[ENTRY MATH CITATIONS] Collected by Oliver Knill: 2000-2002
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Cambridge Mathematical Journal and Its Descendants: the Linchpin of a Research Community in the Early and Mid-Victorian Age ✩
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 31 (2004) 455–497 www.elsevier.com/locate/hm The Cambridge Mathematical Journal and its descendants: the linchpin of a research community in the early and mid-Victorian Age ✩ Tony Crilly ∗ Middlesex University Business School, Hendon, London NW4 4BT, UK Received 29 October 2002; revised 12 November 2003; accepted 8 March 2004 Abstract The Cambridge Mathematical Journal and its successors, the Cambridge and Dublin Mathematical Journal,and the Quarterly Journal of Pure and Applied Mathematics, were a vital link in the establishment of a research ethos in British mathematics in the period 1837–1870. From the beginning, the tension between academic objectives and economic viability shaped the often precarious existence of this line of communication between practitioners. Utilizing archival material, this paper presents episodes in the setting up and maintenance of these journals during their formative years. 2004 Elsevier Inc. All rights reserved. Résumé Dans la période 1837–1870, le Cambridge Mathematical Journal et les revues qui lui ont succédé, le Cambridge and Dublin Mathematical Journal et le Quarterly Journal of Pure and Applied Mathematics, ont joué un rôle essentiel pour promouvoir une culture de recherche dans les mathématiques britanniques. Dès le début, la tension entre les objectifs intellectuels et la rentabilité économique marqua l’existence, souvent précaire, de ce moyen de communication entre professionnels. Sur la base de documents d’archives, cet article présente les épisodes importants dans la création et l’existence de ces revues. 2004 Elsevier Inc. -
James Joseph Sylvester1
Chapter 8 JAMES JOSEPH SYLVESTER1 (1814-1897) James Joseph Sylvester was born in London, on the 3d of September, 1814. He was by descent a Jew. His father was Abraham Joseph Sylvester, and the future mathematician was the youngest but one of seven children. He received his elementary education at two private schools in London, and his secondary education at the Royal Institution in Liverpool. At the age of twenty he entered St. John’s College, Cambridge; and in the tripos examination he came out sec- ond wrangler. The senior wrangler of the year did not rise to any eminence; the fourth wrangler was George Green, celebrated for his contributions to mathe- matical physics; the fifth wrangler was Duncan F. Gregory, who subsequently wrote on the foundations of algebra. On account of his religion Sylvester could not sign the thirty-nine articles of the Church of England; and as a consequence he could neither receive the degree of Bachelor of Arts nor compete for the Smith’s prizes, and as a further consequence he was not eligible for a fellowship. To obtain a degree he turned to the University of Dublin. After the theological tests for degrees had been abolished at the Universities of Oxford and Cam- bridge in 1872, the University of Cambridge granted him his well-earned degree of Bachelor of Arts and also that of Master of Arts. On leaving Cambridge he at once commenced to write papers, and these were at first on applied mathematics. His first paper was entitled “An analytical development of Fresnel’s optical theory of crystals,” which was published in the Philosophical Magazine. -
Count Down: Six Kids Vie for Glory at the World's Toughest Math
Count Down Six Kids Vie for Glory | at the World's TOUGHEST MATH COMPETITION STEVE OLSON author of MAPPING HUMAN HISTORY, National Book Award finalist $Z4- 00 ACH SUMMER SIX MATH WHIZZES selected from nearly a half million EAmerican teens compete against the world's best problem solvers at the Interna• tional Mathematical Olympiad. Steve Olson, whose Mapping Human History was a Na• tional Book Award finalist, follows the members of a U.S. team from their intense tryouts to the Olympiad's nail-biting final rounds to discover not only what drives these extraordinary kids but what makes them both unique and typical. In the process he provides fascinating insights into the creative process, human intelligence and learning, and the nature of genius. Brilliant, but defying all the math-nerd stereotypes, these athletes of the mind want to excel at whatever piques their cu• riosity, and they are curious about almost everything — music, games, politics, sports, literature. One team member is ardent about water polo and creative writing. An• other plays four musical instruments. For fun and entertainment during breaks, the Olympians invent games of mind-boggling difficulty. Though driven by the glory of winning this ultimate math contest, in many ways these kids are not so different from other teenagers, finding pure joy in indulging their personal passions. Beyond the Olympiad, Steve Olson sheds light on such questions as why Americans feel so queasy about math, why so few girls compete in the subject, and whether or not talent is innate. Inside the cavernous gym where the competition takes place, Count Down reveals a fascinating subculture and its engaging, driven inhabitants. -
Friedrichs Type Inequalities in Arbitrary Domains
Friedrichs type inequalities in arbitrary domains Andrea Cianchi Vladimir Maz’ya To Ari Laptev on the occasion of his 70th birthday 1 Introduction Almost one century ago, in his paper [8] on boundary value and eigenvalue problems in the elasticity theory of plates, K.Friedrichs showed that, given a bounded open set Ω R2 satisfying a very mild regularity condition on the boundary ∂Ω, there exists a constant⊂ C = C(Ω) such that u 2 Ω C u 2 Ω + u 2 Ω (1.1) k kL ( ) ≤ k∇ kL ( ) k kL (∂ ) for every sufficiently smooth function u : Ω R. Here, 2 Ω stands for the → k · kL (∂ ) L2-norm on ∂Ω with respect to the (n 1)-dimensional Hausdorff measure. As noticed in the same paper, an application of inequality− (1.1) to the first-order derivatives of u yields 2 u 2 Ω C u 2 Ω + u 2 Ω (1.2) k∇ kL ( ) ≤ k∇ kL ( ) k∇ kL (∂ ) for some constant C = C(Ω). Inequality (1.1) can be regarded as a forerunner of inequalities in Sobolev type spaces involving trace norms over the boundary of the underlying domain. The latter play a role in a variety of problems in the theory of partial differential equations, including the analysis of solutions to elliptic equations subject to Robin boundary conditions. Criteria for the validity of inequalities of the form u Lq (Ω) C u L p (Ω) + C u Lr (∂Ω), (1.3) k k ≤ 1 k∇ k 2 k k A. Cianchi: Dipartimento di Matematica e Informatica “U.Dini", Università di Firenze, Viale Mor- gagni 67/a 50134, Firenze (Italy); email: andrea.ciamchi@unifi.it V. -
$ L^ P $ Solvability of the Stationary Stokes Problem on Domains With
Abstract The Dirichlet boundary value problem for the Stokes operator with Lp data in any dimension on domains with conical singularity (not necessary a Lipschitz graph) is considered. We establish the solvability of the problem for all p ∈ (2 − ε, ∞] and also its solvability in C(D) for the data in C(∂D). arXiv:1007.5495v1 [math.AP] 30 Jul 2010 1 Lp solvability of the Stationary Stokes problem on domains with conical singularity in any dimension ∗ Martin Dindos The University of Edinburgh and Maxwell Institute of Mathematical Sciences JCMB, The King’s Buildings Mayfield Road, Edinburgh EH9 3JZ, Scotland [email protected] Vladimir Maz’ya Department of Mathematical Sciences, M&O Building, University of Liverpool, Liverpool L69 7ZL, UK and Department of Mathematics, Link¨oping University, SE-581 83 Link¨oping, Sweden [email protected] In memory of Michael Sh. Birman Keywords: Lam´eand Stokes systems, Lp solvability, Dirichlet problem 1 Introduction In this paper we study the Stokes system (which is the linearized version of the stationary Navier-Stokes system) on a fixed domain D ⊂ Rn, for n ≥ 3. In fact, we establish our result for a both Lam´esystem (ν < 1/2) and the Stokes system (ν = 1/2). We want to consider a classical question of the solvability of the Lp Dirichlet problem on the domain D. Let us recall that the Dirichlet problem for the system (1.1) is Lp solvable on the domain D if for all vector fields f ∈ Lp(∂D) there is a pair of (u, p) (here u : D → Rn, p : D → R) such that − ∆u + ∇p = 0, div u + (1 − 2ν)p =0 in D, (1.1) u ∂D = f almost everywhere, ∗ p u ∈ L (∂D), ∗Mathematics Subject Classifications: 35J57, 35J47 2 and moreover for some C > 0 independent of f the estimate ∗ ku kLp(∂D) ≤ CkfkLp(∂D) holds. -
Curriculum Vitae
Umberto Mosco WPI Harold J. Gay Professor of Mathematics May 18, 2021 Department of Mathematical Sciences Phone: (508) 831-5074, Worcester Polytechnic Institute Fax: (508) 831-5824, Worcester, MA 01609 Email: [email protected] Curriculum Vitae Current position: Harold J. Gay Professor of Mathematics, Worcester Polytechnic Institute, Worcester MA, U.S.A. Languages: English, French, German, Italian (mother language) Specialization: Applied Mathematics Research Interests:: Fractal and Partial Differential Equations, Homog- enization, Finite Elements Methods, Stochastic Optimal Control, Variational Inequalities, Potential Theory, Convex Analysis, Functional Convergence. Twelve Most Relevant Research Articles 1. Time, Space, Similarity. Chapter of the book "New Trends in Differential Equations, Control Theory and Optimization, pp. 261-276, WSPC-World Scientific Publishing Company, Hackenseck, NJ, 2016. 2. Layered fractal fibers and potentials (with M.A.Vivaldi). J. Math. Pures Appl. 103 (2015) pp. 1198-1227. (Received 10.21.2013, Available online 11.4.2014). 3. Vanishing viscosity for fractal sets (with M.A.Vivaldi). Discrete and Con- tinuous Dynamical Systems - Special Volume dedicated to Louis Niren- berg, 28, N. 3, (2010) pp. 1207-1235. 4. Fractal reinforcement of elastic membranes (with M.A.Vivaldi). Arch. Rational Mech. Anal. 194, (2009) pp. 49-74. 5. Gauged Sobolev Inequalities. Applicable Analysis, 86, no. 3 (2007), 367- 402. 6. Invariant field metrics and dynamic scaling on fractals. Phys. Rev. Let- ters, 79, no. 21, Nov. (1997), pp. 4067-4070. 7. Variational fractals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997) No. 3-4, pp. 683-712. 8. A Saint-Venant type principle for Dirichlet forms on discontinuous media (with M. -
Foundations of Computation, Version 2.3.2 (Summer 2011)
Foundations of Computation Second Edition (Version 2.3.2, Summer 2011) Carol Critchlow and David Eck Department of Mathematics and Computer Science Hobart and William Smith Colleges Geneva, New York 14456 ii c 2011, Carol Critchlow and David Eck. Foundations of Computation is a textbook for a one semester introductory course in theoretical computer science. It includes topics from discrete mathematics, automata the- ory, formal language theory, and the theory of computation, along with practical applications to computer science. It has no prerequisites other than a general familiarity with com- puter programming. Version 2.3, Summer 2010, was a minor update from Version 2.2, which was published in Fall 2006. Version 2.3.1 is an even smaller update of Version 2.3. Ver- sion 2.3.2 is identical to Version 2.3.1 except for a change in the license under which the book is released. This book can be redistributed in unmodified form, or in mod- ified form with proper attribution and under the same license as the original, for non-commercial uses only, as specified by the Creative Commons Attribution-Noncommercial-ShareAlike 4.0 Li- cense. (See http://creativecommons.org/licenses/by-nc-sa/4.0/) This textbook is available for on-line use and for free download in PDF form at http://math.hws.edu/FoundationsOfComputation/ and it can be purchased in print form for the cost of reproduction plus shipping at http://www.lulu.com Contents Table of Contents iii 1 Logic and Proof 1 1.1 Propositional Logic ....................... 2 1.2 Boolean Algebra ....................... -
Abstract and Applied Analysis, Volume 2011, Article ID 545264, 19 Pages, 2011
Nikolai Azbelev −−− the Giant of Causal Mathematics Efim A. Galperin Universite du Quebec a Montreal, Canada One of the greatest mathematicians of all times, Nikolai Viktorovich Azbelev has died. He is one of those great scholars who rise to lasting prominence after leaving this world of fast market values in science. He left immortal ideas that are changing mathematics. I met him 20 years ago at the first world Congress of Nonlinear Analysts (1992) in Tampa, USA, and later in Ariel and Athens. We talked a lot about differential equations with deviating arguments, the branch of mathematics not duly recognized at the time and, I am afraid, not clearly understood right now. The classical theories of ODEs and PDEs well presented in all textbooks, monographs and high level articles in mathematics are physically invalid, and Nikolai Azbelev felt it strongly although he could not tell it from the podium of a congress. Even now, it is not common to talk about it. To put things straight, consider the 2nd law of Newton usually formulated in textbooks as follows: ma = mx’’ = F(t, x, v), v = x’ = lim[x(t+ dt) – x(t)]/dt as dt→ 0. Here the mass m is presumed to be constant. For m ≠ const, Georg Buquoy proposed (1812) another formula: mdv + (v – w)dm = F(t, x, v)dt where v – w is the relative velocity with which dm is ejected from a moving body. Both formulas are however non-causal, thus physically invalid, since at any current moment t, the value x(t + dt), dt > 0, does not exist and cannot be known (measured) at a future moment t + dt > t not yet realized. -
View This Volume's Front and Back Matter
Titles in This Series Volume 8 Kare n Hunger Parshall and David £. Rowe The emergenc e o f th e America n mathematica l researc h community , 1876-1900: J . J. Sylvester, Felix Klein, and E. H. Moore 1994 7 Hen k J. M. Bos Lectures in the history of mathematic s 1993 6 Smilk a Zdravkovska and Peter L. Duren, Editors Golden years of Moscow mathematic s 1993 5 Georg e W. Mackey The scop e an d histor y o f commutativ e an d noncommutativ e harmoni c analysis 1992 4 Charle s W. McArthur Operations analysis in the U.S. Army Eighth Air Force in World War II 1990 3 Pete r L. Duren, editor, et al. A century of mathematics in America, part III 1989 2 Pete r L. Duren, editor, et al. A century of mathematics in America, part II 1989 1 Pete r L. Duren, editor, et al. A century of mathematics in America, part I 1988 This page intentionally left blank https://doi.org/10.1090/hmath/008 History of Mathematics Volume 8 The Emergence o f the American Mathematical Research Community, 1876-1900: J . J. Sylvester, Felix Klein, and E. H. Moor e Karen Hunger Parshall David E. Rowe American Mathematical Societ y London Mathematical Societ y 1991 Mathematics Subject Classification. Primary 01A55 , 01A72, 01A73; Secondary 01A60 , 01A74, 01A80. Photographs o n th e cove r ar e (clockwis e fro m right ) th e Gottinge n Mathematisch e Ges - selschafft, Feli x Klein, J. J. Sylvester, and E. H. Moore. -
Unpublished Letters of James Joseph Sylvester and Other New Information Concerning His Life and Work Author(S): Raymond Clare Archibald Source: Osiris, Vol
Unpublished Letters of James Joseph Sylvester and Other New Information concerning His Life and Work Author(s): Raymond Clare Archibald Source: Osiris, Vol. 1 (Jan., 1936), pp. 85-154 Published by: The University of Chicago Press on behalf of The History of Science Society Stable URL: http://www.jstor.org/stable/301603 . Accessed: 06/03/2014 07:56 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and The History of Science Society are collaborating with JSTOR to digitize, preserve and extend access to Osiris. http://www.jstor.org This content downloaded from 159.237.12.82 on Thu, 6 Mar 2014 07:56:26 AM All use subject to JSTOR Terms and Conditions UnpublishedLetters of JamesJoseph Sylvesterand othernew Information concerninghis Life and Work CONTENTS 1. - Introductory. II. -Curriculum Vitae. III. Publications dealing with SYLVEsTER'sLife and Work. IV. SyLv1EsTER'sFirst Mathematical Publication. V. -SYLvESTER and the Universityof Virginia. VI. SYLVESTER, i842-I855. VII. SYLVEsTER'S Poetry. VIII. Letters of SyLvEsTER. I. - INTRODUCTORY In yesteryearsthere were two gloriously inspiring centers of mathematical study in America. One of these was at -the University of Chicago, when BOLZA, and MASCHKE and E. -
Back Matter (PDF)
[ 229 • ] INDEX TO THE PHILOSOPHICAL TRANSACTIONS, S e r ie s B, FOR THE YEAR 1897 (YOL. 189). B. Bower (F. 0.). Studies in the Morphology of Spore-producing Members.— III. Marattiaceae, 35. C Cheirostrobus, a new Type of Fossil Cone (Scott), 1. E. Enamel, Tubular, in Marsupials and other Animals (Tomes), 107. F. Fossil Plants from Palaeozoic Rocks (Scott), 1, 83. L. Lycopodiaceae; Spencerites, a new Genus of Cones from Coal-measures (Scott), 83. 230 INDEX. M. Marattiaceae, Fossil and Recent, Comparison of Sori of (Bower), 3 Marsupials, Tubular Enamel a Class Character of (Tomes), 107. N. Naqada Race, Variation and Correlation of Skeleton in (Warren), 135 P. Pteridophyta: Cheirostrobus, a Fossil Cone, &c. (Scott), 1. S. Scott (D. H.). On the Structure and Affinities of Fossil Plants from the Palaeozoic Ro ks.—On Cheirostrobus, a new Type of Fossil Cone from the Lower Carboniferous Strata (Calciferous Sandstone Series), 1. Scott (D. H.). On the Structure and Affinities of Fossil Plants from the Palaeozoic Rocks.—II. On Spencerites, a new Genus of Lycopodiaceous Cones from the Coal-measures, founded on the Lepidodendron Spenceri of Williamson, 83. Skeleton, Human, Variation and Correlation of Parts of (Warren), 135. Sorus of JDancea, Kaulfxissia, M arattia, Angiopteris (Bower), 35. Spencerites insignis (Will.) and S. majusculus, n. sp., Lycopodiaceous Cones from Coal-measures (Scott), 83. Sphenophylleae, Affinities with Cheirostrobus, a Fossil Cone (Scott), 1. Spore-producing Members, Morphology of.—III. Marattiaceae (Bower), 35. Stereum lvirsutum, Biology of; destruction of Wood by (Ward), 123. T. Tomes (Charles S.). On the Development of Marsupial and other Tubular Enamels, with Notes upon the Development of Enamels in general, 107. -
Sobolev Inequalities for the Symmetric Gradient in Arbitrary Domains
Sobolev inequalities for the symmetric gradient in arbitrary domains Andrea Cianchi Dipartimento di Matematica e Informatica \U. Dini", Universit`adi Firenze Viale Morgagni 67/A, 50134 Firenze, Italy e-mail: cianchi@unifi.it Vladimir G. Maz'ya Department of Mathematics, Link¨opingUniversity, SE-581 83 Link¨oping,Sweden and RUDN University 6 Miklukho-Maklay St, Moscow, 117198, Russia e-mail: [email protected] Abstract A form of Sobolev inequalities for the symmetric gradient of vector-valued functions is proposed, which allows for arbitrary ground domains in Rn. In the relevant inequalities, boundary regularity of domains is replaced with information on boundary traces of trial functions. The inequalities so obtained exhibit the same exponents as in classical inequalities for the full gradient of Sobolev functions, in regular domains. Furthermore, they involve constants independent of the geometry of the domain, and hence yield novel results yet for smooth domains. Our approach relies upon a pointwise estimate for the functions in question via a Riesz potential of their symmetric gradient and an unconventional potential depending on their boundary trace. 1 Introduction Diverse mathematical models for physical phenomena, described by some vector-valued func- arXiv:1901.09897v1 [math.FA] 27 Jan 2019 n tion u :Ω ! R , depend on the derivatives of u just through the symmetric part Eu of its n distributional gradient ru. Here, Ω is an open set in R , n ≥ 2, and 1 T Eu = 2 ru + (ru) ; where (ru)T stands for the transpose matrix of ru. Instances in this connection are provided by the theory of non-Newtonian fluids, where u represents the velocity of a fluid [2, DL, 22, 28, 39, 40, 41], and the theories of plasticity and nonlinear elasticity, where u stands for the displacement of a body [28, 32, 51].