Hidden Gravity in Open-String Field Theory

Total Page:16

File Type:pdf, Size:1020Kb

Hidden Gravity in Open-String Field Theory Decemb er ITPSB HIDDEN GRAVITY IN OPENSTRING FIELD THEORY 1 W Siegel Institute for Theoretical Physics State University of New York Stony Brook NY ABSTRACT We clarify the nature of the graviton as a b ound state in op enstring eld theory The at metric in the action app ears as the vacuum value of an open string eld The b ound state app ears as a comp osite eld in the free eld theory hep-th/9312117 14 Dec 1993 1 Internet address siegelinstiphysicssunysbedu INTRODUCTION Fundamental strings as opp osed to hadronic strings have b een prop osed as the solution to two problems unied theory and quantum gravity The use of strings as a solution to the former problem hinges on its use as a solution to the latter Since the compactications of string theories to four dimensions are so numerous and the compactication itself do es not seem to b e predictable it is not clear that the predictability of string theory for low energy physics is much greater than that of renormalizable or lowenergy phenomenological fourdimensional quantum eld theory of particles The greater predictability of string theory is exp ected from the hop efullynotto omuch higherenergy corrections arising from the direct or indirect eects of gravity including the eects of sup ersymmetry whose breaking is b est explained through the use of sup ergravity and the sup erHiggs eect In other words the unication p owers of string theory although originally thought to b e great b ecause of the few mo dels available in ten dimensions b efore compactication have b een reduced to a solution to the unication of gravity with sup er grand unied theories Therefore string theory is basically a solution only to the problem of quantum gravity but it is the only known solution Ordinarily that might b e sucient and p erhaps even desirable but until the exp erimental situation improves it would b e useful to have an alternative theory of quantum gravity for purp oses of compari son The only prop osed mechanism free of ghosts and the resultant eectively non renormalizable ambiguities is the app earance of the graviton as a b ound state in a renormalizable eld theory One advantage this might have over string theory is the correct prediction of the dimensionality of space time sup erstring theory has criti cal dimension while renormalizable eld theory with a nite numb er of elds and b ounded p otential has critical maximum dimension However the only known theory in which the graviton has b een demonstrated to app ear as a b oundstate p ole in the Smatrix is op enstring theory Therefore the phenomenon of b oundstate gravity in op enstring theory warrants a closer study with an eye toward isolating those asp ects that are essential to this phenomenon but might not require string theory In this pap er we p oint out two curious features of this mechanism in op enstring theory that may b e crucial to the understanding if not the formulation of b ound state gravity in a more general setting In the following section we discuss the nature of the vacuum value of the op enstring eld Originally this was intro duced as an analogy to gravity where unlike most other eld theories there is no kinetic quadratic term in the action until after expanding ab out the at metric However in classical op enstring eld theory as opp osed to classical closedstring eld theory there is no gravity We discuss the origin of this phenomenon from the vacuum values of massive spintwo elds the relation of their Stueckelb erg elds to the Skyrme mo del and the relation of these massive elds to the massless graviton in the quantum theory In section we study the generation of the graviton at the quantum level In op enstring eld theory the graviton app ears in a onelo op diagram rather than through an innite sum of oneparticleirreducible graphs as in most other known theories with b ound states such as QED and QCD We p oint out that this implies that the b oundstate graviton actually app ears in free op enstring eld theory We discuss the analogy to the theory of a free twodimensional massless spinor which has a massless scalar as a b ound state The b oundstate graviton in op enstring eld theory is thus a higherdimensional analog of b osonization Besides this analogy b etween free theories we also describ e the analogy b etween interacting op enstring eld theory and the Schwinger mo del which shows how these b ound states manifest themselves as new p oles in the fundamental elds It is useful to analyze this phenomenon from the p oint of view of an eective the ory where a new redundant eld is intro duced for the b ound state and we therefore discuss the gaugeinvariant eld theory of coupled op en and closed strings in section In the nal section we give a more general analysis of coupled systems at the free level which allows us to discuss some examples of the mixing that o ccurs b etween states of the op en string and the closed string the Higgs mechanism for the massless elds of the UN string and the coupling of the graviton of the closed string to the lowestmass spin eld of the op en string THE METRIC TENSOR AS AN OPENSTRING FIELD The action for op enstring eld theory has b een rewritten as a single term cubic in the elds which is apparently indep endent of the atspace metric The at space metric app ears through the vacuum exp ectation value resp onsible for generating the kinetic term from the current Q of the BRST op erator Q m 0 1 X C C hi Z Z y y y 1 1 1 S Q 2 3 3 Z Z 2 hi Q I Q d Q Q d Q L L 0 0 1 m 0 1 0 m n mn 0 1 1 1 Q C X P C B C B C X X P P C B C B m 0 1 mn m n 1 0 2 2 where I is the identity element for the pro duct the Spinvariant vacuum up to a m 0 1 BRST transformation and P B B are the momenta conjugate to X C C m 0 1 Strominger has explained the app earance of the atspace metric in terms of the coupling of the op en string to a background closed string in a desire to enlarge the space describ ed by the op enstring eld to include indep endent op en and closed string comp onent elds or even to describ e only closedstring elds Note that neither the atspace nor any other metric app ears in the denition of the Hilb ert R y space inner pro duct functional integration measure h j i The string 1 2 1 2 eld theory formulation is one based on rst quantization and thus uses the Zinn JustinBatalinVilkovisky ZJBV formalism This means that nonvanishing inner pro ducts exist only b etween elds and their ZJBV antields eg a covariant vector n A has a contravariant antield A so the corresp onding inner pro duct involves m n only Kronecker deltas m Here we give a dierent interpretation of Stromingers result Writing the op en string eld as Z 2 d Q I 0 1 m 0 1 0 m n mn 0 1 1 1 Q C X P C B C B C g X X g P P C B C B m 0 1 mn m n 1 0 2 2 hg X i mn mn we interpret the eld g as an open string eld In fact if we compare with the mn usual oscillator expansion of it is clear that this eld minus its vacuum value is a combination of the usual op enstring elds Ie the linearized metric is an innite sum with appropriate co ecients of the massive spin elds that are mass eigenstates in the free theory Equivalently it corresp onds to eliminating the vacuum exp ectation values of all spin tensors except one by simple eld redenitions For any g including traces of higherspin elds indep endent of g that has hg i mn mn mn k replaceg with a new eldg g k g so hg i Thus if we start with mn mn mn mn mn many metrics ie spin elds with nonvanishing vacuum values we can always redene them so only one remains Similar remarks apply to gauge parameters such as those for general co ordinate transformations where vacuum value refers then to the invariances of the vacuum ie the global part of the lo cal transformation The consistency with Stromingers interpretation in terms of closed string elds follows from the fact that in the eld theory of b oth op en and closed strings the closedop en twop oint vertex that follows from quantum corrections implies a direct nonderivative twop oint coupling b etween these op enstring elds and the cor resp onding closedstring elds like the nondiagonal massterm typ e of coupling that can o ccur b etween two spin elds as here for the op enstring eld g and its mn closedstring analog We will discuss this further in later sections However here we are considering a eld theory of op en strings only This is actually more consistent with resp ect to an expansion inh since the relation of the closedstring selfcoupling to the op enstring one ish dep endent Closedstring states still app ear in the theory but only as b ound states so they are not describ ed by fundamental elds but rather by comp osite elds just as eg the hydrogen atom in QED In this interpretation the op enstring eld g intro duced ab ove is the only metric tensor available in the mn theory the only spin eld which couples universally to the energymomentum ten sor of the op en string When onelo op corrections to its propagator are calculated one nds a new massless spin p ole that didnt app ear in the classical treelevel theory ie the graviton At the linearized level it is already clear that the op enstring eld theory has gauge invariances for massless spin elds that resemble those of massless spin In string eld theory expansion in the ghost co ordinates gives Stueckelb erg elds The interacting case requires only a generalization of the Higgs mechanism to gravity This can b e derived in the same way as for massive spin by p erforming a gauge transformation
Recommended publications
  • M2-Branes Ending on M5-Branes
    M2-branes ending on M5-branes Vasilis Niarchos Crete Center for Theoretical Physics, University of Crete 7th Crete Regional Meeting on String Theory, 27/06/2013 based on recent work with K. Siampos 1302.0854, ``The black M2-M5 ring intersection spins’‘ Proceedings Corfu Summer School, 2012 1206.2935, ``Entropy of the self-dual string soliton’’, JHEP 1207 (2012) 134 1205.1535, ``M2-M5 blackfold funnels’’, JHEP 1206 (2012) 175 and older work with R. Emparan, T. Harmark and N. A. Obers ➣ blackfold theory 1106.4428, ``Blackfolds in Supergravity and String Theory’’, JHEP 1108 (2011) 154 0912.2352, ``New Horizons for Black Holes and Branes’’, JHEP 1004 (2010) 046 0910.1601, ``Essentials of Blackfold Dynamics’’, JHEP 1003 (2010) 063 0902.0427, ``World-Volume Effective Theory for Higher-Dimensional Black Holes’’, PRL 102 (2009)191301 0708.2181, ``The Phase Structure of Higher-Dimensional Black Rings and Black Holes’‘ + M.J. Rodriguez JHEP 0710 (2007) 110 2 Important lessons about the fundamentals of string/M-theory (and QFT) are obtained by studying the low-energy theories on D-branes and M-branes. Most notably in M-theory, recent progress has clarified the low-energy QFT on N M2-brane and the N3/2 dof that it exhibits. Bagger-Lambert ’06, Gustavsson ’07, ABJM ’08 Drukker-Marino-Putrov ’10 Our understanding of the M5-brane theory is more rudimentary, but efforts to identify analogous properties, e.g. the N3 scaling of the massless dof, is underway. Douglas ’10 Lambert,Papageorgakis,Schmidt-Sommerfeld ’10 Hosomichi-Seong-Terashima ’12 Kim-Kim ’12 Kallen-Minahan-Nedelin-Zabzine ’12 ..
    [Show full text]
  • Report of the Supersymmetry Theory Subgroup
    Report of the Supersymmetry Theory Subgroup J. Amundson (Wisconsin), G. Anderson (FNAL), H. Baer (FSU), J. Bagger (Johns Hopkins), R.M. Barnett (LBNL), C.H. Chen (UC Davis), G. Cleaver (OSU), B. Dobrescu (BU), M. Drees (Wisconsin), J.F. Gunion (UC Davis), G.L. Kane (Michigan), B. Kayser (NSF), C. Kolda (IAS), J. Lykken (FNAL), S.P. Martin (Michigan), T. Moroi (LBNL), S. Mrenna (Argonne), M. Nojiri (KEK), D. Pierce (SLAC), X. Tata (Hawaii), S. Thomas (SLAC), J.D. Wells (SLAC), B. Wright (North Carolina), Y. Yamada (Wisconsin) ABSTRACT Spacetime supersymmetry appears to be a fundamental in- gredient of superstring theory. We provide a mini-guide to some of the possible manifesta- tions of weak-scale supersymmetry. For each of six scenarios These motivations say nothing about the scale at which nature we provide might be supersymmetric. Indeed, there are additional motiva- tions for weak-scale supersymmetry. a brief description of the theoretical underpinnings, Incorporation of supersymmetry into the SM leads to a so- the adjustable parameters, lution of the gauge hierarchy problem. Namely, quadratic divergences in loop corrections to the Higgs boson mass a qualitative description of the associated phenomenology at future colliders, will cancel between fermionic and bosonic loops. This mechanism works only if the superpartner particle masses comments on how to simulate each scenario with existing are roughly of order or less than the weak scale. event generators. There exists an experimental hint: the three gauge cou- plings can unify at the Grand Uni®cation scale if there ex- I. INTRODUCTION ist weak-scale supersymmetric particles, with a desert be- The Standard Model (SM) is a theory of spin- 1 matter tween the weak scale and the GUT scale.
    [Show full text]
  • Off-Shell Interactions for Closed-String Tachyons
    Preprint typeset in JHEP style - PAPER VERSION hep-th/0403238 KIAS-P04017 SLAC-PUB-10384 SU-ITP-04-11 TIFR-04-04 Off-Shell Interactions for Closed-String Tachyons Atish Dabholkarb,c,d, Ashik Iqubald and Joris Raeymaekersa aSchool of Physics, Korea Institute for Advanced Study, 207-43, Cheongryangri-Dong, Dongdaemun-Gu, Seoul 130-722, Korea bStanford Linear Accelerator Center, Stanford University, Stanford, CA 94025, USA cInstitute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305, USA dDepartment of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India E-mail:[email protected], [email protected], [email protected] Abstract: Off-shell interactions for localized closed-string tachyons in C/ZN super- string backgrounds are analyzed and a conjecture for the effective height of the tachyon potential is elaborated. At large N, some of the relevant tachyons are nearly massless and their interactions can be deduced from the S-matrix. The cubic interactions be- tween these tachyons and the massless fields are computed in a closed form using orbifold CFT techniques. The cubic interaction between nearly-massless tachyons with different charges is shown to vanish and thus condensation of one tachyon does not source the others. It is shown that to leading order in N, the quartic contact in- teraction vanishes and the massless exchanges completely account for the four point scattering amplitude. This indicates that it is necessary to go beyond quartic inter- actions or to include other fields to test the conjecture for the height of the tachyon potential. Keywords: closed-string tachyons, orbifolds.
    [Show full text]
  • UV Behavior of Half-Maximal Supergravity Theories
    UV behavior of half-maximal supergravity theories. Piotr Tourkine, Quantum Gravity in Paris 2013, LPT Orsay In collaboration with Pierre Vanhove, based on 1202.3692, 1208.1255 Understand the pertubative structure of supergravity theories. ● Supergravities are theories of gravity with local supersymmetry. ● Those theories naturally arise in the low energy limit of superstring theory. ● String theory is then a UV completion for those and thus provides a good framework to study their UV behavior. → Maximal and half-maximal supergravities. Maximal supergravity ● Maximally extended supergravity: – Low energy limit of type IIA/B theory, – 32 real supercharges, unique (ungauged) – N=8 in d=4 ● Long standing problem to determine if maximal supergravity can be a consistent theory of quantum gravity in d=4. ● Current consensus on the subject : it is not UV finite, the first divergence could occur at the 7-loop order. ● Impressive progresses made during last 5 years in the field of scattering amplitudes computations. [Bern, Carrasco, Dixon, Dunbar, Johansson, Kosower, Perelstein, Rozowsky etc.] Half-maximal supergravity ● Half-maximal supergravity: – Heterotic string, but also type II strings on orbifolds – 16 real supercharges, – N=4 in d=4 ● Richer structure, and still a lot of SUSY so explicit computations are still possible. ● There are UV divergences in d=4, [Fischler 1979] at one loop for external matter states ● UV divergence in gravity amplitudes ? As we will see the divergence is expected to arise at the four loop order. String models that give half-maximal supergravity “(4,0)” susy “(0,4)” susy ● Type IIA/B string = Superstring ⊗ Superstring Torus compactification : preserves full (4,4) supersymmetry.
    [Show full text]
  • Duality and Strings Dieter Lüst, LMU and MPI München
    Duality and Strings Dieter Lüst, LMU and MPI München Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Often we were working on related subjects and I enjoyed various very nice collaborations and friendship with Luis. Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Often we were working on related subjects and I enjoyed various very nice collaborations and friendship with Luis. Duality of 4 - dimensional string constructions: • Covariant lattices ⇔ (a)symmetric orbifolds (1986/87: W. Lerche, D.L., A. Schellekens ⇔ L. Ibanez, H.P. Nilles, F. Quevedo) • Intersecting D-brane models ☞ SM (?) (2000/01: R. Blumenhagen, B. Körs, L. Görlich, D.L., T. Ott ⇔ G. Aldazabal, S. Franco, L. Ibanez, F. Marchesano, R. Rabadan, A. Uranga) Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Often we were working on related subjects and I enjoyed various very nice collaborations and friendship with Luis. Duality of 4 - dimensional string constructions: • Covariant lattices ⇔ (a)symmetric orbifolds (1986/87: W. Lerche, D.L., A. Schellekens ⇔ L. Ibanez, H.P. Nilles, F. Quevedo) • Intersecting D-brane models ☞ SM (?) (2000/01: R. Blumenhagen, B. Körs, L. Görlich, D.L., T. Ott ⇔ G. Aldazabal, S. Franco, L. Ibanez, F. Marchesano, R. Rabadan, A. Uranga) ➢ Madrid (Spanish) Quiver ! Freitag, 15. März 13 Luis made several very profound and important contributions to theoretical physics ! Often we were working on related subjects and I enjoyed various very nice collaborations and friendship with Luis.
    [Show full text]
  • Non-Critical String Theory Formulation of Microtubule Dynamics And
    ACT-09/95 CERN-TH.127/95 CTP-TAMU-24/95 ENSLAPP-A|-/95 hep-ph/9505401 Non-Critical String Theory Formulation of Microtubule Dynamics and Quantum Asp ects of Brain Function a; b;c N.E. Mavromatos and D.V. Nanop oulos a Lab oratoire de Physique Theorique ENSLAPP (URA 14-36 du CNRS, asso ciee a l' E.N.S de Lyon, et au LAPP (IN2P3-CNRS) d'Annecy-le-Vieux), Chemin de Bellevue, BP 110, F-74941 Annecy-le-Vieux Cedex, France. b Texas A & M University, College Station, TX 77843-424 2, USA and Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Mitchell Campus, Wo o dlands, TX 77381, USA. c CERN, Theory Division, Geneva 23 Switzerland Abstract Microtubule (MT) networks, subneural paracrystalline cytosceletal structures, seem to play a fundamental role in the neurons. We cast here the complicated MT dynamics in processed by the SLAC/DESY Libraries on 30 May 1995. 〉 the form of a 1 + 1-dimensional non-critical string theory,thus enabling us to provide a consistent quantum treatment of MTs, including enviromental friction e ects. We suggest, thus, that the MTs are the microsites, in the brain, for the emergence of stable, macroscopic PostScript quantum coherent states, identi able with the preconscious states. Quantum space-time e ects, as describ ed by non-critical string theory, trigger then an organizedcol lapse of the coherent states down to a sp eci c or conscious state. The whole pro cess we estimate to take O (1 sec), in excellent agreement with a plethora of exp erimental/observational ndings.
    [Show full text]
  • From Vibrating Strings to a Unified Theory of All Interactions
    Barton Zwiebach From Vibrating Strings to a Unified Theory of All Interactions or the last twenty years, physicists have investigated F String Theory rather vigorously. The theory has revealed an unusual depth. As a result, despite much progress in our under- standing of its remarkable properties, basic features of the theory remain a mystery. This extended period of activity is, in fact, the second period of activity in string theory. When it was first discov- ered in the late 1960s, string theory attempted to describe strongly interacting particles. Along came Quantum Chromodynamics— a theoryof quarks and gluons—and despite their early promise, strings faded away. This time string theory is a credible candidate for a theoryof all interactions—a unified theoryof all forces and matter. The greatest complication that frustrated the search for such a unified theorywas the incompatibility between two pillars of twen- tieth century physics: Einstein’s General Theoryof Relativity and the principles of Quantum Mechanics. String theory appears to be 30 ) zwiebach mit physics annual 2004 the long-sought quantum mechani- cal theory of gravity and other interactions. It is almost certain that string theory is a consistent theory. It is less certain that it describes our real world. Nevertheless, intense work has demonstrated that string theory incorporates many features of the physical universe. It is reasonable to be very optimistic about the prospects of string theory. Perhaps one of the most impressive features of string theory is the appearance of gravity as one of the fluctuation modes of a closed string. Although it was not discov- ered exactly in this way, we can describe a logical path that leads to the discovery of gravity in string theory.
    [Show full text]
  • Photon-Graviton Amplitudes N
    Photon-graviton amplitudes N. Ahmadiniaz, F. Bastianelli, O. Corradini, José M. Dávila, and C. Schubert Citation: AIP Conference Proceedings 1548, 221 (2013); doi: 10.1063/1.4817048 View online: http://dx.doi.org/10.1063/1.4817048 View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1548?ver=pdfcov Published by the AIP Publishing This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.148.231.12 On: Mon, 03 Feb 2014 23:34:26 Photon-Graviton Amplitudes † ‡ N. Ahmadiniaz∗, F. Bastianelli , O. Corradini∗∗, José M. Dávila and C. Schubert∗ ∗Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Apdo. Postal 2-82, C.P. 58040, Morelia, Michoacán, México. †Dipartimento di Fisica ed Astronomia, Università di Bologna and INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna, Italy. ∗∗Centro de Estudios en Física y Matemáticas Básicas y Aplicadas, Universidad Autónoma de Chiapas, C.P. 29000, Tuxtla Gutiérrez, México, and Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Universitá di Modena e Reggio Emilia, Via Campi 213/A, I-41125 Modena, Italy. ‡Facultad de Ciencias, Universidad Autónoma del Estado de México, Instituto Literario 100, Toluca 50000, México. Abstract. We report on an ongoing study of the one-loop photon-graviton amplitudes, using both effective action and worldline techniques. The emphasis is on Kawai-Lewellen-Tye-like relations. Keywords: Photon-graviton, KLT, worldline formalism PACS: 04.60.-m, 04.62.+v MOTIVATIONS In 1986 Kawai, Lewellen and Tye [1] found a relation between tree-level amplitudes in open and closed string theory which in the field theory limit also implies relations between amplitudes in gauge theory and in gravity.
    [Show full text]
  • Introduction to Conformal Field Theory and String
    SLAC-PUB-5149 December 1989 m INTRODUCTION TO CONFORMAL FIELD THEORY AND STRING THEORY* Lance J. Dixon Stanford Linear Accelerator Center Stanford University Stanford, CA 94309 ABSTRACT I give an elementary introduction to conformal field theory and its applications to string theory. I. INTRODUCTION: These lectures are meant to provide a brief introduction to conformal field -theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available (or almost available), and most of these go in to much more detail than I will be able to here. Those reviews con- centrating on the CFT side of the subject include refs. 1,2,3,4; those emphasizing string theory include refs. 5,6,7,8,9,10,11,12,13 I will start with a little pre-history of string theory to help motivate the sub- ject. In the 1960’s it was noticed that certain properties of the hadronic spectrum - squared masses for resonances that rose linearly with the angular momentum - resembled the excitations of a massless, relativistic string.14 Such a string is char- *Work supported in by the Department of Energy, contract DE-AC03-76SF00515. Lectures presented at the Theoretical Advanced Study Institute In Elementary Particle Physics, Boulder, Colorado, June 4-30,1989 acterized by just one energy (or length) scale,* namely the square root of the string tension T, which is the energy per unit length of a static, stretched string. For strings to describe the strong interactions fi should be of order 1 GeV. Although strings provided a qualitative understanding of much hadronic physics (and are still useful today for describing hadronic spectra 15 and fragmentation16), some features were hard to reconcile.
    [Show full text]
  • The Fuzzball Proposal for Black Holes: an Elementary Review
    hep-th/0502050 The fuzzball proposal for black holes: an elementary review1 Samir D. Mathur Department of Physics, The Ohio State University, Columbus, OH 43210, USA [email protected] Abstract We give an elementary review of black holes in string theory. We discuss BPS holes, the microscopic computation of entropy and the ‘fuzzball’ picture of the arXiv:hep-th/0502050v1 3 Feb 2005 black hole interior suggested by microstates of the 2-charge system. 1Lecture given at the RTN workshop ‘The quantum structure of space-time and the geometric nature of fundamental interactions’, in Crete, Greece (September 2004). 1 Introduction The quantum theory of black holes presents many paradoxes. It is vital to ask how these paradoxes are to be resolved, for the answers will likely lead to deep changes in our understanding of quantum gravity, spacetime and matter. Bekenstein [1] argued that black holes should be attributed an entropy A S = (1.1) Bek 4G where A is the area of the horizon and G is the Newton constant of gravitation. (We have chosen units to set c = ~ = 1.) This entropy must be attributed to the hole if we are to prevent a violation of the second law of thermodynamics. We can throw a box of gas with entropy ∆S into a black hole, and see it vanish into the central singularity. This would seem to decrease the entropy of the Universe, but we note that the area of the horizon increases as a result of the energy added by the box. It turns out that if we assign (1.1) as the entropy of the hole then the total entropy is nondecreasing dS dS Bek + matter 0 (1.2) dt dt ≥ This would seem to be a good resolution of the entropy problem, but it leads to another problem.
    [Show full text]
  • String Theory for Pedestrians
    String Theory for Pedestrians – CERN, Jan 29-31, 2007 – B. Zwiebach, MIT This series of 3 lecture series will cover the following topics 1. Introduction. The classical theory of strings. Application: physics of cosmic strings. 2. Quantum string theory. Applications: i) Systematics of hadronic spectra ii) Quark-antiquark potential (lattice simulations) iii) AdS/CFT: the quark-gluon plasma. 3. String models of particle physics. The string theory landscape. Alternatives: Loop quantum gravity? Formulations of string theory. 1 Introduction For the last twenty years physicists have investigated String Theory rather vigorously. Despite much progress, the basic features of the theory remain a mystery. In the late 1960s, string theory attempted to describe strongly interacting particles. Along came Quantum Chromodynamics (QCD)– a theory of quarks and gluons – and despite their early promise, strings faded away. This time string theory is a credible candidate for a theory of all interactions – a unified theory of all forces and matter. Additionally, • Through the AdS/CFT correspondence, it is a valuable tool for the study of theories like QCD. • It has helped understand the origin of the Bekenstein-Hawking entropy of black holes. • Finally, it has inspired many of the scenarios for physics Beyond the Standard Model of Particle physics. 2 Greatest problem of twentieth century physics: the incompatibility of Einstein’s General Relativity and the principles of Quantum Mechanics. String theory appears to be the long-sought quantum mechanical theory of gravity and other interactions. It is almost certain that string theory is a consistent theory. It is less certain that it describes our real world.
    [Show full text]
  • Three Duality Symmetries Between Photons and Cosmic String Loops, and Macro and Micro Black Holes
    Symmetry 2015, 7, 2134-2149; doi:10.3390/sym7042134 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article Three Duality Symmetries between Photons and Cosmic String Loops, and Macro and Micro Black Holes David Jou 1;2;*, Michele Sciacca 1;3;4;* and Maria Stella Mongiovì 4;5 1 Departament de Física, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain 2 Institut d’Estudis Catalans, Carme 47, Barcelona 08001, Spain 3 Dipartimento di Scienze Agrarie e Forestali, Università di Palermo, Viale delle Scienze, Palermo 90128, Italy 4 Istituto Nazionale di Alta Matematica, Roma 00185 , Italy 5 Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica (DICGIM), Università di Palermo, Viale delle Scienze, Palermo 90128, Italy; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mails: [email protected] (D.J.); [email protected] (M.S.); Tel.: +34-93-581-1658 (D.J.); +39-091-23897084 (M.S.). Academic Editor: Sergei Odintsov Received: 22 September 2015 / Accepted: 9 November 2015 / Published: 17 November 2015 Abstract: We present a review of two thermal duality symmetries between two different kinds of systems: photons and cosmic string loops, and macro black holes and micro black holes, respectively. It also follows a third joint duality symmetry amongst them through thermal equilibrium and stability between macro black holes and photon gas, and micro black holes and string loop gas, respectively. The possible cosmological consequences of these symmetries are discussed. Keywords: photons; cosmic string loops; black holes thermodynamics; duality symmetry 1. Introduction Thermal duality relates high-energy and low-energy states of corresponding dual systems in such a way that the thermal properties of a state of one of them at some temperature T are related to the properties of a state of the other system at temperature 1=T [1–6].
    [Show full text]