Syngas Obtainment from the Gasification of Asphaltenes of the San Fernando Crude Oil
Total Page:16
File Type:pdf, Size:1020Kb
SYNGAS OBTAINMENT FROM THE GASIFICATION OF ASPHALTENES OF THE SAN FERNANDO CRUDE OIL Ciencia, Tecnología y Futuro SYNGAS OBTAINMENT FROM THE GASIFICATION OF ASPHALTENES OF THE SAN FERNANDO CRUDE OIL Laura-Smith Moreno-Arciniegas2*, Fabio-Ernesto Rodríguez-Corredor2*, Luz-Edelmira Afanador-Rey1* and Jorge-Luis Grosso-Vargas2 ¹ Ecopetrol S.A-Instituto Colombiano del Petróleo, P. O. Box 4185, Bucaramanga, Santander, Colombia ² Universidad Industrial de Santander (UIS), Bucaramanga, Santander, Colombia e-mail: [email protected] e-mail: [email protected] e-mail: [email protected] (Received April 30, 2008; Accepted July 17, 2009) n this work, we developed the first study in Colombia to obtain and evaluate syngas compositions derived from asphaltenes gasification. These asphaltenes came from the implementation of a Deasphalting process to San IFernando crude oil, with the purpose of looking for technological options for their utilization. We performed the design, installation and commissioning of facilities for the gasification of asphaltenes at laboratory scale, it fol- lowing an experimental methodology, performing nine tests and considering temperature and agent gasification quantity (oxygen) as independent variables. The syngas derived from gasification was analyzed by two chromato- graphic techniques, which reported the presence of refinery gases and sulfur. We evidenced a growth tendency of CO, H2 and sulfur composition and a decrease in CH4 and CO2 composition with temperature. The composition of the syngas was evaluated with different quantities of gasification agent (33%, 40% and 47% the amount of oxygen theoretically required for complete combustion) at each temperature levels operated. It was established that when using a 40% of gasification agent, you get greater average content of CO and H2, which are the interest gases in the gasification process. Keywords: San Fernando crude oil, gasification, asphaltenes, syngas. * To whom correspondence may be addressed CT&F - Ciencia, Tecnología y Futuro - Vol. 3 Núm. 5 Dic. 2009 189 LAURA-SMITH MORENO-ARCINIEGAS et al. n este trabajo se desarrolló el primer estudio en el país de la obtención y evaluación de las composi- ciones del syngas a partir de la gasificación de asfaltenos provenientes de la aplicación del proceso Ede Desasfaltado al crudo San Fernando, con el objeto de evaluar opciones tecnológicas para su utilización. Para ello se realizó el diseño y puesta en marcha de un sistema de gasificación de asfaltenos a escala de laboratorio, donde se empleó una metodología experimental, realizando nueve pruebas y tomando como variables independientes la temperatura y el agente gasificante (oxígeno). El syngas obtenido de la gasificación fue analizado por dos técnicas de cromatografía, las cuales reportaron la presencia de gases de refinería y azufrados. De estos resultados experimentales se evidencia una tendencia de crecimiento en la composición del CO, H2 y azufrados, y una disminución en la composición del CH4 y CO2 con la tempe- ratura. Se evaluó la composición del syngas con la variación del agente gasificante (33%, 40% y 47% del oxígeno teórico requerido en una combustión total) en cada uno de los niveles de temperatura operados y se estableció que al utilizar un 40% de agente gasificante, se obtienen en promedio los mejores resultados en las composiciones del CO y H4, siendo estos los gases de interés en el proceso de gasificación. Palabras Clave: crudo San Fernando, gasificación, asfaltenos, syngas. 190 CT&F - Ciencia, Tecnología y Futuro - Vol. 3 Núm. 5 Dic. 2009 SYNGAS OBTAINMENT FROM THE GASIFICATION OF ASPHALTENES OF THE SAN FERNANDO CRUDE OIL INTRODUCTION THEORETICAL FRAMEWORK The decrease of conventional crude oil reserves The gasification process consists in submitting in Colombia has brought about an incremental use feedstocks to high temperatures (800ºC -1.800ºC) and of heavy crude oil reserves (Rubiales, Castilla & San pressure (Huang, Fang, Chen & Wang, 2003; Higman Fernando). Due to their high viscosity, sulfur and metal %XUJW7H[DFR ZLWKDJDVL¿FDWLRQDJHQW content, these crude oils represent a challenge for their usually, water vapor, oxygen, air or a mixture of them. WUDQVSRUWDWLRQDQGUH¿QLQJ7KHUHIRUHVHYHUDOWHFKQR- The syngas heating value varies according to these com- logical alternatives are evaluated to utilize them in a ponents. This feedstock is converted in crude gas (CO2, CH , H &2DPRQJRWKHUV WKDWLVFRROHGDQGSXUL¿HG YHU\HI¿FLHQWPDQQHU7KHGHDVSKDOWLQJSURFHVVLVRQH 4 2 to obtain a mixture of CO and H (Leibold, Hornung of these alternatives to separate the light and the heavy 2 & Seifert, 2008; Higman & Burgt, 2007; Steynberg & fractions of crude oil, resulting in improved crude oil Dry, 2004; Texaco, 1995). Reaction rates in this range of with less viscosity, sulfur and metal content as well WHPSHUDWXUHDUHVXI¿FLHQWO\KLJKWREHGHVFULEHGE\WKH as a byproduct called asphaltenes (Wallace, Jonson & thermodynamic equilibrium modeling of the main gas Thacker, 2001). These asphaltenes have different utili- components and coal, giving results closer to rea-lity. This zation schemes, being one of them their submission to is the foundation for the design of commercial reactors JDVL¿FDWLRQSURFHVVHV (Higman & Burgt, 2007). Asphaltenes have a molecular weight between 1000 7KHDVSKDOWHQHVJDVL¿FDWLRQSURFHVVLQWKLVSDSHUDQG and 2000, their molecule size ranges between 60-90 in publications from Texaco (Wallace, Jonson & Thacker, Armstrong and, in general terms, exhibit a boiling 2001), Shell and other companies, is similar to different point greater than 540°C (Centeno, Trejo & Ancheyta, JDVL¿FDWLRQSURFHVVHVIRUFRDOSHWUROHXPUHVLGXHVDQG biomass (Higman & Burgt, 2007). The asphaltenes gasi- 2004; Delgado, 2006). Different studies conclude that ¿FDWLRQSURFHVVDVRWKHUSHWUROHXPUHVLGXHVUHTXLUHV asphaltenes are composed of condensed aromatic cores temperatures above 1000ºC to obtain the best results with naphthenic and alkyl substitutions, heteroatoms and (Wallace, Jonson & Thacker, 2001; Wa-llace, Anderson, metallic compounds that can be dispersed throughout Rodarte & Preston, 1998; Deschamps, Dezael & Franck- the molecule (Navarro, 2004; Delgado, 2006). owiak, 1986). 7KHJDVL¿FDWLRQSURFHVVKDVEHHQDWRSLFRIUHVHDUFK The composition of syngas resulting from asphaltenes for many years (Liu & Kojima, 2004); its development JDVL¿FDWLRQKDVQRWEHHQUHSRUWHGH[WHQVLYHO\LQDQ\ and commercialization have also been a subject of SXEOLFDWLRQ$VSKDOWHQHVJDVL¿FDWLRQVWXGLHVUHVXOWIURP analysis (Dyk, Keyser & Coertzen, 2006). Today, there deasphalting processes. Therefore, petroleum companies DUHQHDUO\FRPPHUFLDOJDVL¿FDWLRQSODQWVLQGHYH have proposed the integration of deasphal-ting processes lopment, construction or operation (Peabody Energy, ZLWKDVSKDOWHQHVJDVL¿FDWLRQ :DOODFH-RQVRQ 7KDFNHU +RZHYHUDVSKDOWHQHVJDVL¿FDWLRQKDVQRWEHHQ 2001; Wallace, Anderson, Rodarte & Preston,1998), thus creating very attractive alternatives for crude improve- IRUPDOO\UHVHDUFKHGDIDFWWKDWMXVWL¿HVWKHXQGHUWD ment and for the application of the byproducts resulting king of this study. from the deasphalting process (asphaltene). Asphaltene, in turn, is a low-cost raw material that can be submitted The research objective is to complete a design for as- WRDJDVL¿FDWLRQSURFHVVLQRUGHUWRLQFUHDVHWKHSUR¿W- SKDOWHQHVJDVL¿FDWLRQDQGWKHFROOHFWLRQDQGHYDOXDWLRQ ability of these processes (Wallace, Anderson, Rodarte of the resulting syngas by chromatographic analyses. & Preston,1998). Based on syngas composition and on the residues gene- rated in the process, syngas mass yield was determined 7KHPDLQUHDFWLRQVWDNLQJSODFHLQJDVL¿FDWLRQDUH for each trial, thus obtaining yields between 62% and (Marano, 2003; Higman & Burgt, 2007; Ouyang, Guo, 77%. 'XDQ6RQJ <X CT&F - Ciencia, Tecnología y Futuro - Vol. 3 Núm. 5 Dic. 2009 191 LAURA-SMITH MORENO-ARCINIEGAS et al. Exothermal Reactions berg & Dry, 2004). Most of the O2VXSSOLHGLQWKHJDVL¿HU is consumed in the combustion reactions. The water shift Partial Combustion reaction is used in the adjustment of the H2/CO ratio. The objective is to maximize the CO and H2 content (Furim- sky, 1999; Ouyang et al., 2005; Sharma, Takanohashi, Morishita, Takarada & Saito, 2008; Texaco, 1995). The CH4FDQEHIRUPHGDWORZJDVL¿FDWLRQWHPSHUDWXUHVDQG Total Combustion can be reformed to increase the CO and H2 in the syn- gas from the reforming reaction (Equation 8) (Marano, 2003; Higman, & Burgt, 2007). Reforming reaction Water shift Sulfur in the feedstock is mainly converted to small Methanation Reaction quantities of H2S and COS. Most of nitrogen is con- verted into N2, with small amounts of HCN and NH3 (Secades, 2003; Hoffman, 2003; Higman & Burgt, 2007; Leibold et al., 2008; Texaco, 1995). Endothermal Reactions Using deductions of the thermodynamic model, Higman and Burgt (2007) determined the change in gas Boudouard Reaction composition at different pressure values (from 10 bar to 100 bar), keeping a constant temperature of 1000°C. The results of such study indicate that CH4 and CO2 composition in syngas increased with pressure, while CO and H2 production decreased. Water-gas Reaction Higman and Burgt (2007) repeated the calculation keeping a constant temperature of 1500ºC. They ob- served the same trend as pressure increases, although Equations 3 through 6 are reversible. Their equilibri- their conclusion indicates that syngas changes at this temperature are negligible. um can be described with the Van´t Hoff Equation that considers the temperature effect over the equilibrium constant and,