chèze, Thierry Combot To cite this version: Guillaume Chèze, Thierry Combot. Symbolic Computations of First Integrals for Polynomial Vector Fields. 2018. hal-01619911v2 HAL Id: hal-01619911 https://hal.archives-ouvertes.fr/hal-01619911v2 Preprint submitted on 18 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SYMBOLIC COMPUTATIONS OF FIRST INTEGRALS FOR POLYNOMIAL VECTOR FIELDS GUILLAUME CHEZE` AND THIERRY COMBOT Abstract. In this article we show how to generalize to the Darbouxian, Li- ouvillian and Riccati case the extactic curve introduced by J. Pereira. With this approach, we get new algorithms for computing, if it exists, a rational, Darbouxian, Liouvillian or Riccati first integral with bounded degree of a poly- nomial planar vector field. We give probabilistic and deterministic algorithms. The arithmetic complexity of our probabilistic algorithm is in O˜(N ω+1), where N is the bound on the degree of a representation of the first integral and ω ∈ [2; 3] is the exponent of linear algebra. This result improves previous al- gorithms. Our algorithms have been implemented in Maple and are available on authors’ websites.
    [Show full text]
  • Elementary Functions and Their Inverses*
    ELEMENTARYFUNCTIONS AND THEIR INVERSES* BY J. F. RITT The chief item of this paper is the determination of all elementary functions whose inverses are elementary. The elementary functions are understood here to be those which are obtained in a finite number of steps by performing algebraic operations and taking exponentials and logarithms. For instance, the function tan \cf — log,(l + Vz)] + [«*+ log arc sin*]1« is elementary. We prove that if F(z) and its inverse are both elementary, there exist n functions Vt(*)j <hiz), •', <Pniz), where each <piz) with an odd index is algebraic, and each (p(z) with an even index is either e? or log?, such that F(g) = <pn(pn-f-<Pn9i(z) each q>i(z)ii<ît) being substituted for z in ^>iiiz). That every F(z) of this type has an elementary inverse is obvious. It remains to develop a method for recognizing whether a given elementary function can be reduced to the above form for F(.z). How to test fairly simple functions will be evident from the details of our proofs. For the immediate present, we let the general question stand. The present paper is an addition to Liouville's work of almost a century ago on the classification of the elementary functions, on the possibility of effecting integrations in finite terms, and on the impossibility of solving certain differentia] equations, and certain transcendental equations, in finite terms.!" Free use is made here of the ingenious methods of Liouville. * Presented to the Society, October 25, 1924. -(•Journal de l'Ecole Polytechnique, vol.
    [Show full text]
  • Arxiv:1911.10319V2 [Math.CA] 29 Dec 2019 Roswl Egvni H Etscin.Atraiey Ecnuse Can We Alternatively, Sections
    Elementary hypergeometric functions, Heun functions, and moments of MKZ operators Ana-Maria Acu1a, Ioan Rasab aLucian Blaga University of Sibiu, Department of Mathematics and Informatics, Str. Dr. I. Ratiu, No.5-7, RO-550012 Sibiu, Romania, e-mail: [email protected] bTechnical University of Cluj-Napoca, Faculty of Automation and Computer Science, Department of Mathematics, Str. Memorandumului nr. 28 Cluj-Napoca, Romania, e-mail: [email protected] Abstract We consider some hypergeometric functions and prove that they are elementary functions. Con- sequently, the second order moments of Meyer-K¨onig and Zeller type operators are elementary functions. The higher order moments of these operators are expressed in terms of elementary func- tions and polylogarithms. Other applications are concerned with the expansion of certain Heun functions in series or finite sums of elementary hypergeometric functions. Keywords: hypergeometric functions, elementary functions, Meyer-K¨onig and Zeller type operators, polylogarithms; Heun functions 2010 MSC: 33C05, 33C90, 33E30, 41A36 1. Introduction This paper is devoted to some families of elementary hypergeometric functions, with applica- tions to the moments of Meyer-K¨onig and Zeller type operators and to the expansion of certain Heun functions in series or finite sums of elementary hypergeometric functions. In [4], J.A.H. Alkemade proved that the second order moment of the Meyer-K¨onig and Zeller operators can be expressed as 2 2 x(1 − x) Mn(e2; x)= x + 2F1(1, 2; n + 2; x), x ∈ [0, 1). (1.1) arXiv:1911.10319v2 [math.CA] 29 Dec 2019 n +1 r Here er(t) := t , t ∈ [0, 1], r ≥ 0, and 2F1(a,b; c; x) denotes the hypergeometric function.
    [Show full text]
  • The Mathematical-Function Computation Handbook Nelson H.F
    The Mathematical-Function Computation Handbook Nelson H.F. Beebe The Mathematical-Function Computation Handbook Programming Using the MathCW Portable Software Library Nelson H.F. Beebe Department of Mathematics University of Utah Salt Lake City, UT USA ISBN 978-3-319-64109-6 ISBN 978-3-319-64110-2 (eBook) DOI 10.1007/978-3-319-64110-2 Library of Congress Control Number: 2017947446 © Springer International Publishing AG 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland Dedication This book and its software are dedicated to three Williams: Cody, Kahan, and Waite.
    [Show full text]
  • INTEGRATION STRATEGIES 1. Introduction It Should Be Clear Now
    INTEGRATION STRATEGIES 1. Introduction It should be clear now that it is a whole lot easier to differentiate a function than integrating one. Typically the formula used to determine the derivative of a function is apparent. With integration, the appropriate formula won't necessarily be obvious. So far we have reviewed each of the basic techniques of integration: with substitutions (ch. 5.5, 7.2, 7.3 ), integration by parts (ch. 7.1), and partial fractions (ch 7.4). More realistically, integrals will be given outside of the context of a textbook chapter and the challenge is to identify which formula(s) to use. We will review several integrals at random and suggest strategies for determining which formula to evaluate the integral. These strategies will only be helpful if one has a knowledge of basic integration formulas. Listed in the table below are an expanded list of the formulas for commonly used integrals. Many of these can be derived using basic principles it will be helpful to memorize these. In lieu of formulas 19 and 20 one could use partial fractions and trigonometric substitutions respectively. Figure 1. Table of Integration Formulas Constant of integra- tion have been omitted. 1 2 INTEGRATION STRATEGIES 2. Strategies If an integral does not fit into this basic list of integration formulas, try the following strategy: (1) Simplify the Integrand if Possible: Algebraic manipulation or trigono- metric identities can simplify the integrand and allow for integration in its new form. For example, p p p R x(1 + x)dx = R ( x + x)dx; R tan θ R sin θ 2 R R sec2 θ dθ = cos θ cos θdθ = sin θ cos θdθ = frac12 sin 2θdθ; R (sin x + cos x)2dx = R (sin2 x + 2 sin x cos x + cos2 x)dx = R (1 + 2 sin x cos x)dx; (2) Look for an Obvious Substitution: Try substitutions u = g(x) in the integrand for which the differential du = g0(x)dx also appears in the integran.
    [Show full text]
  • Analytical Parameter Estimation of the Sir Epidemic Model. Applications to the Covid-19 Pandemic
    ANALYTICAL PARAMETER ESTIMATION OF THE SIR EPIDEMIC MODEL. APPLICATIONS TO THE COVID-19 PANDEMIC. DIMITER PRODANOV 1) Environment, Health and Safety, IMEC, Belgium 2) MMSIP, IICT, BAS, Bulgaria Abstract. The dramatic outbreak of the coronavirus disease 2019 (COVID- 19) pandemics and its ongoing progression boosted the scientific community's interest in epidemic modeling and forecasting. The SIR (Susceptible-Infected- Removed) model is a simple mathematical model of epidemic outbreaks, yet for decades it evaded the efforts of the community to derive an explicit solu- tion. The present work demonstrates that this is a non-trivial task. Notably, it is proven that the explicit solution of the model requires the introduction of a new transcendental special function, related to the Wright's Omega function. The present manuscript reports new analytical results and numerical routines suitable for parametric estimation of the SIR model. The manuscript intro- duces iterative algorithms approximating the incidence variable, which allows for estimation of the model parameters from the numbers of observed cases. The numerical approach is exemplified with data from the European Centre for Disease Prevention and Control (ECDC) for several European countries in the period Jan 2020 { Jun 2020. Keywords: SIR model; special functions; Lambert W function; Wright Omega function MSC: 92D30; 92C60; 26A36; 33F05; 65L09 1. Introduction The coronavirus 2019 (COVID-19) disease was reported to appear for the first time in Wuhan, China, and later it spread to Europe, which is the subject of the pre- sented case studies, and eventually worldwide. While there are individual clinical reports for COVID-19 re-infections, the present stage of the pandemic still allows for the application of a relatively simple epidemic model, which is the subject of arXiv:2010.07000v1 [q-bio.PE] 9 Oct 2020 the present report.
    [Show full text]
  • Elementary Functions and Approximate Computing Jean-Michel Muller
    Elementary Functions and Approximate Computing Jean-Michel Muller To cite this version: Jean-Michel Muller. Elementary Functions and Approximate Computing. Proceedings of the IEEE, Institute of Electrical and Electronics Engineers, 2020, 108 (12), pp.1558-2256. 10.1109/JPROC.2020.2991885. hal-02517784v2 HAL Id: hal-02517784 https://hal.archives-ouvertes.fr/hal-02517784v2 Submitted on 29 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Elementary Functions and Approximate Computing Jean-Michel Muller** Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude Bernard Lyon 1, LIP UMR 5668, F-69007 Lyon, France Abstract—We review some of the classical methods used for consequence of that nonlinearity is that a small input error quickly obtaining low-precision approximations to the elementary can sometimes imply a large output error. Hence a very careful functions. Then, for each of the three main classes of elementary error control is necessary, especially when approximations are function algorithms (shift-and-add algorithms, polynomial or rational approximations, table-based methods) and for the ad- cascaded: approximate computing cannot be quick and dirty y y log (x) ditional, specific to approximate computing, “bit-manipulation” computing.
    [Show full text]
  • Antiderivatives Basic Integration Formulas Structural Type Formulas
    Antiderivatives Definition 1 (Antiderivative). If F 0(x) = f(x) we call F an antideriv- ative of f. Definition 2 (Indefinite Integral). If F is an antiderivative of f, then R f(x) dx = F (x) + c is called the (general) Indefinite Integral of f, where c is an arbitrary constant. The indefinite integral of a function represents every possible antideriv- ative, since it has been shown that if two functions have the same de- rivative on an interval then they differ by a constant on that interval. Terminology: When we write R f(x) dx, f(x) is referred to as the in- tegrand. Basic Integration Formulas As with differentiation, there are two types of formulas, formulas for the integrals of specific functions and structural type formulas. Each formula for the derivative of a specific function corresponds to a formula for the derivative of an elementary function. The following table lists integration formulas side by side with the corresponding differentiation formulas. Z xn+1 d xn dx = if n 6= −1 (xn) = nxn−1 n + 1 dx Z d sin x dx = − cos x + c (cos x) = − sin x dx Z d cos x dx = sin x + c (sin x) = cos x dx Z d sec2 x dx = tan x + c (tan x) = sec2 x dx Z d ex dx = ex + c (ex) = ex dx Z 1 d 1 dx = ln x + c (ln x) = x dx x Z d k dx = kx + c (kx) = k dx Structural Type Formulas We may integrate term-by-term: R kf(x) dx = k R f(x) dx 1 2 R f(x) ± g(x) dx = R f(x) dx ± R g(x) dx In plain language, the integral of a constant times a function equals the constant times the derivative of the function and the derivative of a sum or difference is equal to the sum or difference of the derivatives.
    [Show full text]
  • Liouvillian Solutions for Second Order Linear Differential Equations With
    Liouvillian solutions for second order linear differential equations with Laurent polynomial coefficient Primitivo B. Acosta-Hum´anez1 Instituto de Matem´atica, Facultad de Ciencias Universidad Aut´onoma de Santo Domingo Santo Domingo, Dominican Republic. David Bl´azquez-Sanz Escuela de Matem´aticas, Facultad de Ciencias Universidad Nacional de Colombia - Sede Medell´ın Medell´ın - Colombia. Henock Venegas-G´omez Escuela de Matem´aticas, Facultad de Ciencias Universidad Nacional de Colombia - Sede Medell´ın Medell´ın - Colombia. Escuela de Ciencias B´asicas y Tecnolog´ıa e Ingenier´ıa, Universidad Nacional Abierta y a Distancia, Medell´ın, Colombia. Abstract This paper is devoted to a complete parametric study of Liouvillian solutions of the general trace-free second order differential equation with a Laurent poly- nomial coefficient. This family of equations, for fixed orders at 0 and of the ∞ Laurent polynomial, is seen as an affine algebraic variety. We proof that the set of Picard-Vessiot integrable differential equations in the family is an enumerable union of algebraic subvarieties. We compute explicitly the algebraic equations arXiv:2012.11795v2 [math.CA] 25 Sep 2021 of its components. We give some applications to well known subfamilies as the doubly confluent and biconfluent Heun equations, and to the theory of alge- braically solvable potentials of Shr¨odinger equations. Also, as an auxiliary tool, we improve a previously known criterium for second order linear differential Email addresses: [email protected] (Primitivo B. Acosta-Hum´anez), [email protected] (David Bl´azquez-Sanz), [email protected] (Henock Venegas-G´omez) 1Corresponding author Preprint submitted to Journal of Symbolic Computation September 28, 2021 equations to admit a polynomial solution.
    [Show full text]
  • Lecture 20: Antiderivatives 15 X We Have Looked at the Integral 0 F(T) Dt and Seen That It Is the Signed Area Under the Curve
    2 Math 1A: introduction to functions and calculus Oliver Knill, 2012 20 Lecture 20: Antiderivatives 15 x We have looked at the integral 0 f(t) dt and seen that it is the signed area under the curve. The area of the region below theR curve is counted in a negative way. There is something else to mention: 10 0 x For x< 0, we define x f(t) dt as 0 f(t) dt. This is compatible with the funda- b ′ R − R mental theorem a f (t) dt = f(b) f(a). R − x 5 The function g(x)= 0 f(t) dt+C is called the anti-derivative of g. The constant C is arbitrary and notR fixed. As we will see below, we can often adjust the constant such that some condition is satisfied. The fundamental theorem of calculus assured us that The anti derivative is the inverse operation of the derivative. Two different anti 0.5 1.0 1.5 2.0 derivatives differ by a constant. 4 The total cost is the antiderivative of the marginal cost of a good. Both the marginal Finding the anti-derivative of a function is much harder than finding the derivative. We will learn cost as well as the total cost are a function of the quantity produced. For instance, suppose some techniques but it is in general not possible to give anti derivatives for even very simple the total cost of making x shoes is 300 and the total cost of making x+4 shoes is 360 for all functions.
    [Show full text]