Middle Eocene Deformation and Sedimentation in the Puna– Eastern

Total Page:16

File Type:pdf, Size:1020Kb

Middle Eocene Deformation and Sedimentation in the Puna– Eastern Middle Eocene deformation and sedimentation in the Puna– Eastern Cordillera transition (23°–26°S): Control by preexisting heterogeneities on the pattern of initial Andean shortening F. Hongn Consejo Nacional de Investigaciones Científi cas y Técnicas–Universidad Nacional de Salta, C. del Papa Buenos Aires 177, 4400 Salta, Argentina J. Powell Consejo Nacional de Investigaciones Científi cas y Técnicas–Universidad Nacional de Tucumán, Miguel Lillo 205, 4000 Tucumán, Argentina I. Petrinovic Consejo Nacional de Investigaciones Científi cas y Técnicas–Universidad Nacional de Salta, Buenos Aires 177, 4400 Salta, Argentina R. Mon Consejo Nacional de Investigaciones Científi cas y Técnicas–Universidad Nacional de Tucumán, V. Deraco Miguel Lillo 205, 4000 Tucumán, Argentina ABSTRACT (Elger et al., 2005), as well as models interpreting eastward propagation of The Quebrada de los Colorados Formation, at the north end of deformation (DeCelles and Horton, 2003), focused on the Bolivian Alti- Calchaquí Valley in Salta Province, northwest Argentina, preserves plano. A late Eocene–Oligocene uplifting guided by preexisting structures evidence of syndepositional deformation since the middle Eocene was described along the Puna–Eastern Cordillera transition (Coutand (ca. 40 Ma) that includes (1) an angular unconformity with the under- et al., 2001; Deeken et al., 2006). This work presents new structural, strati- lying Salta Group (Paleogene), and (2) internal unconformities and graphic, and paleontologic evidence for a middle Eocene deformation and changes in vertical facies succession and provenance. Its fossil record sedimentation in the Puna–Eastern Cordillera transition between 24° and [mammalian (notoungulates), middle Eocene] is correlatable to the 26°S. Our results, along with others from the western Puna border (e.g., Casa Grande Formation, which also unconformably overlies the Salta Mpodozis et al., 2005), suggest that preexisting crustal heterogeneities Group; both units record middle Eocene deformation along the eastern infl uenced the localization of the fi rst manifestations of the Andean short- border of the Puna Plateau and outline previous fi rst-order mechanical ening from the middle Eocene in the southern portion of the plateau. Our heterogeneities related to the Cretaceous rift basin border. Along the data confi rm that distribution of the initial shortening and sedimentation western margin of the Puna, Eocene deformation coincides with ther- in the Central Andes was irregular, and that the classic models for Andean mal (magmatic arc) and mechanical (basin inversion) heterogeneities. evolution postulating diachronous and eastward progressive deformation Thus, the distribution of Eocene deformation followed an irregular pat- should be revised, because heterogeneities controlling shortening were tern as a consequence of the heritage of preexisting heterogeneities. activated along both plateau margins by the middle Eocene. Our data underscore a new key area to understand the initial evolution of the Andes, Keywords: Eocene deformation, initial foreland, preexisting hetero- the archetype of a major noncollisional orogen. geneities, Central Andes. GEOLOGICAL FRAMEWORK INTRODUCTION The Argentine Eastern Cordillera is a bivergent fold-thrust belt affect- The geological peculiarities of the Central Andes and their plateau ing the oldest rocks known in the region. The North Calchaquí Valley (a plate tectonics paradox; e.g., Allmendinger et al., 1997) have made (Fig. 1A) is limited by faults that thrust Neoproterozoic–Paleozoic base- this cordillera one of the most studied. Most previous work has been ment on the Salta Group (Upper Cretaceous–Paleogene; rift basin infi ll- devoted to Miocene evolution because this was the time of main shorten- ing) and Payogastilla Group (foreland basin infi lling). The Quebrada de ing and volcanic activity that distinguished the Western Cordillera, plateau los Colorados Formation is the lowest unit of the Payogastilla Group and ( Altiplano-Puna), Eastern Cordillera, and Subandean Ranges (see synthe- its age was considered to be Neogene (Díaz and Malizzia, 1984), although sis in Allmendinger et al., 1997). In contrast, Paleogene evolution (espe- some workers recognized that sedimentation might have started in the cially in basin research) received less attention, and as a consequence there Paleogene (Marrett, 1990; Starck and Vergani, 1996). are still many unanswered questions concerning (1) the age, intensity, and distribution of the initial Andean shortening (Kennan et al., 1995; Jordan EOCENE SYNTECTONIC SEDIMENTATION et al., 1997; Elger et al., 2005); (2) the map of the earliest foreland basins Our structural, sedimentological, and paleontological analyses con- (Horton, 2005); and (3) Paleogene deformation as an extra source of short- centrated on two areas of the northern Calchaquí Valley, Saladillo and La ening for compensating the defi cit between calculated and actual crustal Poma (Fig. 1A). Sedimentological and structural additional data on syn- thickness of the Central Andes (Kley and Monaldi, 1998). tectonic sedimentation are available in the GSA Data Repository1. The lack of direct evidence for an Incaic unconformity (Steinmann, 1929) in south Bolivia and north Argentina led to hypotheses postulat- Stratigraphic Evidence: Sequences and Growth Strata ing a progressive and diachronous southward and eastward propagation The 1500-m-thick Quebrada de los Colorados Formation consists of deformation in the Central Andes. Thus, shortening is thought to have of an upward-thickening and upward-coarsening continental succession begun in the Paleogene in the Bolivian Altiplano, and in the Neogene in (Fig. 1B). The internal stratigraphic arrangement includes three irregu- the Puna (Jordan et al., 1997). Nevertheless, available ages for the uplift larly distributed sequences, locally bounded by unconformities. Next to (e.g., Carrapa et al., 2005) and regional stratigraphic analyses (Boll and Hernández, 1986; Mpodozis et al., 2005) delineate Paleogene deformation 1GSA Data Repository item 2007058, Table DR1 (characteristic features of the sedimentary sequences) and Figures DR1–DR3 (main features of syntec- south of the Bolivian Altiplano. tonic strata) and Appendix with fossil description, is available online at www. Models regarding a control by preexisting (thermal or mechanical) geosociety .org/pubs/ft2007.htm, or on request from [email protected] or heterogeneities on localizing the plateau margins as zones of shortening Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA. © 2007 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or [email protected]. GEOLOGY,Geology, March March 2007; 2007 v. 35; no. 3; p. 271–274; doi: 10.1130/G23189A.1; 2 fi gures; Data Repository item 2007058. 271 the Toro Muerto fault (Fig. 1A), younger unit III overlies older ones with variable angular relations (Figs. 1C, 1D, 1E). 0 0 0 SALADILLO 5 5 0 0 5 9 7 959 A B Sequence I consists of fi ne-grained overbank, shallow sheet-like, 3 N 39 3 3 66°13’ and fi xed isolated channel facies and paleosols deposited in fl ood plains 42004 44504 2 45 00 Saladillo 0 and high-sinuosity rivers. Sequence II is composed of overbank, shallow LA POMA fi xed channels, and bars and/or channel facies of fl uvial sandy braided III 3450345 0 Faul 24°35’ and fl ood-plain environments. Analyses of provenance and paleofl ows mation t indicate source areas to the north, composed of low-grade metamorphic For s 37003 and granitic rocks. Sequence III comprises mudfl ow deposits, sandy and Saladillo 7 III 0 0 gravelly channel-fi ll facies, and fi ne-grained overbank deposits of alluvial t fan environment. In Saladillo, paleofl ows indicate a provenance from the north and northwest (Fig. 1B). In addition to these compositions, con- Faul II II Q. Los Colorado 323 í 3 2 glomerate clasts include Paleozoic volcanic rocks and Cretaceous sand- 4 0 5 0 0 250m aqu stones and limestones. In La Poma, paleofl ows indicate provenance from h lc I I the southwest (Fig. 1B), and the composition is Paleozoic sandstones and Ca Fault r 0 volcanic rocks. o e t iv r S f mc f m S f mc f m In Saladillo, intraformational deformation is recognized in sequences SS CL SS CL Muer I and II (Figs. 1C, 1D, 1E) and involves fi ne-grained deposits except next ESE Sequenc WNW C to the growth folds, mainly related to the Saladillo and Calchaqui faults, eI oro haquí I T Apparent dip where channelized gravelly sandstones were deposited at the lowest topo- Calc graphic levels. Toward the crest of anticline, strata show fan geometries N defi ned by onlap relations, decreasing in dip upsection and thinning. A 0 3 0 La Poma 3 7 7 700 37003 0 reduction in deformation rate generated stratal overlap and reestablish- 0 Sequence I ment of fi ne-grained sedimentation. Seq. II (n=11) Seq. I (n=24) Stratal stacking patterns suggest a period of a high rate of intrabasinal 10 m Cerro deformation that caused local low accommodation for sequences I and II, ’ t 0 Bayo l 0 N ault D followed by a period of high accommodation that allowed progradation of 2 F 42004 66°13 35 Fau middle to proximal alluvial fans (sequence III). A o 85 52 0 40 67 A’ 3700370 37003 30 35 The described features suggest that the tectonic-sedimentary evolu- 7 33 44 32003 0 Muert 55 30 25 2 0 27 9 2 tion along the northern valley was not simple, but was conditioned by fault 5 0 30 34 Cer 0 0 15 44 32 chaquí 32003200 Toro 20 slip within a complex paleogeography. ro al 14 Ba 44 C 24°35’ 29 18 yo B 30 50 B’ Fault 10 20 30 45 Structural Indicators: Growth Faults and Growth Folds 88 30 44 60 ’ 80 20 40 40 The Saladillo and Cerro Bayo faults branch from the Calchaquí fault 85 10 33 22 Saladillo 20 (Fig. 1A). The west limbs of related anticlines are either vertical or over- 66°13 turned, suggesting west-vergent faults. These are subvertical faults due to 4000 4000 m.a.s.l.
Recommended publications
  • Chronostratigraphy of the Mammal-Bearing Paleocene of South America 51
    Thierry SEMPERE biblioteca Y. Joirriiol ofSoiiih Ainorirari Euirli Sciriin~r.Hit. 111. No. 1, pp. 49-70, 1997 Pergamon Q 1‘197 PublisIlcd hy Elscvicr Scicncc Ltd All rights rescrvcd. Printed in Grcnt nrilsin PII: S0895-9811(97)00005-9 0895-9X 11/97 t I7.ol) t o.(x) -. ‘Inshute qfI Human Origins, 1288 9th Street, Berkeley, California 94710, USA ’Orstom, 13 rue Geoffroy l’Angevin, 75004 Paris, France 3Department of Geosciences, The University of Arizona, Tucson, Arizona 85721, USA Absfract - Land mammal faunas of Paleocene age in the southern Andean basin of Bolivia and NW Argentina are calibrated by regional sequence stratigraphy and rnagnetostratigraphy. The local fauna from Tiupampa in Bolivia is -59.0 Ma, and is thus early Late Paleocene in age. Taxa from the lower part of the Lumbrera Formation in NW Argentina (long regarded as Early Eocene) are between -58.0-55.5 Ma, and thus Late Paleocene in age. A reassessment of the ages of local faunas from lhe Rfo Chico Formation in the San Jorge basin, Patagonia, southern Argentina, shows that lhe local fauna from the Banco Negro Infeiior is -60.0 Ma, mak- ing this the most ancient Cenozoic mammal fauna in South,America. Critical reevaluation the ltaboraí fauna and associated or All geology in SE Brazil favors lhe interpretation that it accumulated during a sea-level lowsland between -$8.2-56.5 Ma. known South American Paleocene land inammal faunas are thus between 60.0 and 55.5 Ma (i.e. Late Paleocene) and are here assigned to the Riochican Land Maminal Age, with four subages (from oldest to youngest: Peligrian, Tiupampian, Ilaboraian, Riochican S.S.).
    [Show full text]
  • Unraveling the Peruvian Phase of the Central Andes: Stratigraphy, Sedimentology and Geochronology of the Salar De Atacama Basin (22°30-23°S), Northern Chile
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/271538622 Unraveling the Peruvian Phase of the Central Andes: Stratigraphy, sedimentology and geochronology of the Salar de Atacama Basin (22°30-23°S), northern Chile Article in Basin Research · March 2015 DOI: 10.1111/bre.12114 CITATIONS READS 5 127 4 authors: Sebastián Bascuñán Cesar Arriagada University of Chile University of Chile 4 PUBLICATIONS 5 CITATIONS 90 PUBLICATIONS 664 CITATIONS SEE PROFILE SEE PROFILE Jacobus Philippus Le Roux Katja Deckart University of Chile University of Chile 141 PUBLICATIONS 1,668 CITATIONS 28 PUBLICATIONS 610 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Jacobus Philippus Le Roux letting you access and read them immediately. Retrieved on: 09 August 2016 EAGE Basin Research (2015) 1–28, doi: 10.1111/bre.12114 Unraveling the Peruvian Phase of the Central Andes: stratigraphy, sedimentology and geochronology of the Salar de Atacama Basin (22°30–23°S), northern Chile Sebastia´ n Bascun˜ a´ n,* Ce´ sar Arriagada,* Jacobus Le Roux*,† and Katja Deckart* *Departamento de Geologıa, Universidad de Chile, Santiago, Chile †Centro de Excelencia en Geotermia de los Andes (CEGA), Universidad de Chile, Santiago, Chile ABSTRACT The Salar de Atacama Basin holds important information regarding the tectonic activity, sedimen- tary environments and their variations in northern Chile during Cretaceous times. About 4000 m of high-resolution stratigraphic columns of the Tonel, Purilactis and Barros Arana Formations reveal braided fluvial and alluvial facies, typical of arid to semi-arid environments, interrupted by scarce intervals with evaporitic, aeolian and lacustrine sedimentation, displaying an overall coarsening- upward trend.
    [Show full text]
  • Low-Temperature Thermochronologic Trends Across the Central Andes, 21°S–28°S
    Downloaded from memoirs.gsapubs.org on November 14, 2014 The Geological Society of America Memoir 212 2015 Low-temperature thermochronologic trends across the central Andes, 21°S–28°S P.W. Reiners S.N. Thomson A. Vernon Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721, USA S.D. Willett Geologisches Institut, Eidgenössische Technische Hochschule, NO E 33, Sonneggstrasse 5, 8092 Zürich, Switzerland M. Zattin Department of Geosciences, University of Padova, 35137 Padova, Italy J. Einhorn* G. Gehrels J. Quade D. Pearson† K.E. Murray Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721, USA W. Cavazza Dipartimento di Scienze, Biologiche, Geologiche e Ambientali, Università di Bologna, 40126 Bologna, Italy ABSTRACT In this paper, we merge more than 200 new apatite and zircon (U-Th)/He analyses and 21 apatite fi ssion-track analyses from 71 new samples with previous published thermochronologic data using the same systems to understand the growth and large- scale kinematics of the central Andes between 21°S and 28°S. In general, minimum dates decrease and the total range of dates increases from west to east across the range. Large variations in thermochronometer dates on the east side refl ect high spa- tial gradients in depth of recent erosional exhumation. Almost nowhere in this part of the Andes has Cenozoic erosion exceeded ~6–8 km, and in many places in the eastern half of the range, erosion has not exceeded 2–3 km, despite these regions now being *Current address: ExxonMobil Exploration Company, 233 Benmar Drive, Houston, Texas 77060, USA.
    [Show full text]
  • Apatite Triple Dating and White Mica 40Ar/39Ar
    Apatite triple dating and white mica 40Ar/ 39Ar thermochronology of syntectonic detritus in the Central Andes: A multiphase tectonothermal history B. Carrapa1, P.G. DeCelles2, P.W. Reiners2, G.E. Gehrels2, and M. Sudo3 1Department of Geology and Geophysics, University of Wyoming, Laramie, Wyoming 82071, USA 2Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA 3Universität Potsdam, Institut für Geowissenschaften, 14476 Golm, Germany ABSTRACT We applied apatite U-Pb, fi ssion track, and (U-Th)/He triple dating and white mica 40Ar/39Ar thermochronology to syntectonic sedimentary rocks from the central Andean Puna plateau in order to determine the source-area geochronology and source sedimentary basin thermal his- tories, and ultimately the timing of multiple tectonothermal events in the Central Andes. Apa- tite triple dating of samples from the Eocene Geste Formation in the Salar de Pastos Grandes basin shows late Precambrian–Devonian apatite U-Pb crystallization ages, Eocene apatite fi s- sion track (AFT), and Eocene–Miocene (U-Th)/He (ca. 8–47 Ma) cooling ages. Double dating of cobbles from equivalent strata in the Arizaro basin documents early Eocene (46.2 ± 3.9 Ma) and Cretaceous (107.6 ± 7.6, 109.5 ± 7.7 Ma) AFT and Eocene–Oligocene (ca. 55–30 Ma) (U-Th)/He ages. Thermal modeling suggests relatively rapid cooling between ca. 80 and 50 Ma and reheating and subsequent diachronous basin exhumation between ca. 30 Ma and 5 Ma. The 40Ar/39Ar white mica ages from the same samples in the Salar de Pastos Grandes area are mainly 400–350 Ma, younger than apatite U-Pb ages, suggesting source-terrane cooling and exhumation during the Devonian–early Carboniferous.
    [Show full text]
  • The Growth of the Central Andes, 22°S–26°S
    Downloaded from memoirs.gsapubs.org on January 15, 2015 The Geological Society of America Memoir 212 2015 The growth of the central Andes, 22°S–26°S J. Quade* M.P. Dettinger B. Carrapa P. DeCelles K.E. Murray Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA K.W. Huntington Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195-1310, USA A. Cartwright Mintec, Inc., 3544 East Fort Lowell Road, Tucson, Arizona 85716, USA R.R. Canavan Department of Geology, University of Wyoming, Laramie, Wyoming 82071, USA G. Gehrels Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA M. Clementz Department of Geology, University of Wyoming, Laramie, Wyoming 82071, USA ABSTRACT We synthesize geologic observations with new isotopic evidence for the timing and magnitude of uplift for the central Andes between 22°S and 26°S since the Paleocene. To estimate paleoelevations, we used the stable isotopic composition of carbonates and volcanic glass, combined with another paleoelevation indicator for the central Andes: the distribution of evaporites. Paleoelevation reconstruction using clumped isotope paleothermometry failed due to resetting during burial. The Andes at this latitude rose and broadened eastward in three stages during the Cenozoic. The fi rst, in what is broadly termed the “Incaic” orogeny, ended by the late Eocene, when magmatism and deformation had elevated to ≥4 km the bulk (~50%) of what is now the western and central Andes. The second stage witnessed the gradual building of the easternmost Puna and Eastern Cordillera, starting with deforma- tion as early as 38 Ma, to >3 km by no later than 15 Ma.
    [Show full text]
  • Un Nuevo Notopithecinae (Notoungulata, Typotheria) Del Terciario Inferior De La Puna Argentina
    ISSN: 0211-8327 STVDIA GEOLÒGICA SALMANTICENSIA, 31 (1995): p. 87-99. UN NUEVO NOTOPITHECINAE (NOTOUNGULATA, TYPOTHERIA) DEL TERCIARIO INFERIOR DE LA PUNA ARGENTINA. GUILLERMO LÓPEZ (*) MARIANO BOND (*) LÓPEZ, G. & BOND, M. (1995): Un nuevo Notopithecinae (Notoungulata, Typotheria) del Terciario Inferior de la Puna argentina. [A new Notopithecinae (Notoungulata, Typotheria) of Lower Tertiary from the argentinian Puna.]. Stvd.Geol.Salmant., 31: p. 87-99. Salamanca, 1996-02-15. (FECHA DE RECEPCIÓN: 1995-12-12) (FECHA DE ADMISIÓN: 1995-12-26 Palabras clave: Notoungulata, Notopithecinae, Sistemática, Nuevo, Eoceno, Argentina. Key words: Notoungulata, Notopithecinae, Systematic, New, Eocene, Argentina. (*): Departamento Científico Paleontología Vertebrados. Museo de La Plata. Paseo del Bosque s/n. (1900) La Plata, Buenos Aires. República Argentina. Ediciones Universidad de Salamanca 88 G.LÓPEZ & M.BOND UN NUEVO NOTOPITHECINAE DEL TERCIARIO INFERIOR DE LA PUNA ARGENTINA RESUMEN: Los Interatheriidae Notopithecinae son un grupo de notoungulados tipoterios de tamaño muy pequeño, muy frecuentes en el Paleógeno de Patagonia; generalmente, han sido considerados como ancestrales a la más avanzada subfamilia Interatheriinae. Aquí se describe Punapithecus minor n. gen. y n. sp., proveniente de la Formación Geste (Grupo Pastos Grandes) de Antofagasta de la Sierra, Provincia de Catamarca y San Antonio de los Cobres, Provincia de Salta, en el noroeste argentino. El nivel fosilífero ha sido asignado, por su fauna asociada, a la Edad Mustersense (Eoceno medio). Este es el primer registro para este grupo fuera de Patagonia en la Argentina; también se los ha registrado, con certeza, en capas del Paleógeno de Chile. Punapithecus minor presenta los siguientes caracteres diagnósticos: Tamaño más pequeño (al menos la mitad) que el de todos los otros Notopithecinae conocidos.
    [Show full text]
  • VIII Encontro De Biologia Comparada E
    Universidade de São Paulo Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Programa de Pós-Graduação em Biologia Comparada ANAIS DO EVENTO VIII Encontro de Biologia Comparada e II Workshop de Extensão em Biologia Comparada “A Biodiversidade e as Diversidades da Biologia” Ribeirão Preto Julho de 2017 2 Cidade, G. M. (Editor) Anais do Evento VIII Encontro de Biologia Comparada e II Workshop de Extensão em Biologia Comparada. Giovanne Mendes Cidade (ed.). Ribeirão Preto: FFCLRP- USP, 2017. 35 p. Ciências Biológicas - Biologia 3 SUMÁRIO Apresentação 4 Comissão Organizadora 5 Apoio 6 Programação diária 7 Resumos dos Minicursos 14 II Workshop de Extensão em Biologia Comparada: resumos das oficinas 21 Apresentação de trabalhos: resumos 27 Agradecimentos 33 4 APRESENTAÇÃO O Programa de Pós-Graduação em Biologia Comparada, criado em 1997 e sediado no Departamento de Biologia da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), tem como objetivo a formação de docentes, pesquisadores e profissionais das mais diversas atividades no âmbito das Ciências Biológicas. De caráter interdisciplinar, o programa compreende grupos de pesquisa de diferentes áreas e enfatiza a compreensão da história evolutiva dos organismos, suas inter-relações e seus mecanismos de adaptação aos diferentes tipos de ambiente. Levando em conta a importância da divulgação do Programa e dos projetos nele desenvolvidos tanto para a atração de novos alunos quanto para o intercâmbio do conhecimento gerado, os alunos do Programa têm realizado, a cada dois anos, os Encontros de Biologia Comparada, que nesta ocasião alcançam sua oitava edição. Em todas as edições do evento, a Biodiversidade, sua origem e evolução, bem como o papel da Biologia Comparada no seu estudo, aplicação e conservação, foram temas que permearam os debates.
    [Show full text]
  • (Puna Plateau, NW Argentina). Implication for the Geothermal System Investigation
    energies Article Geological Map of the Tocomar Basin (Puna Plateau, NW Argentina). Implication for the Geothermal System Investigation Rubén Filipovich 1,* , Walter Báez 1, Gianluca Groppelli 2,* , Florencia Ahumada 1 , Luca Aldega 3 , Raúl Becchio 1, Gabriele Berardi 4, Sabina Bigi 3 , Chiara Caricchi 5, Agostina Chiodi 1, Sveva Corrado 4, Gianfilippo De Astis 5, Arnaldo A. De Benedetti 4 , Chiara Invernizzi 6, Gianluca Norini 2, Michele Soligo 4, Sara Taviani 7, José G. Viramonte 1 and Guido Giordano 2,4 1 Instituto de Bio y Geociencias del NOA (IBIGEO, UNSa-CONICET), Av. 9 de Julio 14, A4405BBA Salta, Argentina; [email protected] (W.B.); ahumadafl[email protected] (F.A.); [email protected] (R.B.); [email protected] (A.C.); [email protected] (J.G.V.) 2 CNR Istituto di Geologia Ambientale e Geoingegneria, sezione di Milano, Via Mario Bianco 9, 20131 Milan, Italy; [email protected] (G.N.); [email protected] (G.G.) 3 Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy; [email protected] (L.A.); [email protected] (S.B.) 4 Dipartimento di Scienze, Università degli Studi di Roma Tre, Largo S. L. Murialdo 1, 00146 Rome, Italy; [email protected] (G.B.); [email protected] (S.C.); [email protected] (A.A.D.B.); [email protected] (M.S.) 5 Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy; [email protected] (C.C.); gianfi[email protected] (G.D.A.) 6 Scuola di Scienze e Tecnologia—Sezione
    [Show full text]
  • Boletim 2019 P1
    22º Seminário do Programa de Pós-Graduação em Geologia Departamento de Geologia - Universidade Federal do Paraná 24 a 28 de junho de 2019 Curitiba - PR Estilos de mineralização e geoquímica de Cu, Ag, As, Sb e Zn do depósito de Cu-Ag de Tullacondra (Cork, Irlanda) Andressa de Araujo Silva [email protected] Orientador: Prof. Dr. Pedro Filipe de Oliveira Cordeiro (Departamento de Geologia/ UFPR) Coorientador: Prof. Dr. Leonardo Evangelista Lagoeiro (Departamento de Geologia/ UFPR) Palavras-chave: Metalogênese do Cobre; MVT Irish Type; Irish Midlands Introdução O depósito de Tullacondra é uma mineralização de Cu-Ag pertencente a Irish Midlands, situado a 10 km a noroeste da cidade de Mallow, condado de Cork, sul da Irlanda (Wilbur and Carter 1986). A Irish Midlands é uma província conhecida por abrigar importantes depósitos de Zn-Pb, como os depósitos de Navan, Lisheen e Silvermine, com cerca de 110 milhões de toneladas (Mt) de minério com valor médio de 8% Zn e 2% Pb, 22 Mt a 11,63% Zn e 1,96% Pb, e 17 Mt a 6,4% Zn, 2,5% Pb e 23 g/t Ag, respectivamente (Andrew 1986; Convery 2017; Torremans 2018). Tullacondra consiste de 3,6 Mt a 0,7% Cu e 27,7 g/t Ag, ainda não explorado e tem sido caracterizado como um corpo vertical rico em Cu com trend EW e um stratabound rico em Ag. O depósito está hospedado em rochas carbonáticas do Carbonífero Inferior do Lower Limestone Shale, lateralmente equivalente ao Grupo Navan, no flanco norte da anticlinal herciniana Kilmaclenine (figuras 1A e 1B - Wilbur and Carter 1986).
    [Show full text]
  • Decelles, P.G., Carrapa, B., and Gehrels, G.E., 2007, Detrital Zircon
    Detrital zircon U-Pb ages provide provenance and chronostratigraphic information from Eocene synorogenic deposits in northwestern Argentina P.G. DeCelles Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA B. Carrapa Universität Potsdam, Institut für Geowissenschaften, 14476 Golm, Germany G.E. Gehrels Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA ABSTRACT progressively more abundant in the upper part Paleogene clastic sedimentary rocks in the Puna plateau of northwestern Argentina contain of the formation (Fig. 2; Carrapa and DeCelles, valuable information about the timing and location of early mountain building in the central 2006). Conglomerates in the Geste Formation Andes. Because these rocks generally lack tuffaceous facies, only paleontological ages have been contain clasts of vein quartz, quartzite, and available. We present U-Pb ages from detrital zircons in the conglomeratic Eocene Geste Forma- phyllite that are identical to rocks in the under- tion of the central Puna plateau. The zircon ages indicate that the Geste Formation was derived lying Ordovician Copalayo Formation (Azeño- from nearby high-relief ranges composed of Ordovician metasedimentary rocks. A small popu- laza, 1973). Paleocurrent data indicate chiefl y lation of ca. 37–35 Ma grains also confi rms the late Eocene stratigraphic age of the Geste Forma- eastward paleofl ow directions (Carrapa and tion, and suggests that U-Pb detrital zircon ages may provide a new tool for determining deposi- DeCelles, 2006). Middle to upper Eocene fos- tional ages and provenance of widespread Paleogene deposits in the central Andes. sils have been recovered from the middle part of the Geste Formation (marsupials, notoungulates, Keywords: Andes, Argentina, syntectonic sedimentation, U-Pb geochronology.
    [Show full text]
  • A Review of Tertiary Climate Changes in Southern South America and the Antarctic Peninsula
    Sedimentary Geology 247–248 (2012) 21–38 Contents lists available at SciVerse ScienceDirect Sedimentary Geology journal homepage: www.elsevier.com/locate/sedgeo Review A review of Tertiary climate changes in southern South America and the Antarctic Peninsula. Part 2: continental conditions J.P. Le Roux Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile/Centro de Excelencia en Geotérmia de los Andes, Casilla 13518, Correo 21, Santiago, Chile article info abstract Article history: Climate changes in southern South America and the Antarctic Peninsula during the Tertiary show a strong Received 12 July 2011 correlation with ocean warming and cooling events, which are in turn related to tectonic processes. During Received in revised form 1 December 2011 periods of accelerated sea-floor spreading and mid-ocean ridge activity, sea-levels rose so that parts of the Accepted 2 December 2011 continents were flooded and forests were destroyed. However, this was balanced by the large-scale release Available online 13 December 2011 of CO2 during volcanic outgassing and carbonate precipitation on the continental shelves, which caused rising air temperatures and the poleward expansion of (sub)tropical and temperate forests. Cooling episodes gen- Keywords: – Climate change erally caused an increase in the north south thermal gradient because of an equatorward shift in climate Tertiary belts, so that the Westerly Winds intensified and brought higher rainfall to the lower latitudes. An increase South America in wind-blown dust caused temperatures to drop further by reflecting sunlight back into space. Antarctic Peninsula The rising Andes Range had a marked influence on climate patterns.
    [Show full text]
  • Retroarc Basin Reorganization and Aridification During Paleogene Uplift of the Southern Central Andes
    PUBLICATIONS Tectonics RESEARCH ARTICLE Retroarc basin reorganization and aridification during 10.1002/2016TC004400 Paleogene uplift of the southern central Andes Key Points: J. C. Fosdick1,2 , E. J. Reat3, B. Carrapa4 , G. Ortiz5 , and P. M. Alvarado5 • Detrital zircon geochronology constrains Maastrichtian through 1Center for Integrative Geosciences, University of Connecticut, Storrs, Connecticut, USA, 2Department of Geography, Oligocene sedimentation 3 • Changes in sediment provenance University of Connecticut, Storrs, Connecticut, USA, Department of Geology and Geophysics, University of Utah, Salt Lake 4 5 suggest Late Eocene uplift of the City, Utah, USA, Department of Geosciences, University of Arizona, Tucson, Arizona, USA, Centro de Investigaciones de la Frontal Cordillera Geosfera y la Biosfera, Departamento de Geofísica y Astronomía, Facultad de Ciencias Exactas, Físicas y Naturales, • Paleogene sedimentation rates track Universidad Nacional de San Juan-Consejo Nacional de Investigaciones Científicas y Técnicas, San Juan, Argentina accelerating basin subsidence during Andean uplift Abstract Tectonic development of the Andean Cordillera has profoundly changed the topography, Supporting Information: climate, and vegetation patterns of the southern central Andes. The Cenozoic Bermejo Basin in Argentina • Supporting Information S1 (~30°S) provides a key record of thrust belt kinematics and paleoclimate south of the high-elevation Puna • Figure S1 • Figure S2 Plateau. Ongoing debate regarding the timing of initiation of upper plate shortening and Andean uplift • Table S1 persists, precluding a thorough understanding of the earlier tectonic and climatic controls on basin evolution. • Table S2 We present new sedimentology, detrital geochronology, sandstone petrography, and subsidence analysis • Table S3 from the Bermejo Basin that reveal siliciclastic-evaporative fluvial and lacustrine environments prior to the Correspondence to: main documented phase of Oligocene-Miocene shortening of the Frontal Cordillera and Argentine J.
    [Show full text]