Introduction to Graphene

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Graphene Introduction to Graphene Bjarni Hannesson FacultyFaculty of of Physics Physics UniversityUniversity of of Iceland Iceland 20162016 INTRODUCTION TO GRAPHENE Bjarni Hannesson 16 ECTS thesis submitted in partial fulfillment of a B.Sc. degree in physics Advisors Lárus Thorlacius Valentina Giangreco M. Puletti Faculty of Physics School of Engineering and Natural Sciences University of Iceland Reykjavík, June 2016 Abstract In this report some properties of graphene, a single atomic layer of carbon, are outlined. The structure of graphene is reviewed and its dispersion relation within the tight-binding approximation and the effective mass approximation. The ob- served half-integer quantum Hall effect in graphene is illustrated and finally bilayer graphene is discussed briefly. Útdráttur Í þessari ritgerð verður fjallað um grafín sem er einnar frumeindar þykkt lag af kolefni. Frumeindirnar í grafíni mynda tvívíða sexhyrningagrind og nota má einfalt tvívítt líkan með víxlverkunum milli næstu og þarnæstu nágranna til að lýsa hegðun rafeinda í grafíni. Einnig verður fjallað um skömmtuð Hallhrif í grafíni og að lokum stuttlega um tveggja laga grafín. v Contents 1. Introduction 1 2. Lattice structure 3 3. Energy spectrum 5 3.1. The massless Dirac fermions . .6 4. The Quantum Hall effect in Graphene 9 4.1. Classical Hall effect . .9 4.2. Landau levels . 10 4.3. Quantum Hall Effect . 11 4.4. Landau levels in graphene . 12 4.5. The anomalous quantum Hall effect in graphene . 15 4.6. Symmetry breaking . 16 4.7. Shubnikov-de Haas oscillations . 18 5. Bilayer Graphene 19 5.1. Fabrication . 19 5.2. Identification of Layers . 20 5.3. Tight-binding model . 22 6. Summary 25 A. 2D fermion in an external magnetic field 27 B. 2D Dirac fermion in an external magnetic field 29 Bibliography 31 vii 1. Introduction Graphene is a sheet of carbon atoms, ordered in a hexagonal pattern and only one atom thick. We have all come in contact with graphene in our daily lives in its bulk form, named graphite. Graphite is simply a collection of graphene stacks or multiple layers of graphene weakly bound together. Graphite is in your pencil and these weak bonds are the reason the pencil leaves a trace. Although the pencil was invented in the 16-th century, graphene was only first observed in 2004 by Novoselov et.al [1]. Novoselov and Geim received the Nobel prize in Physics in 2010 for their groundbreaking studies regarding graphene. This report will review the structure of graphene in section 2 and its dispersion relation and charge carriers, which behave as massless Dirac fermions, in section 3. We will also discuss the anomalous quantum Hall effect in graphene in section 4 and briefly review bilayer graphene in section 5. This report is mainly based on the review papers by Abergel et.al, Properties of graphene: a theoretical perspective, published in Advances in Physics in 2010 [2] and by Castro Neto et.al, The electronic properties of graphene, published in Reviews of Modern Physics in 2009 [3]. 1 2. Lattice structure Graphene is a single atomic layer of carbon. The carbon atoms form a hexagonal or honeycomb lattice making the whole sheet resemble chickenwire. The graphene sheet (2D) can be rolled up to form a carbon nanotube (1D) or to a complete sphere to form fullerene (zero-D). To form a sphere some pentagons must replace the hexagons for the pentagons introduce a necessary curvature to the sheet, just like a soccer ball. The sheet of graphene has many qualities such as high electric and thermal conductivity as well as being transparent and robust. Graphene is even more robust than diamond and is in fact carbons most stable form. That is if we excite a diamond with a little energy above a threshold it would break down and form graphene or graphite. Although fullerenes and nanotubes have a lot of interesting features we will only consider the two dimensional sheet of graphene. Each carbon atom has three nearest neighbours arranged with a 120◦ angle between them, as seen in figure 2.1. This 2 trigonal plane is caused by sp hybridization of the 2s; 2px and 2py orbitals. These orbitals form strong σ bonds with a separation of 1:42 Å. The σ band forms a full and deep valence band which is responsible for the robustness of graphene. The last valence electron is in the 2pz orbital. A weak π band forms when half filled 2pz orbitals overlap other 2pz orbitals. The hexagonal lattice of graphene is bipartite and can be divided into two triangular sublattices, A and B, as shown in figure 2.1. Each sublattice is a Bravais lattice and the unit cell consist of two atoms. Since the unit cell has two atoms each cell has two 2pz electrons and the π band is completely filled. The basis vectors of sublattice A with lattice constant a = 2:46Å, are a p a p ~a1 = 3; 1 ; ~a2 = 3; −1 : (2.1) 2 2 The location of an A site atom can be expressed as a linear combination of these basis vectors. The location of a B site atom can be expressed as a linear combination of the basis vectors plus an offset, ~ a 1 ~ a 1 ~ 1 δ1 = p ; 1 ; δ2 = p ; −1 ; δ3 = a −p ; 0 : (2.2) 2 3 2 3 3 3 2. Lattice structure Figure 2.1: The honeycomb lattice of graphene in real space and reciprocal space. a) The left figure shows the hexagonal lattice, the A and B sublattices, the basis vectors and the unit cell (dotted lines). b) The corresponding reciprocal lattice and its basis vectors. The shaded area is the first Brillouin zone and its high-symmetry points Γ, M and K are illustrated. Figure from [2]. The respective reciprocal vectors are ~ 2π 1 ~ 2π 1 b1 = p ; 1 ; b2 = p ; −1 ; (2.3) a 3 a 3 p with a reciprocal lattice constant j~bj = 4π= 3a. The first Brillouin zone is a hexagon with degeneracy points appearing at the corners. These are called K points or Dirac points and, as we shall see below, they are the positions of the apex of so-called Dirac cones in the electron dispersion relation. Only two of the corners are inequivalent of each other and their position in momentum space are 2π 1 2π 1 K~ = p 1; p ; K~ 0 = p 1; −p : (2.4) 3a 3 3a 3 4 3. Energy spectrum To study graphene we use the tight-binding approximation, where an electron is only allowed to travel between its nearest or next-nearest neighbours. The tight-binding Hamiltonian for the π electrons in graphene was first studied by Wallace [4] in 1947 and gave the energy dispersion of the π band. The Hamiltonian is 1 X y 0 X y y Htight-binding = −t (aσ;ibσ;j + H:c:) − t (aσ;iaσ;j + bσ;ibσ;j + H:c:): (3.1) hi;ji,σ hhi;jii,σ y In the Hamiltonian aσ;i and aσ;i are the annihilation and creation operators for an ~ y electron with spin σ ="; # at site Ri on sublattice A. Likewise, the bσ;i and bσ;i operators refer to sublattice B. The hopping integral, t, is the energy needed to hop to the nearest neighbour and is t ≈ 2:8eV . The next-nearest neighbour hopping 0 integral, t’, is not well known but calculations in [5] found that 0:02 t . t . 0:2 t. For the tight-binding Hamiltonian the corresponding wavefunction for graphene is a linear combination of Bloch functions for each sublattice. In the nearest neighbour approximation the energy eigenvalues can be obtained in closed form [6,7] " p #1=2 3kxa kya 2 kya E(kx; ky) = ±t 1 + 4 cos cos + 4 cos : (3.2) 2 2 2 If we take into account the next-nearest neighbour hopping an electron-hole asym- metry in the K points appears. For a complete picture of the band structure the σ bands should be added since they are the lowest energy bands near the center of the Brillouin zone. The interesting features of graphene however occur in the low energy limit at the K points so we ignore this in this report. Expanding the energy dispersion (3.2) around the Dirac points such that the wave vector is ~q = K~ +~k and ka 1, where k = j~kj, gives the linear dispersion relation, p ~ 3 E±(k) ≈ ± tak = ±vF k: (3.3) 2 ~ 1The brackets and double brackets under the sum denote nearest and next-nearest neighbour approximation, respectively, indicating to only sum over neighbouring sites. 5 3. Energy spectrum p 6 m The Fermi velocity is vF = 3ta=2~ ≈ 10 =s and is independent of charge density and momentum. Note that the energy varies linearly with respect to momentum which indicates that we have relativistic massless particles. Figure 3.1: a) The energy dispersion of graphene plotted. The π∗ band refers to holes and the filled π band to electrons. The bands meet at the K and K’ points forming Dirac cones. b) The dispersion along the high-symmetry points ΓMK. Figure from [2]. The π and π∗ bands are shown in figure 3.1 and they meet at the Dirac points forming the Dirac cones. These cones are a direct result of a linear dispersion relation around the Dirac points. In undoped graphene the Fermi energy level lands exactly at the apex of the cones. Toggling the Fermi level slightly up or down the cones one finds the Fermi surface to be a circle. 3.1. The massless Dirac fermions The linear dispersion relation indicates that the charge carriers are massless Dirac fermions.
Recommended publications
  • Magnetism, Free Electrons and Interactions
    Magnetism Magnets Zero external field Finite external field • Types of magnetic systems • Pauli paramagnetism in metals Paramagnets • Landau diamagnetism in metals • Larmor diamagnetism in insulators Diamagnets • Ferromagnetism of electron gas • Spin Hamiltonian Ferromagnets • Mean field approach • Curie transition Antiferromagnets Ferrimagnets …… … Pauli paramagnetism Pauli paramagnetism Let us first look at magnetic properties of a free electron gas. ε =−p2 /2meBmc= /2 ε =+p2 /2meBmc= /2 ↑ ↓G Electron are spin-1/2 particles #of majority spins: dp3 NV= f()ε In external magnetic field B – Zeeman splitting #of minority spins: ↑,,↓ ∫ (2π= )3 ↑ ↓ 2 = 2 = ε↑ =−p /2meBmc /2 ε↓ =+p /2meBmc /2 Magnetization (magnetic moment per unit volume): - minority spins e= M =−()NN : aligned along the field and proportional Fermi level ↑ ↓ 2Vmc to B in low fields χ - magnetic succeptibility - majority spins M = χB χ > 0 - paramagnetism Pauli succeptibility Landau quantization G 2 2 A free electron in magnetic field: B & zˆ ε↑ =−p /2meBmc= /2 ε↓ =+p /2meBmc= /2 G 2 µ+eB= /2 mc 2 G VgeB= Schrödinger equation: = ⎛⎞ieA ABxAA===;0 NN−= gd()εε ≈ V −∇+=⎜⎟ψ εψ yxz ↑↓ ∫ 2mc= 22µ−eB= /2 mc mc ⎝⎠ B=1T corresponds toeBmc= /1=× K k provided m is free electrons’s mass Solutions: labeled by two indices nk, B G z For any fields, eBmc=/ µ ψ nk(r )= exp( ik y y+− ik z z )ϕ n ( x= ck y / eB ) Magnetic succeptibility: ϕn - wave functions of a harmonic oscillator 22 2 Energies: ε =+==kmeBmcn/2 ( / )( + 1/2) - strongly degenerate!! ⎛⎞e= nk z χP = ⎜⎟g ⎝⎠2mc We “quantized” momenta transverse to the field (Landau levels) 1 Landau diamagnetism Electrons in metals A free electron in magnetic field: moves along spiral trajectories We know that there are diamagnetic metals.
    [Show full text]
  • Rich Magnetic Quantization Phenomena in AA Bilayer Silicene
    www.nature.com/scientificreports OPEN Rich Magnetic Quantization Phenomena in AA Bilayer Silicene Po-Hsin Shih1, Thi-Nga Do2,3, Godfrey Gumbs4,5, Danhong Huang6, Hai Duong Pham1 & Ming-Fa Lin1,7,8 Received: 13 June 2019 The rich magneto-electronic properties of AA-bottom-top (bt) bilayer silicene are investigated using Accepted: 27 August 2019 a generalized tight-binding model. The electronic structure exhibits two pairs of oscillatory energy Published: xx xx xxxx bands for which the lowest conduction and highest valence states of the low-lying pair are shifted away from the K point. The quantized Landau levels (LLs) are classifed into various separated groups by the localization behaviors of their spatial distributions. The LLs in the vicinity of the Fermi energy do not present simple wave function modes. This behavior is quite diferent from other two-dimensional systems. The geometry symmetry, intralayer and interlayer atomic interactions, and the efect of a perpendicular magnetic feld are responsible for the peculiar LL energy spectra in AA-bt bilayer silicene. This work provides a better understanding of the diverse magnetic quantization phenomena in 2D condensed-matter materials. Silicene, an isostructure to graphene, is purely made of silicon atoms through both the sp2 and sp3 bondings. So far, silicene systems have been successfully synthesized by the epitaxial growth on various substrate surfaces. Monolayer silicene with diferent sizes of unit cells has been produced on several substrates, such as Si(111) 1,2 3,4 5 6 33× -Ag template , Ag(111) (4 × 4) , Ir(111) ( 33× ) and ZrB2(0001) (2 × 2) .
    [Show full text]
  • Topological Classification of Correlations in 2D Electron
    materials Article Topological Classification of Correlations in 2D Electron Systems in Magnetic or Berry Fields Janusz E. Jacak Department of Quantum Technologies, Wrocław University of Science and Technology, Wyb. Wyspia´nskiego27, 50-370 Wrocław, Poland; [email protected] Abstract: Recent topology classification of 2D electron states induced by different homotopy classes of mappings of the planar Brillouin zone into Bloch space can be supplemented by a homotopy classification of various phases of multi-electron homotopy patterns induced by Coulomb interaction between electrons. The general classification of such type is presented. It explains the topologically protected correlations responsible for integer and fractional Hall effects in 2D multi-electron systems in the presence of perpendicular quantizing magnetic field or Berry field, the latter in topological Chern insulators. The long-range quantum entanglement is essential for homotopy correlated phases in contrast to local binary entanglement for conventional phases with local order parameters. The classification of homotopy long-range correlated phases induced by the Coulomb interaction of electrons has been derived in terms of homotopy invariants and illustrated by experimental observations in GaAs 2DES, graphene monolayer, and bilayer and in Chern topological insulators. The homotopy phases are demonstrated to be topologically protected and immune to the local crystal field, local disorder, and variation of the electron interaction strength. The nonzero interaction between electrons is shown, however, to be essential for the definition of the homotopy invariants, which disappear in gaseous systems. Citation: Jacak, J.E. Topological Keywords: homotopy phases; long-range quantum entanglement; FQHE; Hall systems; Chern Classification of Correlations in 2D topological insulators Electron Systems in Magnetic or Berry Field.
    [Show full text]
  • 25 Years of Quantum Hall Effect
    S´eminaire Poincar´e2 (2004) 1 – 16 S´eminaire Poincar´e 25 Years of Quantum Hall Effect (QHE) A Personal View on the Discovery, Physics and Applications of this Quantum Effect Klaus von Klitzing Max-Planck-Institut f¨ur Festk¨orperforschung Heisenbergstr. 1 D-70569 Stuttgart Germany 1 Historical Aspects The birthday of the quantum Hall effect (QHE) can be fixed very accurately. It was the night of the 4th to the 5th of February 1980 at around 2 a.m. during an experiment at the High Magnetic Field Laboratory in Grenoble. The research topic included the characterization of the electronic transport of silicon field effect transistors. How can one improve the mobility of these devices? Which scattering processes (surface roughness, interface charges, impurities etc.) dominate the motion of the electrons in the very thin layer of only a few nanometers at the interface between silicon and silicon dioxide? For this research, Dr. Dorda (Siemens AG) and Dr. Pepper (Plessey Company) provided specially designed devices (Hall devices) as shown in Fig.1, which allow direct measurements of the resistivity tensor. Figure 1: Typical silicon MOSFET device used for measurements of the xx- and xy-components of the resistivity tensor. For a fixed source-drain current between the contacts S and D, the potential drops between the probes P − P and H − H are directly proportional to the resistivities ρxx and ρxy. A positive gate voltage increases the carrier density below the gate. For the experiments, low temperatures (typically 4.2 K) were used in order to suppress dis- turbing scattering processes originating from electron-phonon interactions.
    [Show full text]
  • Path-Memory Induced Quantization of Classical Orbits SEE COMMENTARY
    Path-memory induced quantization of classical orbits SEE COMMENTARY Emmanuel Forta,1, Antonin Eddib, Arezki Boudaoudc, Julien Moukhtarb, and Yves Couderb aInstitut Langevin, Ecole Supérieure de Physique et de Chimie Industrielles ParisTech and Université Paris Diderot, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7587, 10 Rue Vauquelin, 75 231 Paris Cedex 05, France; bMatières et Systèmes Complexes, Université Paris Diderot, Centre National de la Recherche Scientifique Unité Mixte de Recherche 7057, Bâtiment Condorcet, 10 Rue Alice Domon et Léonie Duquet, 75013 Paris, France; and cLaboratoire de Physique Statistique, Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France Edited* by Pierre C. Hohenberg, New York University, New York, NY, and approved August 4, 2010 (received for review May 26, 2010) A droplet bouncing on a liquid bath can self-propel due to its inter- a magnetic field. However, for technical reasons we chose a action with the waves it generates. The resulting “walker” is a variant that relies on the analogy first introduced by Berry et al. dynamical association where, at a macroscopic scale, a particle (5) between electromagnetic fields and surface waves. ~ ~ ~ (the droplet) is driven by a pilot-wave field. A specificity of this Its starting point is the similarity of relation B ¼ ∇ × A in elec- ~ system is that the wave field itself results from the superposition tromagnetism with 2Ω~¼ ∇~× U in fluid mechanics. In these re- ~ of the waves generated at the points of space recently visited by lations, the vorticity 2Ω~is the equivalent of the magnetic field B ~ ~ the particle. It thus contains a memory of the past trajectory of the and the velocity U that of the vector potential A.
    [Show full text]
  • Effect of Landau Quantization on the Equations of State in Dense Plasmas with Strong Magnetic Fields
    High Power Laser Programme – Theory and Computation Effect of Landau quantization on the equations of state in dense plasmas with strong magnetic fields S Eliezera, P A Norreys, J T Mendonçab, K L Lancaster Central Laser Facility, CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon., OX11 0QX, UK a on leave from Soreq NRC, Yavne 81800, Israel bon leave from Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal Main contact email address: [email protected] Introduction where Γ is phenomenological coefficient and TD is the Debye The equations of state (EOS) are the fundamental relation temperature. A very useful phenomenological EOS for a solid 2) between the macroscopically quantities describing a physical is given by the Gruneisen EOS , 1) system in equilibrium . The EOS relates all thermodynamic γ VE P = i quantities, such as density, pressure, energy, entropy, etc. i (3) Knowledge of the EOS is required in order to solve V 3 α V hydrodynamic equations in specific physical situations, such as γ = plasma physics associated with laser interaction with matter, κ c V shock wave physics, astrophysical objects etc. The properties of matter are summarised in the EOS. where the quantities on the right hand side of the second equation can be measured experimentally: α = linear expansion The concept of Landau quantization in the presence of strong coefficient, κ = isothermal compressibility, cV = specific heat at magnetic fields is presented in the rest of this section and, in the constant volume. There are more sophisticated EOS for next section, the electron EOS in the presence of strong ions3),4), however in this report we do not consider further the magnetic fields is calculated and presented for non-relativistic ion contributions.
    [Show full text]
  • Chiral Landau Levels in Weyl Semimetal Nbas with Multiple Topological Carriers
    ARTICLE DOI: 10.1038/s41467-018-04080-4 OPEN Chiral Landau levels in Weyl semimetal NbAs with multiple topological carriers Xiang Yuan1,2, Zhongbo Yan3, Chaoyu Song1,2, Mengyao Zhang4,5, Zhilin Li5,6, Cheng Zhang 1,2, Yanwen Liu1,2, Weiyi Wang1,2, Minhao Zhao1,2, Zehao Lin1,2, Tian Xie1,2, Jonathan Ludwig7, Yuxuan Jiang7, Xiaoxing Zhang8, Cui Shang8, Zefang Ye1,2, Jiaxiang Wang1,2, Feng Chen1,2, Zhengcai Xia8, Dmitry Smirnov7, Xiaolong Chen5,6, Zhong Wang 3,6, Hugen Yan1,2 & Faxian Xiu1,2,9 1234567890():,; Recently, Weyl semimetals have been experimentally discovered in both inversion- symmetry-breaking and time-reversal-symmetry-breaking crystals. The non-trivial topology in Weyl semimetals can manifest itself with exotic phenomena, which have been extensively investigated by photoemission and transport measurements. Despite the numerous experi- mental efforts on Fermi arcs and chiral anomaly, the existence of unconventional zeroth Landau levels, as a unique hallmark of Weyl fermions, which is highly related to chiral anomaly, remains elusive owing to the stringent experimental requirements. Here, we report the magneto-optical study of Landau quantization in Weyl semimetal NbAs. High magnetic fields drive the system toward the quantum limit, which leads to the observation of zeroth chiral Landau levels in two inequivalent Weyl nodes. As compared to other Landau levels, the fi zeroth chiral Landau level exhibits a distinct linear dispersion in magnetic peldffiffiffi direction and allows the optical transitions without the limitation of zero z momentum or B magnetic field evolution. The magnetic field dependence of the zeroth Landau levels further verifies the predicted particle-hole asymmetry of the Weyl cones.
    [Show full text]
  • Landau Quantization of Dirac Fermions in Graphene and Its Multilayers
    Front. Phys. 12(4), 127208 (2017) DOI 10.1007/s11467-016-0655-5 REVIEW ARTICLE Landau quantization of Dirac fermions in graphene and its multilayers Long-jing Yin (殷隆晶), Ke-ke Bai (白珂珂), Wen-xiao Wang (王文晓), Si-Yu Li (李思宇), Yu Zhang (张钰), Lin He (何林)ǂ The Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China Corresponding author. E-mail: ǂ[email protected] Received December 28, 2016; accepted January 26, 2017 When electrons are confined in a two-dimensional (2D) system, typical quantum–mechanical phenomena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum–mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behaviors of Dirac fermions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Through STS measurement of the strong magnetic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fundamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties. Keywords Landau quantization, graphene, STM/STS, stacking order, strain and defect PACS numbers Contents 1 Introduction ....................................................................................................................... 2 2 Landau quantization in graphene monolayer, Bernal bilayer, and Bernal trilayer ...........
    [Show full text]
  • Carrier Multiplication in Graphene Under Landau Quantization
    ARTICLE Received 17 Sep 2013 | Accepted 21 Mar 2014 | Published 16 Apr 2014 DOI: 10.1038/ncomms4703 Carrier multiplication in graphene under Landau quantization Florian Wendler1, Andreas Knorr1 & Ermin Malic1 Carrier multiplication is a many-particle process giving rise to the generation of multiple electron-hole pairs. This process holds the potential to increase the power conversion efficiency of photovoltaic devices. In graphene, carrier multiplication has been theoretically predicted and recently experimentally observed. However, due to the absence of a bandgap and competing phonon-induced electron-hole recombination, the extraction of charge carriers remains a substantial challenge. Here we present a new strategy to benefit from the gained charge carriers by introducing a Landau quantization that offers a tunable bandgap. Based on microscopic calculations within the framework of the density matrix formalism, we report a significant carrier multiplication in graphene under Landau quantization. Our calculations reveal a high tunability of the effect via externally accessible pump fluence, temperature and the strength of the magnetic field. 1 Institute of Theoretical Physics, Nonlinear Optics and Quantum Electronics, Technical University Berlin, Hardenbergstrasse 36, Berlin 10623, Germany. Correspondence and requests for materials should be addressed to F.W. (email: fl[email protected]). NATURE COMMUNICATIONS | 5:3703 | DOI: 10.1038/ncomms4703 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4703 n 1961 Schockley and Queisser1 predicted a fundamental limit n of B30% for the power conversion efficiency of single- +4 Ijunction solar cells. Their calculation is based on a simple +3 model, in which the excess energy of absorbed photons is +2 assumed to dissipate as heat.
    [Show full text]
  • Lecture Notes, 2006
    1 Introduction to the Quantum Hall Effects Lecture notes, 2006 Pascal LEDERER Mark Oliver GOERBIG Laboratoire de Physique des Solides, CNRS-UMR 8502 Universit´ede Paris Sud, Bˆat. 510 F-91405 Orsay cedex 2 Contents 1 Introduction 7 1.1 Motivation............................. 7 1.2 HistoryoftheQuantumHallEffect . 9 1.3 Samples .............................. 14 2 Charged particles in a magnetic field 19 2.1 Classicaltreatment . 19 2.1.1 Lagrangian approach . 20 2.1.2 Hamiltonian formalism . 22 2.2 Quantumtreatment. 23 2.2.1 Wave functions in the symmetric gauge . 25 2.2.2 Coherent states and semi-classical motion . 29 3 Transport properties– Integer Quantum Hall Effect (IQHE) 33 3.1 Resistance and resistivity in 2D . 33 3.2 Conductance of a completely filled Landau Level . 34 3.3 Localisation in a strong magnetic field . 37 3.4 Transitions between plateaus – The percolation picture . 42 4 The Fractional Quantum Hall Effect (FQHE)– From Laugh- lin’s theory to Composite Fermions. 45 4.1 Model for electron dynamics restricted to a single LL . 46 4.1.1 Matrixelements. 48 4.1.2 Projected densities algebra . 50 4.2 The Laughlin wave function . 51 4.2.1 The many-body wave function for ν =1 ........ 52 4.2.2 The many-body function for ν = 1/(2s +1) ...... 55 4.2.3 Incompressiblefluid. 58 3 4 CONTENTS 4.2.4 Fractional charge quasi-particles . 59 4.2.5 Groundstateenergy . 62 4.2.6 Neutral Collective Modes . 67 4.3 Jain’s generalisation – Composite Fermions . 69 4.3.1 The effective potential . 70 5 Chern-Simons Theories and Anyon Physics 75 5.1 Chern-Simonstransformations .
    [Show full text]
  • Geometric Superconductivity in 3D Hofstadter Butterfly
    Geometric Superconductivity in 3D Hofstadter Butterfly Moon Jip Park,1, ∗ Yong Baek Kim,2, 3, y and SungBin Lee1, z 1Department of Physics, KAIST, Daejeon 34141, Republic of Korea 2Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada 3School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea Electrons on the lattice subject to a strong mag- 4:1; 6:0; 13:8 A˚)[21]. Hence, the theoretical description netic field exhibit the fractal spectrum of elec- of such re-entrant superconductivity would be insufficient trons, which is known as the Hofstadter but- without the full consideration of the Landau quantization terfly. In this work, we investigate unconven- as well as the lattice effect. In addition, there are other tional superconductivity in a three-dimensional superconductors where the quantum oscillation and the Hofstadter butterfly system. While it is gener- superconductivity coexist in the presence of the magnetic ally difficult to achieve the Hofstadter regime, fields. The examples include the organic superconduc- we show that the quasi-two-dimensional materi- tor, κ − (BEDT − TTF)2Cu(NCS)2[22{26] and high Tc als with a tilted magnetic field produce the large- superconductors [5, 27{29]. In order to understand these scale superlattices, which generate the Hofstadter experiments, it is important to unveil the generic nature butterfly even at the moderate magnetic field of the superconductivity in the Hofstadter regime. strength. We first show that the van-Hove sin- In the current work, we investigate the universal fea- gularities of the butterfly flat bands greatly el- tures of the Hofstadter superconductivity.
    [Show full text]
  • Relativistic Landau Quantization for a Neutral Particle with a Permanent Magnetic Dipole Moment Coupled to an External Electric field
    Relativistic Landau quantization for a neutral particle K. Bakke and C. Furtado∗ Departamento de F´ısica, Universidade Federal da Para´ıba, Caixa Postal 5008, 58051-970, Jo˜ao Pessoa, PB, Brazil Abstract In this contribution we study the Landau levels arising within the relativistic quantum dynamics of a neutral particle which possesses a permanent magnetic dipole moment interacting with an external electric field. We consider the Aharonov-Casher coupling of magnetic dipole to the electric field to investigate an an analog of Landau quantization in this system and solve the Dirac equation for two different field configurations. The eigenfunctions and eigenvalues of Hamiltonian in both cases are obtained. PACS numbers: 03.75.Fi, 03.65.Vf,73.43.-f Keywords: Relativistic Landau Quantization, Magnetic dipoles, Aharonov-Casher interaction arXiv:0902.1474v1 [quant-ph] 9 Feb 2009 ∗Electronic address: kbakke@fisica.ufpb.br,furtado@fisica.ufpb.br; phone number +558332167534 1 I. INTRODUCTION The Landau quantization [1] is known in the literature as the quantization of cyclotron orbits for a charged particle motion when this particle interacts with an external magnetic field in the non-relativistic regime. The Landau quantization in non-relativistic regime is also discussed in the cases of other physical systems such as Bose-Einstein condensate [2, 3], different two-dimensional surfaces [4, 5, 6] and quantum Hall effect [7]. For the relativistic dynamics of a charged particle, the Landau quantization was first discussed by Jackiw [8] and by Balatsky et al [9]. Other studies of the relativistic Landau quantization were carried out in the cases of a quantum Hall effect [10], a spin nematic state [11] and a finite temperature [12].
    [Show full text]