REST Regulates the Cell Cycle for Cardiac Development and Regeneration

Total Page:16

File Type:pdf, Size:1020Kb

REST Regulates the Cell Cycle for Cardiac Development and Regeneration ARTICLE Corrected: Author correction DOI: 10.1038/s41467-017-02210-y OPEN REST regulates the cell cycle for cardiac development and regeneration Donghong Zhang1, Yidong Wang1, Pengfei Lu1, Ping Wang1, Xinchun Yuan2, Jianyun Yan3, Chenleng Cai3, Ching-Pin Chang4, Deyou Zheng 5, Bingruo Wu1 & Bin Zhou 6,7 Despite the importance of cardiomyocyte proliferation in cardiac development and regen- eration, the mechanisms that promote cardiomyocyte cell cycle remain incompletely 1234567890 understood. RE1 silencing transcription factor (REST) is a transcriptional repressor of neu- ronal genes. Here we show that REST also regulates the cardiomyocyte cell cycle. REST binds and represses the cell cycle inhibitor gene p21 and is required for mouse cardiac development and regeneration. Rest deletion de-represses p21 and inhibits the cardiomyocyte cell cycle and proliferation in embryonic or regenerating hearts. By contrast, REST overexpression in cul- tured cardiomyocytes represses p21 and increases proliferation. We further show that p21 knockout rescues cardiomyocyte cell cycle and proliferation defects resulting from Rest deletion. Our study reveals a REST-p21 regulatory axis as a mechanism for cell cycle pro- gression in cardiomyocytes, which might be exploited therapeutically to enhance cardiac regeneration. 1 Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA. 2 Department of Medical Ultrasound, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China. 3 Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. 4 Department of Medicine, Indian University School of Medicine, Indianapolis, IN 46202, USA. 5 Departments of Genetics, Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA. 6 Departments of Genetics, Pediatrics, and Medicine (Cardiology), The Wilf Cardiovascular Research Institute, The Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA. 7 Department of Cardiology of First Affiliated Hospital and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China. Correspondence and requests for materials should be addressedto B.Z. (email: [email protected]) NATURE COMMUNICATIONS | 8: 1979 | DOI: 10.1038/s41467-017-02210-y | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02210-y ardiomyocyte proliferation is required for generating cardiomyocytes to proliferate prevents the replenishment of lost myocardial mass and building a functional four-chamber or dysfunctional cells in a diseased heart11. Because heart diseases C 1–3 11 heart during embryonic development . After birth, car- are the number one cause of death worldwide , it is important to diomyocytes continue to proliferate in a short neonatal period, identify the regulatory factors of the cardiomyocyte cell cycle, which is crucial for the final cardiac growth surge as well as for which may be used as therapeutic targets for these devastating – regeneration of injured mouse neonatal hearts4 6. The vast conditions. majority of cardiomyocytes then exits the cell cycle and stops Several transcription factors, such as GATA412, TBX2013, – proliferating after preadolescence7 10. The inability of BRG114, YAP15,16, ERBB217, PITX218, and MEIS119 have been a b c 100 3 Cre GT/GT mKO Tnt ;Rest Control Control Rest 18 33 12 12 19 Tnt Cre;Rest GT/+ 1.00 ± 0.18 0.20 ± 0.12* 75 44 17 GT/GT DAPI 18 Rest / E12.5 121 KDa 50 11 Rest GT/+ REST 18 REST 17 43 18 / Rest mKO 25 TnT 12 36 KDa Embryos/stage (%) 18 43 17 18 GAPDH 0 E11.5 E12.5 E14.5 E16.5 E18.5 d Control Rest mKO Control Rest mKO e Control E10.5 E12.5 Rest mKO 50 * m) 40 µ 30 * 20 10 Wall thickness ( thickness Wall 0 E10.5 E12.5 f Ki67/TnT/DAPI EdU/TnT/DAPI PH3/TnT/DAPI Aurora B/TnT/DAPI Control E12.5 mKO Rest 60 60 * 4 2.5 * * 50 50 * 3 2.0 40 40 1.5 30 30 2 1.0 20 20 EdU/TnT (%) 1 PH3/TnT (%) KI67/TnT (%) 10 10 0.5 Aurora B/TnT (%) Aurora 0 0 0 0 Control Rest mKO Control Rest mKO Control Rest mKO Control Rest mKO Fig. 1 Rest is required for myocardial development and cardiomyocyte proliferation. a, b Immunostaining and western blot analyses showing the efficient deletion of Rest in cardiomyocytes in TnTCre;RestGT/GT (RestmKO) hearts. Controls were RestGT/GT mice. c A summarizing graph of the distribution and number of embryos at different stages indicates death of Restmko embryos between E12.5 and E16.5. d, e H&E-stained sections of E10.5 and E12.5 hearts indicate thin ventricular wall resulting from Rest deletion. f Quantitative immunostaining of cell cycle markers showing reduced proliferation of RestmKO cardiomyocytes. n = 4/group, mean ± s.d., *p < 0.05 by unpaired two-tailed Student’s t test. Scale bars = 40 µm 2 NATURE COMMUNICATIONS | 8: 1979 | DOI: 10.1038/s41467-017-02210-y | www.nature.com/naturecommunications NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02210-y ARTICLE a TAM Rest imKO b P3(iP1) P5(iP3) P9(iP7) c 120 100 iP1 Control (n=30) REST imKO imKO imKO 80 Rest imKO (iP1) (n=22) 60 imKO Control Rest Control Rest Control Rest Rest (iP3) (n=19) iP3 REST 40 Rest imKO (iP7) (n=41) REST 121 KDa Survival (%) 20 p<0.001 iP7 REST (P) 2 4681012 14 21 28 35 P1 P3 P7 GAPDH 36 KDa d e fgControl Control Rest imKO (iP1) Rest imKO (iP1) 12 0.6 120 * * * * 9 90 0.4 * P3 6 60 8 * 6 0.2 3 30 4 (mm) thickness LV 2 mass corrected (mg) LV Heart/body 0 0.0 0 weight (mg/g) weight 0 LVPW LVAW LVEF (%) LVFS (%) h ijControl Rest imKO (iP1) 80 * 100 * 200 200 90 60 80 150 G1/G0 S G2/M 150 G1/G0 S G2/M 70 40 20 * 100 100 15 * 20 50 50 10 5 0 0 (%) Cardiomyocyte/stage 0 Cardiomyocyte/total cell (%) Cardiomyocyte/total 0 0 50 100 150 200 (K) 0 50 100 150 200 (K) G1/G0 S G2/M k Control Rest imKO (iP1) Control Rest imKO (iP1) 15 * 2.5 * 2.0 10 DAPI DAPI 1.5 / / 1.0 TnT TnT / 5 * / PH3/TnT (%) 0.5 Ki67 PH3 0 0.0 20 * 1.5 * DAPI 15 / DAPI / 1.0 TnT 10 / TnT / 0.5 5 EdU/TnT (%) KI67/TnT (%) * EdU Aurora B/TnT (%) Aurora 0 B Aurora 0.0 Fig. 2 Rest is required for neonatal cardiomyocyte proliferation and cardiac function. a A graph of experimental design for generating myocardial Rest knockout (RestimKO) at different postnatal (P) stages using the inducible TnTMerCreMer deleter mice. b Western blots showing effective deletion of Rest. c Survival curve of control and RestimKO mice, p < 0.001, log-rank (Mantel–Cox) testing between mice with Rest deletion at different stages and control (Tam- treated Rest+/+;TnTMerCreMer/+ mice). d Representative H&E staining and heart/body weight ratio revealing underdeveloped RestimKO hearts at P3 after Rest deletion at P1. n = 5/group. Scale bar = 100 µm. e–g Echocardiography showing structure defects and decreased left ventricle function of P3 RestimKO. n = 6 for RestimKO; n = 8 for Control. h–j FACS shows reduced percentage of cardiomyocytes isolated from P3 RestimKO hearts (h) and arrested cell cycle of the RestimKO cardiomyocytes at G0/G1 phase (i, j). k Immunostaining for cell cycle markers indicating reduced proliferation of Rest null cardiomyocytes. n = 4/ group for FACS and immunostaining. Scale bar = 40 µm. Mean ± s.d., *p < 0.05, unpaired two-tailed Student’s t test shown to be essential for cardiomyocyte proliferation during binds a cis-element of 21 nucleotide base pairs, named RE1 development and for regeneration following neonatal heart motif22, to silence the expression of neuronal genes in the non- injury. Transcriptional repressor element-1 silencing transcrip- neuronal cells required for neurogenesis23,24. We have recently tion factor (REST), also known as neuron-restrictive silencer reported REST acting as a transcription repressor in mouse factor (NRSF), is widely expressed in the embryonic tissues20,21.It embryonic hearts20. In this study, we reveal that suppression of NATURE COMMUNICATIONS | 8: 1979 | DOI: 10.1038/s41467-017-02210-y | www.nature.com/naturecommunications 3 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02210-y abE12.5 P3 c p21 50 E12.5 P3 Inter gene Control Control Repeat * * RE-1 motif 40 Coding UTR Mm9 30 Intron Hg18 /DAPI 20 0 3 kb 6 kb 9 kb mko imko p21-RE1 TnT p21/TnT (%) / Rest Rest (iP1) 10 WT p21 Mut1 0 Mut2 Del mKo imKo Control Control Rest Rest 690 bp d efE12.5 Control P1 Rest imKO (iP1) 2.5 P21 0.6 Del * * * 2.0 0.5 Mut2 * 0.4 * 1.5 -RE-1 motif Mut1 * 0.3 * p21 * 1.0 * * 0.2 WT NS NS 0.5 NS pGL3- * 0.1 enhancer Enrichment of RE-1 motif 0.0 Relative change to 5% input 0.0 0 0.5 1.0 1.5 lgG lgG lgG lgG Luciferase activity REST REST REST REST 5% input 5% input 5% input H3K4me3H3K9me3 H3K9/14ac H3K27me3 Fig. 3 REST binds p21 to repress its expression. a, b Immunostaining (n = 4/group) showing upregulated p21 protein level in the Rest deleted E12.5 and P3 hearts. Scale bar = 40 µm. c Top, Sequence alignment of p21 between mouse and human indicating a conserved RE-1 motif (red vertical line) located at the 3′ UTR. Bottom, The p21-RE1 motif and its mutated (Mut) or deleted (Del) counterpart. d Luciferase reporter assays with a 690-bp mouse DNA fragment containing the wild type (WT), mutated, or deleted RE1 motif reveals that the intact p21-RE1 motif is required for repressing the reporter gene transcription in primary cultured P1 mouse cardiomyocytes.
Recommended publications
  • Methylation of the Homeobox Gene, HOPX, Is Frequently Detected in Poorly Differentiated Colorectal Cancer
    ANTICANCER RESEARCH 31: 2889-2892 (2011) Methylation of the Homeobox Gene, HOPX, Is Frequently Detected in Poorly Differentiated Colorectal Cancer YOSHIKUNI HARADA, KAZUHIRO KIJIMA, KAZUKI SHINMURA, MAKIKO SAKATA, KAZUMA SAKURABA, KAZUAKI YOKOMIZO, YOUHEI KITAMURA, ATSUSHI SHIRAHATA, TETSUHIRO GOTO, HIROKI MIZUKAMI, MITSUO SAITO, GAKU KIGAWA, HIROSHI NEMOTO and KENJI HIBI Gastroenterological Surgery, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Aoba-ku, Yokohama 227-8501, Japan Abstract. Background: Homeodomein only protein x pathogenesis of colorectal cancer (4-8). It is also known that (HOPX) gene methylation has frequently been detected in gene promoter hypermethylation is involved in the cancer tissues. The methylation status of the HOPX gene in development and progression of cancer (9). An investigation colorectal cancer was examined and compared to the of genetic changes is important in order to clarify the clinocopathological findings. Materials and Methods: tumorigenic pathway of colorectal cancer (10). Eighty-nine tumor samples and corresponding normal tissues The homeodomain only protein x (HOPX) gene, also were obtained from colorectal cancer patients who known as NECC1 (not expressed in choriocarcinoma clone underwent surgery at our hospital. The methylation status of 1), LAGY (lung cancer-associated gene Y), and OB1 (odd the HOPX gene in these samples was examined by homeobox 1 protein), was initially identified as an essential quantitative methylation-specific PCR (qMSP). Subsequently, gene for the modulation of cardiac growth and development the clinicopathological findings were correlated with the (11). Three spliced transcript variants, HOPX-α, HOPX-β methylation status of the HOPX gene. Results: HOPX gene and HOPX-γ, encode the same protein, which contains a methylation was found in 46 (52%) out of the 89 colorectal putative homeodomain motif that acts as an adapter protein carcinomas, suggesting that it was frequently observed in to mediate transcriptional repression (12).
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • Roles of Id3 and IL-13 in a Mouse Model of Autoimmune Exocrinopathy
    Roles of Id3 and IL-13 in a Mouse Model of Autoimmune Exocrinopathy by Ian Lawrence Belle Department of Immunology Duke University Date:_______________________ Approved: ___________________________ Yuan Zhuang, Supervisor ___________________________ Michael Krangel, Chair ___________________________ Qi-jing Li ___________________________ Richard Lee Reinhardt ___________________________ Arno Greenleaf Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Immunology in the Graduate School of Duke University 2015 ABSTRACT Roles of Id3 and IL-13 in a Mouse Model of Autoimmune Exocrinopathy by Ian Lawrence Belle Department of Immunology Duke University Date:_______________________ Approved: ___________________________ Yuan Zhuang, Supervisor ___________________________ Michael Krangel, Chair ___________________________ Qi-jing Li ___________________________ Richard Lee Reinhardt ___________________________ Arno Greenleaf An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Immunology in the Graduate School of Duke University 2015 Copyright by Ian Lawrence Belle 2015 Abstract Within the field of immunology, the existence of autoimmune diseases presents a unique set of challenges. The immune system typically protects the host by identifying foreign pathogens and mounting an appropriate response to eliminate them. Great strides have been made in understanding how foreign pathogens are identified and responded to, leading to the development of powerful immunological tools, such as vaccines and a myriad of models used to study infectious diseases and processes. However, it is occasionally possible for host tissues themselves to be inappropriately identified as foreign, prompting an immune response that attempts to eliminate the host tissue. The immune system has processes in place, referred to as selection, designed to prevent the development of cells capable of recognizing the self as foreign.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Figure S1. Representative Report Generated by the Ion Torrent System Server for Each of the KCC71 Panel Analysis and Pcafusion Analysis
    Figure S1. Representative report generated by the Ion Torrent system server for each of the KCC71 panel analysis and PCaFusion analysis. (A) Details of the run summary report followed by the alignment summary report for the KCC71 panel analysis sequencing. (B) Details of the run summary report for the PCaFusion panel analysis. A Figure S1. Continued. Representative report generated by the Ion Torrent system server for each of the KCC71 panel analysis and PCaFusion analysis. (A) Details of the run summary report followed by the alignment summary report for the KCC71 panel analysis sequencing. (B) Details of the run summary report for the PCaFusion panel analysis. B Figure S2. Comparative analysis of the variant frequency found by the KCC71 panel and calculated from publicly available cBioPortal datasets. For each of the 71 genes in the KCC71 panel, the frequency of variants was calculated as the variant number found in the examined cases. Datasets marked with different colors and sample numbers of prostate cancer are presented in the upper right. *Significantly high in the present study. Figure S3. Seven subnetworks extracted from each of seven public prostate cancer gene networks in TCNG (Table SVI). Blue dots represent genes that include initial seed genes (parent nodes), and parent‑child and child‑grandchild genes in the network. Graphical representation of node‑to‑node associations and subnetwork structures that differed among and were unique to each of the seven subnetworks. TCNG, The Cancer Network Galaxy. Figure S4. REVIGO tree map showing the predicted biological processes of prostate cancer in the Japanese. Each rectangle represents a biological function in terms of a Gene Ontology (GO) term, with the size adjusted to represent the P‑value of the GO term in the underlying GO term database.
    [Show full text]
  • Based Mechanism Study on the Beneficial Effects of Vitamin D
    www.nature.com/scientificreports OPEN Network Systems Pharmacology- Based Mechanism Study on the Benefcial Efects of Vitamin D against Psychosis in Alzheimer’s Disease Peihao Fan1, Xiguang Qi1, Robert A. Sweet2,3* & Lirong Wang1* Alzheimer’s disease (AD) is a chronic neurodegenerative disease with signifcant fnancial costs and negative impacts on quality of life. Psychotic symptoms, i.e., the presence of delusions and/ or hallucinations, is a frequent complication of AD. About 50% of AD patients will develop psychotic symptoms (AD with Psychosis, or AD + P) and these patients will experience an even more rapid cognitive decline than AD patients without psychosis (AD-P). In a previous analysis on medication records of 776 AD patients, we had shown that use of Vitamin D was associated with delayed time to psychosis in AD patients and Vitamin D was used more by AD-P than AD + P patients. To explore the potential molecular mechanism behind our fndings, we applied systems pharmacology approaches to investigate the crosstalk between AD and psychosis. Specifcally, we built protein-protein interaction (PPI) networks with proteins encoded by AD- and psychosis-related genes and Vitamin D-perturbed genes. Using network analysis we identifed several high-impact genes, including NOTCH4, COMT, CACNA1C and DRD3 which are related to calcium homeostasis. The new fndings highlight the key role of calcium-related signaling pathways in AD + P development and may provide a new direction and facilitate hypothesis generation for future drug development. Alzheimer’s disease (AD) is a chronic neurodegenerative disease commonly seen in the aging population, and the presence of AD is responsible for a signifcant decrease in the quality of life1.
    [Show full text]
  • 2016 Joint Meeting Program
    April 15 – 17, 2016 Fairmont Chicago Millennium Park • Chicago, Illinois The AAP/ASCI/APSA conference is jointly provided by Boston University School of Medicine and AAP/ASCI/APSA. Meeting Program and Abstracts www.jointmeeting.org www.jointmeeting.org Special Events at the 2016 AAP/ASCI/APSA Joint Meeting Friday, April 15 Saturday, April 16 ASCI President’s Reception ASCI Food and Science Evening 6:15 – 7:15 p.m. 6:30 – 9:00 p.m. Gold Room The Mid-America Club, Aon Center ASCI Dinner & New Member AAP Member Banquet Induction Ceremony (Ticketed guests only) (Ticketed guests only) 7:00 – 10:00 p.m. 7:30 – 9:45 p.m. Imperial Ballroom, Level B2 Rouge, Lobby Level How to Solve a Scientific Puzzle: Speaker: Clara D. Bloomfield, MD Clues from Stockholm and Broadway The Ohio State University Comprehensive Cancer Center Speaker: Joe Goldstein, MD APSA Welcome Reception & University of Texas Southwestern Medical Center at Dallas Presidential Address APSA Dinner (Ticketed guests only) 9:00 p.m. – Midnight Signature Room, 360 Chicago, 7:30 – 9:00 p.m. John Hancock Center (off-site) Rouge, Lobby Level Speaker: Daniel DelloStritto, APSA President Finding One’s Scientific Niche: Musings from a Clinical Neuroscientist Speaker: Helen Mayberg, MD, Emory University Dessert Reception (open to all attendees) 10:00 p.m. – Midnight Imperial Foyer, Level B2 Sunday, April 17 APSA Future of Medicine and www.jointmeeting.org Residency Luncheon Noon – 2:00 p.m. Rouge, Lobby Level 2 www.jointmeeting.org Program Contents General Program Information 4 Continuing Medical Education Information 5 Faculty and Speaker Disclosures 7 Scientific Program Schedule 9 Speaker Biographies 16 Call for Nominations: 2017 Harrington Prize for Innovation in Medicine 26 AAP/ASCI/APSA Joint Meeting Faculty 27 Award Recipients 29 Call for Nominations: 2017 Harrington Scholar-Innovator Award 31 Call for Nominations: George M.
    [Show full text]
  • Pitx2 Prevents Susceptibility to Atrial Arrhythmias by Inhibiting Left-Sided Pacemaker Specification
    Pitx2 prevents susceptibility to atrial arrhythmias by inhibiting left-sided pacemaker specification Jun Wanga, Elzbieta Klysika, Subeena Soodb, Randy L. Johnsonc, Xander H. T. Wehrensb,d, and James F. Martina,1 aInstitute of Biosciences and Technology, Texas A&M System Health Science Center, Houston, TX 77030; Departments of bMolecular Physiology and Biophysics and dMedicine (in Cardiology), Baylor College of Medicine, Houston, TX 77030; and cDepartment of Biochemistry and Molecular Biology, MD Anderson Cancer Center, Houston, TX 77030 Edited by Eric N. Olson, University of Texas Southwestern, Dallas, TX, and approved April 16, 2010 (received for review October 30, 2009) Atrial fibrillation (AF), the most prevalent sustained cardiac arrhyth- part through Nodal signaling. Pitx2c is the major downstream mia, often coexists with the related arrhythmia atrial flutter (AFL). effector of the Nodal pathway (10). Limitations in effectiveness and safety of current therapies make an Recent genome-wide association studies identified sequence understanding of the molecular mechanism underlying AF more variants on chromosome 4q25 that were associated with in- urgent. Genome-wide association studies implicated a region of creased risk for AF in multiple human populations (11–13). human chromosome 4q25 in familial AF and AFL, ≈150 kb distal to Moreover, the 4q25 variants were strongly associated with AF the Pitx2 homeobox gene, a developmental left–right asymmetry cases diagnosed at an earlier age (<60 years) and with recurrence (LRA) gene. To investigate the significance of the 4q25 variants, we after ablation therapy (14). In a small Icelandic cohort, the se- used mouse models to investigate Pitx2 in atrial arrhythmogenesis quence variants also were strongly associated with AFL (11).
    [Show full text]
  • Galnt11 Is a Novel Galnac-Transferase That
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine January 2012 Galnt11 Is A Novel Galnac-Transferase That Glycosylates Notch1 Receptor To Specify Between Motor And Sensory Ciliary Fates In The eV rtebrate Left-Right Organizer Marko Boskovski Yale School of Medicine, [email protected] Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Boskovski, Marko, "Galnt11 Is A Novel Galnac-Transferase That Glycosylates Notch1 Receptor To Specify Between Motor And Sensory Ciliary Fates In The eV rtebrate Left-Right Organizer" (2012). Yale Medicine Thesis Digital Library. 1696. http://elischolar.library.yale.edu/ymtdl/1696 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. Galnt11 is a Novel GalNAc-transferase that Glycosylates Notch1 Receptor to Specify Between Motor and Sensory Ciliary Fates in the Vertebrate Left-Right Organizer A Thesis Submitted to the Yale University School of Medicine In Partial Fulfillment of the Requirements for the Degree of Doctor of Medicine by Marko T. Boskovski 2012 ABSTRACT GALNT11 IS A NOVEL GALNAC-TRANSFERASE THAT GLYCOSYLATES NOTCH1 RECEPTOR TO SPECIFY BETWEEN MOTOR AND SENSORY CILIARY FATES IN THE VERTEBRATE LEFT-RIGHT ORGANIZER. Marko T. Boskovski, Mustafa Khokha and Martina Brueckner. Section of Cardiology, Department of Pediatrics, Yale University, School of Medicine, New Haven, CT.
    [Show full text]
  • Co-Occupancy by Multiple Cardiac Transcription Factors Identifies
    Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart Aibin Hea,b,1, Sek Won Konga,b,c,1, Qing Maa,b, and William T. Pua,b,2 aDepartment of Cardiology and cChildren’s Hospital Informatics Program, Children’s Hospital Boston, Boston, MA 02115; and bHarvard Stem Cell Institute, Harvard University, Cambridge, MA 02138 Edited by Eric N. Olson, University of Texas Southwestern, Dallas, TX, and approved February 23, 2011 (received for review November 12, 2010) Identification of genomic regions that control tissue-specific gene study of a handful of model genes (e.g., refs. 7–10), it has not been expression is currently problematic. ChIP and high-throughput se- evaluated using unbiased, genome-wide approaches. quencing (ChIP-seq) of enhancer-associated proteins such as p300 In this study, we used a modified ChIP-seq approach to define identifies some but not all enhancers active in a tissue. Here we genome wide the binding sites of these cardiac TFs (1). We show that co-occupancy of a chromatin region by multiple tran- provide unbiased support for collaborative TF interactions in scription factors (TFs) identifies a distinct set of enhancers. GATA- driving cardiac gene expression and use this principle to show that chromatin co-occupancy by multiple TFs identifies enhancers binding protein 4 (GATA4), NK2 transcription factor-related, lo- with cardiac activity in vivo. The majority of these multiple TF- cus 5 (NKX2-5), T-box 5 (TBX5), serum response factor (SRF), and “ binding loci (MTL) enhancers were distinct from p300-bound myocyte-enhancer factor 2A (MEF2A), here referred to as cardiac enhancers in location and functional properties.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]