NGC 6845: Metallicity Gradients and Star Formation in a Complex Compact Group ?

Total Page:16

File Type:pdf, Size:1020Kb

NGC 6845: Metallicity Gradients and Star Formation in a Complex Compact Group ? Mon. Not. R. Astron. Soc. 000, 1{?? (0000) Printed 4 October 2018 (MN LATEX style file v2.2) NGC 6845: metallicity gradients and star formation in a complex compact group ? D. Olave-Rojas1y, S. Torres-Flores1, E. R. Carrasco2, C. Mendes de Oliveira3, D. F. de Mello4 & S. Scarano Jr5, 1Departamento de F´ısica y Astronom´ıa,Universidad de La Serena, Av. Cisternas 1200, La Serena, Chile 2Gemini Observatory/AURA, Southern Operations Center, Casilla 603, La Serena, Chile 3 Instituto de Astronomia, Geof´ısica e Ci^enciasAtmosf´ericas da Universidade de S~aoPaulo, Cidade Universit´aria,CEP:05508-900, S~aoPaulo, SP, Brazil 4 Catholic University of America, Washington, DC 20064, USA 5 Departamento de F´ısica - CCET, Universidade Federal de Sergipe, Rod. Marechal Rondon s/n, 49.100-000, Jardim Rosa Elze, S~aoCristov~ao,SE, Brazil 4 October 2018 ABSTRACT We have obtained Gemini/GMOS spectra of 28 regions located across the interacting group NGC 6845, spanning from the inner regions of the four major galaxies (NGC 6845A, B, C, D) to the tidal tails of NGC 6845A. All regions in the tails are star- forming objects with ages younger than 10 Myr. We derived the gas-phase metallicity gradients across NGC 6845A and its two tails and we find that these are shallower than those for isolated galaxies. NGC 6845A has a gas-phase oxygen central metal- licity of 12+log(O/H)∼8.5 and a flat gas-phase metallicity gradient (β=0.002±0.004 −1 dex kpc ) out to ∼4 × R25 (to the end of the longest tidal tail). Considering the mass-metallicity relation, the central region of NGC 6845A displays a lower oxygen abundance than the expected for its mass. Taking into account this fact and consider- ing the flat oxygen distribution measured along the eastern tidal tail, we suggest that an interaction event has produced a dilution in the central metallicity of this galaxy and the observed flattening in its metal distribution. We found that the star forma- tion process along the eastern tidal structure has not been efficient enough to increase the oxygen abundances in this place, suggesting that this structure was formed from enriched material. Key words: galaxies: abundances galaxies: interactions intergalactic medium galax- ies: star clusters: general galaxies: star formation. arXiv:1508.05070v1 [astro-ph.GA] 20 Aug 2015 1 INTRODUCTION ies (Moran et al. 2012) showed that metallicity gradients within the optical radii of galaxies are flat for massive galax- Local interacting/merging systems provide us with ideal lab- ies while metallicities decline steadily with radius for galax- oratories to study the effect of tidal forces in the kinematic, ies with low stellar mass (log(M ) < 10.2). Other studies morphology and chemical evolution of galaxies. (Toomre & ∗ have derived metallicity gradients of interacting, warped, Toomre 1972, Schweizer 1978). In particular, several gas-rich minor mergers or paired galaxies (Kewley et al. 2010, Werk interacting galaxies present lower nuclear metallicities and et al. 2011, Rich et al. 2012) and found shallower profiles shallower metallicity gradients than non-interacting galaxies than generally found in galaxies of similar mass. Recently, of similar masses, suggesting that large scale gas flows may Rosa et al. (2014) using Gemini data found that oxygen be linked to the chemical evolution of these systems (Kewley gradients are flatter for pairs of galaxies than for isolated et al. 2010, Rupke et al. 2010,b, Werk et al. 2011, Bresolin spiral galaxies. These works were focused on the study of et al. 2012). metallicity gradients of interacting galaxies up to twice the A recent systematic survey of gas-phase metallicity gra- optical radii of the galaxies but none of them dealt with dients of a large sample of nearby non-interacting disk galax- galaxies with tidal tails. In an attempt to probe metallicities at increasingly larger radii, our group has focused on deriv- ing metallicity gradients for galaxies with long tidal tails in ? Observing run: GS-2011B-Q-36 y : [email protected] c 0000 RAS 2 D. Olave-Rojas et al. the optical and Hi as is the case of the galaxies NGC 92 that NGC 6845A has a long tidal arm projected onto NGC (Torres-Flores et al. 2014) and NGC 2782 (Werk et al. 2011, 6845B. They were able to confirm that NGC 6845A and Torres-Flores et al. 2012). The presence of tidal tails allows NGC 6845B are part of the system. Also, they found one probing metallicities not only to much outer radii than in exceptionally large knot in NGC 6845A - they named it as cases of galaxies with no tails, but also in the intragroup \knot a". Later, NGC 6845C and NGC 6845D were con- medium, where intergalactic Hii regions are found (as it is firmed as members of the group by Rose & Graham (1979). the case for Stephan's quintet, Trancho et al. 2012). Our Deep images by Rose & Graham (1979) showed the bright previous studies analyzed NGC 92 and NGC 2782, systems eastern arm of NGC 6845A extending towards NGC 6845B which display tidal tails with flat metallicity distributions. and a tidal bridge bluer than the inner disk of NGC 6845A. Metallicities were obtained by using the nebular spectra of Rodrigues et al. (1999) found that the tidal bridge be- several young star forming regions located along the tidal tween NGC 6845A and NGC 6845B has a (B-I) colour bluer tails. These regions are metal rich, which suggests that they than that of the inner disk of NGC 6845A. These authors were born from material expelled from the galaxies involved found eight strong condensations, identified as Hii regions in the interaction. with ages between 3-8Myrs. They also studied the blue knot The study of systems in extreme phases, such as when \a", but they named it \7". collisions happen and form tidal tails, may help elucidate Gordon et al. (2003) obtained Hi (21-cm) observations processes which are rare in the nearby Universe but may of NGC 6845 by using the Australia Telescope Compact Ar- have been common at high-z. Formation of new systems due ray (ATCA), during 1997 and 1998. The beam size was 43 × to strong interactions, and subsequent evolution of several 36 arcsec2, with a channel width of 20 km s−1. Using these generations of these systems may enhance the metallicity of data, Gordon et al. (2003) derived integrated Hi intensity the outskirts of galaxies and intragroup medium and may be maps, mean velocity field and Hi velocity dispersion maps. an important mechanism for driving metals from the centers In addition, 20-cm radio continuum maps were derived from of the large galaxies outward and to the intragroup medium. these observations. Gordon et al. (2003) found that the One extreme case of recently formed objects due to interac- Hi emission is associated with the galaxies NGC 6845A tions is extranuclear Hα-emitting complexes such as those and NGC 6845B and that it has a typical column density 20 −2 found in the ultraluminous infrared galaxies (ULIRGS) sam- of NHI ∼18.3×10 cm . The far-ultraviolet (FUV) Galaxy ple studied by Miralles-Caballero et al. (2012). These may Evolution Explorer (GALEX ) image of this group shows be precursors of the so called tidal dwarf galaxies. They may that the galaxies NGC 6845A and NGC 6845B have strong form independent new systems or fall back onto the parent UV emission and galaxies NGC 6845C and NGC 6845D have galaxies. very weak or null UV emission (see top panel in Fig. 1). In order to study these environmental effects on galaxy The optical and morphological properties of the galax- formation and evolution we have an observational program ies in the NGC 6845 quartet are summarized in Table 1. to obtain deep imaging and spectroscopy of a sample of Total magnitudes in the B-band and total (B-V) colors for galaxies with tidal tails. Two groups have already been stud- all members of the group were obtained from the Hyper- ied, NGC 92 and NGC 2782. In the current paper, we an- Leda data base (Makarov et al. 2014). Sizes, Hi masses and alyze the group NGC 6845, formed by two spirals and two inclinations for the main members of NGC 6845 were taken lenticular galaxies, NGC 6845A, B, C and D (also known as from literature (see Table 1). Klemola 30 by Klemola 1969, and ESO284-IG008), where one of the galaxies (NGC 6845A) has long tidal tails. Here we present deep Gemini imaging and spectroscopy of the 2.2 Data system revealing star-forming regions and yielding a map of the metal distribution across a projected distance to the cen- Images and spectra for NGC 6845 were taken with the Gem- ter of the galaxy of 140 kpc. This group has a mean optical ini MultiObject Spectrograph (GMOS Hook et al. 2004) at recession velocity of 6701 km s−1, which has been corrected the Gemini South telescope under the science program GS- by the Virgo, Great Attractor and Shapley infall (Mould 2011B-Q-36 (PI: S. Torres-Flores). −1 −1 We used these data to determine the oxygen abundances et al. 2000). Assuming H0=73 km s Mpc this velocity implies a distance to NGC 6845 of 91.8 Mpc. We note that of the objects located in the tidal tails of NGC 6845A and 1 arcsec ' 0.445 kpc at this distance. between NGC 6845A and NGC 6845B. The paper is organized as follows. In Section 2 we de- scribe the system and the data, imaging and spectroscopy, taken with the Gemini South telescope.
Recommended publications
  • Star-Forming Regions and the Metallicity Gradients in the Tidal Tails
    Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 8 June 2018 (MN LATEX style file v2.2) Star-forming regions and the metallicity gradients in the tidal tails: The case of NGC 92⋆ S. Torres-Flores1†, S. Scarano Jr2,3,4, C. Mendes de Oliveira3, D. F. de Mello5, P. Amram6 & H. Plana7 1Departamento de F´ısica, Universidad de La Serena, Av. Cisternas 1200 Norte, La Serena, Chile 2Instituto de Astronomia, Geof´ısica e Ciˆencias Atmosf´ericas da Universidade de S˜ao Paulo, Cidade Universit´aria, CEP: 05508-900, S˜ao Paulo, SP, Brazil 3Southern Astrophysical Research Telescope (SOAR), Casilla 603, La Serena, Chile 4Departamento de F´ısica - CCET, Universidade Federal de Sergipe, Rod. Marechal Rondon s/n, 49.100-000, Jardim Rosa Elze, S˜ao Cristov˜ao, SE, Brazil 5Catholic University of America, Washington, DC 20064, USA 6Laboratoire d’Astrophysique de Marseille, Aix Marseille Universit´e, CNRS, 13388, Marseille, France 7Laborat´orio de Astrof´ısica Te´orica e Observacional, Universidade Estadual de Santa Cruz, Ilh´eus, Brazil 8 June 2018 ABSTRACT We present new Gemini/GMOS spectroscopic and archival imaging data of the interacting galaxy NGC 92, which is part of a compact group and displays an extended tidal tail. We have studied the physical properties of 20 star-forming complexes in this system. We found that the star-forming regions located in the tidal tail of NGC 92 have ages younger than ∼8 Myr, which suggests that these objects were formed in situ. The spectroscopic data reveals that these regions have slightly sub-solar metallicities, suggesting that they were formed from pre-enriched material.
    [Show full text]
  • Star Formation in Three Nearby Galaxy Systems 3 Order to Analyse Their Luminosity Functions (Lfs) and Size Distributions
    STAR FORMATION IN THREE NEARBY GALAXY SYSTEMS S. Temporin,1 S. Ciroi,2 A. Iovino,3 E. Pompei,4 M. Radovich,5, and P. Rafanelli2 1 2 Institute of Astrophysics, University of Innsbruck, Astronomy Department, University of 3 4 5 Padova, INAF-Brera Astronomical Observatory, ESO-La Silla, INAF-Capodimonte As- tronomical Observatory Abstract We present an analysis of the distribution and strength of star formation in three nearby small galaxy systems, which are undergoing a weak interaction, a strong interaction, and a merging process, respectively. The galaxies in all systems present widespread star formation enhancements, as well as, in some cases, nu- clear activity. In particular, for the two closest systems, we study the number- count, size, and luminosity distribution of H ii regions within the interacting galaxies, while for the more distant, merging system we analyze the general distribution of the Hα emission across the system and its velocity field. Keywords: Galaxies: interactions – Galaxies: star formation 1. Introduction Galaxy interactions have been known for a long time to trigger star forma- tion, although both observations and numerical simulations have shown that the enhancement of star formation depends, among other factors, on the or- arXiv:astro-ph/0411405v1 15 Nov 2004 bital geometry of the encounter. In some situations interactions might even suppress star formation. Hence, the star formation properties of interacting systems may serve as a clue to their interaction history. Here we analyse the star formation properties of three nearby galaxy sys- tems in differing evolutionary phases: the weakly interacting triplet AM 1238- 362 (Temporin et al.
    [Show full text]
  • The Anti-Christian Roots of Nazism
    THE ANTI-CHRISTIAN ROOTS OF NAZISM THE ANTI-CHRISTIAN ROOTS OF NAZISM BY DENNIS BARTON The ChurchinHistory Information Centre www.churchinhistory.org CONTENTS Page Chapter 2. 1. SEVERAL ROOTS 2. a. Introduction 2. b. Eugenics 3. c. The Volkischer and Pan-German Movements 4. d. The Occult 9. e. German Anti-Semitism 10. f. Russian Anti-Semitism 13. g. The Wagnerian Bayreuth Cult 14. h. The Thurle Society 17. 2. ADOLF HITLER 20. 3. HITLER'S MEIN KAMPF 22. 4. SYMBOLISM 24. 5. BAVARIAN CATHOLICS 26. 6. SUPPORTERS OF EUGENICS 26. A. Introduction 26. B. America 29. C. Britain 32. D. Marxism 33. COMMENT AND CONCLUSION 34. REFERENCES ‘CHURCHinHISTORY’ endeavours to make information regarding the involvement of the Church in history more easily available. 1 CHAPTER 1 SEVERAL ROOTS a. Introduction For over half a century, Communists asserted that the Catholic Church was a supporter of Hitler. This intense and slanderous propaganda was not without some success. It established in many minds a vague feeling that Catholic culture provided a fertile soil for Nazism and that the Church did little to prevent its development. Some may even believe that the Church encouraged Hitler's movement, and various anti-Catholic sects are trying to keep this myth alive. In order to refute these accusations it is necessary to examine the roots of this evil creed. Nazism did not appear suddenly from the pen of Adolf Hitler. It was preceded by several philosophical, political and cultural movements, which had been growing for many years. They were: eugenics, occultism, the Volkischer Movement, Pan-Germanism, anti-Catholicism, German anti-Semitism, Russian anti-Semitism, Wagnerian drama and the Thurle Society.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Numbers 1 to 100
    Numbers 1 to 100 PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 30 Nov 2010 02:36:24 UTC Contents Articles −1 (number) 1 0 (number) 3 1 (number) 12 2 (number) 17 3 (number) 23 4 (number) 32 5 (number) 42 6 (number) 50 7 (number) 58 8 (number) 73 9 (number) 77 10 (number) 82 11 (number) 88 12 (number) 94 13 (number) 102 14 (number) 107 15 (number) 111 16 (number) 114 17 (number) 118 18 (number) 124 19 (number) 127 20 (number) 132 21 (number) 136 22 (number) 140 23 (number) 144 24 (number) 148 25 (number) 152 26 (number) 155 27 (number) 158 28 (number) 162 29 (number) 165 30 (number) 168 31 (number) 172 32 (number) 175 33 (number) 179 34 (number) 182 35 (number) 185 36 (number) 188 37 (number) 191 38 (number) 193 39 (number) 196 40 (number) 199 41 (number) 204 42 (number) 207 43 (number) 214 44 (number) 217 45 (number) 220 46 (number) 222 47 (number) 225 48 (number) 229 49 (number) 232 50 (number) 235 51 (number) 238 52 (number) 241 53 (number) 243 54 (number) 246 55 (number) 248 56 (number) 251 57 (number) 255 58 (number) 258 59 (number) 260 60 (number) 263 61 (number) 267 62 (number) 270 63 (number) 272 64 (number) 274 66 (number) 277 67 (number) 280 68 (number) 282 69 (number) 284 70 (number) 286 71 (number) 289 72 (number) 292 73 (number) 296 74 (number) 298 75 (number) 301 77 (number) 302 78 (number) 305 79 (number) 307 80 (number) 309 81 (number) 311 82 (number) 313 83 (number) 315 84 (number) 318 85 (number) 320 86 (number) 323 87 (number) 326 88 (number)
    [Show full text]
  • Metallicities in the Outer Regions of Spiral Galaxies
    Metallicities in the Outer Regions of Spiral Galaxies Fabio Bresolin Abstract The analysis of the chemical composition of galaxies provides fundamen- tal insights into their evolution. This holds true also in the case of the outer regions of spiral galaxies. This Chapter presents the observational data, accumulated in the past few years mostly from the analysis of H II region spectra, concerning the metallicity of the outer disks of spirals that are characterized by extended H I envelopes and low star formation rates. I present evidence from the literature that the metal radial distribution flattens at large galactocentric distances, with levels of enrichment that exceed those expected given the large gas mass fractions and the weak star formation activity. The interpretation of these results leads to speculations regarding mecha- nisms of metal mixing in galactic disks and the possibility that metal-enriched gas infall plays a role in determining the chemical evolution of the outskirts of spirals. 1 Introduction The analysis of the chemical abundance composition of galaxies provides essential and unique constraints on their evolutionary status and their star formation proper- ties. Gathering spatially resolved information about the distribution of metals is a well-tested approach to probe not only the metal production in stars across time, but also those effects, such as galactic wind outflows, gravitational interactions, secular processes and gas inflows, that can profoundly affect the evolution of galaxies. This Chapter looks at the present-day gas metallicities of outer spiral disks, as derived from the emission line analysis of H II region spectra, excluding older chem- ical abundance tracers, such as planetary nebulae and stars, except for a few notable exceptions.
    [Show full text]
  • Detection of a Hot Intergalactic Medium in the Spiral-Only Compact Group SCG0018-4854 G
    Astronomy & Astrophysics manuscript no. revised c ESO 2021 16-7-2021 Detection of a hot intergalactic medium in the spiral-only compact group SCG0018-4854 G. Trinchieri1, A. Iovino1, E. Pompei2, M. Dahlem3, J. Reeves4, R. Coziol5, and S. Temporin6 1 INAF-Osservatorio Astronomico di Brera, via Brera 28, 20121 Milano Italy e-mail: [email protected] 2 ESO - Alonso de Cordova 3107 Vitacura Casilla 19001 Santiago 19, Chile 3 CSIRO/ATNF - Paul Wild Observatory Narrabri NSW 2390 AUSTRALIA 4 Astrophysics Group, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire ST5 5BG, UK. 5 Departamento de Astronoma, Universidad de Guanajuato, 36000 Guanajuato, Guanajuato, Mexico 6 Laboratoire AIM, CEA/DSM - CNRS - Universit Paris Diderot, DAPNIA/SAp, 91191 Gif sur Yvette, France Draft: 16-7-2021 ABSTRACT Aims. Compact groups of galaxies are excellent laboratories for studying galaxy interactions and their effects on the evolution of galaxies. In particular, dynamically young systems, with a large fraction of interacting, late type galaxies, have so far escaped proper studies in the X-ray band and their hot intergalactic medium properties are virtually un- known. Motivated by this lack of knowledge, we present a detailed investigation here of the X-ray properties of such a dynamically young system. Methods. We obtained XMM-Newton observations of one spiral-only system in the new southern compact group cat- alogue: SCG0018-4854. We present here the results of the data analysis and discuss them in comparison with the few other similar systems also studied in the X-ray band. Results. The 4 members of SCG0018-4854 emit at a level comparable to what is expected based on their optical properties.
    [Show full text]
  • Cosmic Portrait of a Perturbed Family 4 November 2005
    Cosmic Portrait of a Perturbed Family 4 November 2005 The quartet is one of the finest examples of compact groups of galaxies. Because such groups contain four to eight galaxies in a very small region, they are excellent laboratories for the study of galaxy interactions and their effects, in particular on the formation of stars. Using another set of VLT data also obtained with FORS2, astronomers were able to study the properties of regions of active star formation ("HII regions") in the sister members of Robert's Quartet. They found more than 200 of such regions in NGC 92, with a size between 500 and 1,500 light-years. For NGC 87, they detected 56 HII regions, while the two other galaxies appear to have far fewer of them. For NGC 88, however, they found two plume- like features, while NGC 89 presents a ring of enhanced stellar activity. The system is thus clearly showing increased star formation activity, most probably as the result of the interaction between its members. The sisters clearly belong to a perturbed family. This photo shows in amazing details a group of The quartet has a total visual magnitude of almost galaxies known as Robert's Quartet. The image is 13, i.e. it is about 600 times fainter than the faintest based on data collected with the FORS2 multi- object that can be seen with the unaided eye. The mode instrument on ESO's Very Large Telescope. brightest member of the group has a magnitude of Robert's Quartet is a family of four very different about 14.
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]
  • Oxygen Abundance Gradients
    MNRAS 444, 2005–2021 (2014) doi:10.1093/mnras/stu1578 Interaction effects on galaxy pairs with Gemini/GMOS – II: oxygen abundance gradients D. A. Rosa,1‹ O. L. Dors Jr,1 A. C. Krabbe,1 G. F. Hagele,¨ 2,3 M. V. Cardaci,2,3 M. G. Pastoriza,4 I. Rodrigues1 and C. Winge5 1Universidade do Vale do Para´ıba, Av. Shishima Hifumi, 2911, Cep 12244-000, Sao˜ Jose´ dos Campos, SP, Brazil 2Instituto de Astrof´ısica de La Plata (CONICET La Plata–UNLP), Argentina 3Facultad de Ciencias Astronomicas´ y Geof´ısicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina 4 Instituto de F´ısica, Universidade Federal do Rio Grande do Sul, Av. Bento Gonc¸alves, 9500, Cep 91359-050, Porto Alegre, RS, Brazil Downloaded from 5Gemini Observatory, c/o AURA Inc., Casilla 603, La Serena, Chile Accepted 2014 August 4. Received 2014 August 1; in original form 2014 April 7 http://mnras.oxfordjournals.org/ ABSTRACT In this paper, we derive oxygen abundance gradients from H II regions located in 11 galaxies in eight systems of close pairs. Long-slit spectra in the range 4400–7300 Å were obtained with the Gemini Multi-Object Spectrograph at Gemini South (GMOS-S). Spatial profiles of oxygen abundance in the gaseous phase along galaxy discs were obtained using calibrations based on strong emission lines (N2 and O3N2). We found oxygen gradients to be significantly flatter for all the studied galaxies than those in typical isolated spiral galaxies. Four objects in our sample, AM 1219A, AM 1256B, AM 2030A and AM 2030B, show a clear break in at Universidade Federal do Rio Grande Sul on December 19, 2014 the oxygen abundance at galactocentric radius R/R25 between 0.2 and 0.5.
    [Show full text]
  • HB-NGC Index
    Object Name Constellation Type Dec RA Season HB Page IC 1 Pegasus Double star +27 43 00 08.4 Fall C-21 IC 2 Cetus Galaxy -12 49 00 11.0 Fall C-39, C-57 IC 3 Pisces Galaxy -00 25 00 12.1 Fall C-39 IC 4 Pegasus Galaxy +17 29 00 13.4 Fall C-21, C-39 IC 5 Cetus Galaxy -09 33 00 17.4 Fall C-39 IC 6 Pisces Galaxy -03 16 00 19.0 Fall C-39 IC 8 Pisces Galaxy -03 13 00 19.1 Fall C-39 IC 9 Cetus Galaxy -14 07 00 19.7 Fall C-39, C-57 IC 10 Cassiopeia Galaxy +59 18 00 20.4 Fall C-03 IC 12 Pisces Galaxy -02 39 00 20.3 Fall C-39 IC 13 Pisces Galaxy +07 42 00 20.4 Fall C-39 IC 16 Cetus Galaxy -13 05 00 27.9 Fall C-39, C-57 IC 17 Cetus Galaxy +02 39 00 28.5 Fall C-39 IC 18 Cetus Galaxy -11 34 00 28.6 Fall C-39, C-57 IC 19 Cetus Galaxy -11 38 00 28.7 Fall C-39, C-57 IC 20 Cetus Galaxy -13 00 00 28.5 Fall C-39, C-57 IC 21 Cetus Galaxy -00 10 00 29.2 Fall C-39 IC 22 Cetus Galaxy -09 03 00 29.6 Fall C-39 IC 24 Andromeda Open star cluster +30 51 00 31.2 Fall C-21 IC 25 Cetus Galaxy -00 24 00 31.2 Fall C-39 IC 29 Cetus Galaxy -02 11 00 34.2 Fall C-39 IC 30 Cetus Galaxy -02 05 00 34.3 Fall C-39 IC 31 Pisces Galaxy +12 17 00 34.4 Fall C-21, C-39 IC 32 Cetus Galaxy -02 08 00 35.0 Fall C-39 IC 33 Cetus Galaxy -02 08 00 35.1 Fall C-39 IC 34 Pisces Galaxy +09 08 00 35.6 Fall C-39 IC 35 Pisces Galaxy +10 21 00 37.7 Fall C-39, C-56 IC 37 Cetus Galaxy -15 23 00 38.5 Fall C-39, C-56, C-57, C-74 IC 38 Cetus Galaxy -15 26 00 38.6 Fall C-39, C-56, C-57, C-74 IC 40 Cetus Galaxy +02 26 00 39.5 Fall C-39, C-56 IC 42 Cetus Galaxy -15 26 00 41.1 Fall C-39, C-56, C-57, C-74 IC
    [Show full text]
  • Watch This Space for November 2015
    Watch this Space for November 2015 Moon Phases Planet Watch The Planets on view this month are: New Moon First Quarter 11/ 11 / 15 19/ 11 / 15 Mercury: not visible this month Venus: mag -4.2 in Vir, rises about 02:00 Full Moon Last Quarter Mars: mag 1.8 in Vir, rises about 02:00 25/ 11 / 15 03/ 11 / 15 Jupiter: mag -1.7 in Leo, rises about 02:00 Saturn: in Sco, not visible this month The Sun Uranus: mag 5.7 in Psc, visible from 21:00 to 04:00 Rises: 07:19, 15th November, Sets: 16:18 Neptune: mag 7.9 in Aqr, sets about midnight Constellation of the Month - Phoenix Phoenix is not visible from the UK. It represents the mythical bird that sup- posedly was reborn from its own ashes. It is the largest of the 12 constel- lations invented at the end of the 16th century by the Dutch navigators Pieter Keyser and Frederick de Houtman. As with all of their constellations it was first depicted on a globe by Plancius in 1598 and first appeared in print on the 1603 Uranometria of Johann Bayer. It is 37th out of the 88 constellations in size (469 sq. deg.) It is slightly bigger than Aries in area. Notable stars: Phe - Ankaa. Is a spectroscopic binary with a period of 10.5yr. The primary is a K0 orange supergiant, about 85ly away. SX Phe - Prototype of the SX Phe type of short period (up to 2hr) pulsating variable stars. They have a periodicity/luminosity relationship that makes them useful “standard candles”.
    [Show full text]