Supporting Information

Total Page:16

File Type:pdf, Size:1020Kb

Supporting Information Supporting Information Hill et al. 10.1073/pnas.0914661107 SI Text (Fig. S1 C and D respectively). Thus, in our hands, over the range of Determination of Doses for Pharmacological Agents Targeting Endo- concentrations studied, the highest doses for AM404 and URB597 cannabinoid Signaling. To obtain dosages suitable for detecting re- did not alter the acute corticosterone response in the rat. Based on peated stress-dependent shifts in CB1 receptor requirements and the results of these pilot studies, the doses used for all subsequent AEA metabolism, we determined concentrations for AM251, tests of repeated restraint were 1 mg/kg for AM251, 0.3 mg/kg for URB597, and AM404 that were subthreshold with respect to the URB597, and 2 mg/kg for AM404. corticosterone response to acute restraint, and a concentration of AM251 that was subthreshold for basal corticosterone secretion Daily Administration of Drugs That Modulate Endocannabinoid (Fig. S1). Under basal conditions, corticosterone concentrations Signaling on Stress Habituation. Daily administration of the CB1 increased after acute injections of 2 mg/kg and 5 mg/kg doses of the receptor antagonist AM251 (1 mg/kg) before stress exposure pre- CB1 receptor antagonist AM251, but not after a 1-mg/kg dose (Fig. vented the habituation of stress-induced corticosterone secretion A S1 ). There was no effect of the 1 mg/kg dose of AM251 on the that was seen in animals that received daily injections of vehicle magnitude of the corticosterone response to a single episode of before stress exposure for 9 consecutive days. Similarly, animals that 30-min restraint (Fig. S1B). There was no significant effect of the anandamide hydrolysis inhibitor URB597 (0.1 and 0.3 mg/kg) or received daily administration of URB597 (0.3 mg/kg) or AM404 the anandamide hydrolysis/uptake inhibitor AM404 (0.5, 1, and (2 mg/kg) demonstrated comparable habituation of stress-induced 2 mg/kg) to alter the corticosterone response to 30-min restraint corticosterone secretion as vehicle treated animals. Fig. S1. Mean (±SEM) corticosterone (CORT; ng/mL) concentrations in circulation in animals receiving single systemic injections of AM251 under basal (A)or acute restraint conditions (B), and in animals receiving URB597 (C) or AM404 (D) under acute restraint. *P < 0.05 vs. vehicle (VEH) injections (n = 5/drug dose). Hill et al. www.pnas.org/cgi/content/short/0914661107 1of2 Fig. S2. Mean (±SEM) corticosterone (CORT; ng/mL) concentrations in circulation on first (Acute) and last (Repeat) day of restraint at 30-min exposure in animals bearing daily systemic injections of vehicle (VEH), CB1 receptor antagonist AM251, anandamide hydrolysis inhibitor URB597, or anandamide uptake/ hydrolysis inhibitor AM404. *P < 0.05 vs. acute counterpart (n = 5/group). Fig. S3. (A) Representative photomicrograph of needle track terminating in basolateral amygdala. As defined by morphological features highlighted by thionin staining (1), structures labeled for reference are as follows: BMA, basomedial amygdala; CEA, central amygdala; and MEA, medial amygdala. (B)Di- agrams of brain sections from all rats included in the analyses, bearing proper needle tracks terminating only in the basolateral amygdala. 1. Swanson LW (2004) Brain Maps: Structure of the Rat Brain (Academic, San Diego), 3rd Ed. Table S1. Mean (±SEM) tissue content levels (nmol/g protein) for 2-arachidonoylglycerol (2- AG) in unstressed animals and at 30 min and 24 h after last bout of repeated restraint exposure (n = 8/group) Region Unstressed Repeat (30 min) Repeat (24 h) Prefrontal cortex 3.0 ± 0.1 2.9 ± 0.3 3.1 ± 0.3 Hippocampus 4.0 ± 0.3 4.1 ± 0.2 4.5 ± 0.4 Hypothalamus 7.9 ± 1.2 6.1 ± 0.5 6.5 ± 0.3 Thalamus 3.5 ± 0.5 3.3 ± 0.5 3.5 ± 0.2 Hill et al. www.pnas.org/cgi/content/short/0914661107 2of2.
Recommended publications
  • The Selective Reversible FAAH Inhibitor, SSR411298, Restores The
    www.nature.com/scientificreports OPEN The selective reversible FAAH inhibitor, SSR411298, restores the development of maladaptive Received: 22 September 2017 Accepted: 26 January 2018 behaviors to acute and chronic Published: xx xx xxxx stress in rodents Guy Griebel1, Jeanne Stemmelin2, Mati Lopez-Grancha3, Valérie Fauchey3, Franck Slowinski4, Philippe Pichat5, Gihad Dargazanli4, Ahmed Abouabdellah4, Caroline Cohen6 & Olivier E. Bergis7 Enhancing endogenous cannabinoid (eCB) signaling has been considered as a potential strategy for the treatment of stress-related conditions. Fatty acid amide hydrolase (FAAH) represents the primary degradation enzyme of the eCB anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). This study describes a potent reversible FAAH inhibitor, SSR411298. The drug acts as a selective inhibitor of FAAH, which potently increases hippocampal levels of AEA, OEA and PEA in mice. Despite elevating eCB levels, SSR411298 did not mimic the interoceptive state or produce the behavioral side-efects (memory defcit and motor impairment) evoked by direct-acting cannabinoids. When SSR411298 was tested in models of anxiety, it only exerted clear anxiolytic-like efects under highly aversive conditions following exposure to a traumatic event, such as in the mouse defense test battery and social defeat procedure. Results from experiments in models of depression showed that SSR411298 produced robust antidepressant-like activity in the rat forced-swimming test and in the mouse chronic mild stress model, restoring notably the development of inadequate coping responses to chronic stress. This preclinical profle positions SSR411298 as a promising drug candidate to treat diseases such as post-traumatic stress disorder, which involves the development of maladaptive behaviors. Te endocannabinoid (eCB) system is formed by two G protein-coupled receptors, CB1 and CB2, and their main transmitters, N-arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoyglycerol (2-AG)1.
    [Show full text]
  • Synthetic Cannabinoids (60 Substances) A) Classical Cannabinoid
    Synthetic cannabinoids (60 substances) a) Classical cannabinoid OH H OH H O Common name Chemical name CAS number Molecular Formula HU-210 3-(1,1’-dimethylheptyl)-6aR,7,10,10aR-tetrahydro-1- Synonym: 112830-95-2 C H O hydroxy-6,6-dimethyl-6H-dibenzo[b,d]pyran-9-methanol 25 38 3 11-Hydroxy-Δ-8-THC-DMH b) Nonclassical cannabinoids OH OH R2 R3 R4 R1 CAS Molecular Common name Chemical name R1 R2 R3 R4 number Formula rel-2[(1 S,3 R)-3- hydroxycyclohexyl]- 5- (2- methyloctan- 2- yl) CP-47,497 70434-82-1 C H O CH H H H phenol 21 34 2 3 rel-2[(1 S,3 R)-3- hydroxycyclohexyl]- 5- (2- methylheptan- 2- yl) CP-47,497-C6 - C H O H H H H phenol 20 32 2 CP-47,497-C8 rel-2- [(1 S,3 R)-3- hydroxycyclohexyl]- 5- (2- methylnonan- 2- yl) 70434-92-3 C H O C H H H H Synonym: Cannabicyclohexanol phenol 22 36 2 2 5 CAS Molecular Common name Chemical name R1 R2 R3 R4 number Formula rel-2[(1 S,3 R)-3- hydroxycyclohexyl]- 5- (2- methyldecan- 2- yl) CP-47,497-C9 - C H O C H H H H phenol 23 38 2 3 7 rel-2- ((1 R,2 R,5 R)-5- hydroxy- 2- (3- hydroxypropyl)cyclohexyl)- 3-hydroxy CP-55,940 83003-12-7 C H O CH H H 5-(2- methyloctan- 2- yl)phenol 24 40 3 3 propyl rel-2- [(1 S,3 R)-3- hydroxy-5,5-dimethylcyclohexyl]- 5- (2- Dimethyl CP-47,497-C8 - C H O C H CH CH H methylnonan-2- yl)phenol 24 40 2 2 5 3 3 c) Aminoalkylindoles i) Naphthoylindoles 1' R R3' R2' O N CAS Molecular Common name Chemical name R1’ R2’ R3’ number Formula [1-[(1- methyl- 2- piperidinyl)methyl]- 1 H-indol- 3- yl]- 1- 1-methyl-2- AM-1220 137642-54-7 C H N O H H naphthalenyl-methanone 26 26 2 piperidinyl
    [Show full text]
  • Grunddokument 2
    The cellular processing of the endocannabinoid anandamide and its pharmacological manipulation Lina Thors Department of Pharmacology and Clinical Neuroscience SE-901 87 Umeå, Sweden Umeå 2009 1 Copyright©Lina Thors ISBN: 978-91-7264-732-9 ISSN: 0346-6612 Printed by: Print & Media Umeå, Sweden 2009 2 Abstract Anandamide (arachidonoyl ethanolamide, AEA) and 2-arachidonoyl glycerol (2-AG) exert most of their actions by binding to cannabinoid receptors. The effects of the endocannabinoids are short-lived due to rapid cellular accumulation and metabolism, for AEA, primarily by the enzymes fatty acid amide hydrolase (FAAH). This has led to the hypothesis that by inhibition of the cellular processing of AEA, beneficial effects in conditions such as pain and inflammation can be enhanced. The overall aim of the present thesis has been to examine the mechanisms involved in the cellular processing of AEA and how they can be influenced pharmacologically by both synthetic natural compounds. Liposomes, artificial membranes, were used in paper I to study the membrane retention of AEA. The AEA retention mimicked the early properties of AEA accumulation, such as temperature- dependency and saturability. In paper II, FAAH was blocked by a selective inhibitor, URB597, and reduced the accumulation of AEA into RBL2H3 basophilic leukaemia cells by approximately half. Treating intact cells with the tyrosine kinase inhibitor genistein, an isoflavone found in soy plants and known to disrupt caveolae-related endocytosis, reduced the AEA accumulation by half, but in combination with URB597 no further decrease was seen. Further on, the effects of genistein upon uptake were secondary to inhibition of FAAH.
    [Show full text]
  • NIH Public Access Author Manuscript Neuropharmacology
    NIH Public Access Author Manuscript Neuropharmacology. Author manuscript; available in PMC 2009 January 1. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Neuropharmacology. 2008 January ; 54(1): 129±140. The endogenous cannabinoid anandamide has effects on motivation and anxiety that are revealed by fatty acid amide hydrolase (FAAH) inhibition Maria Schermaa,b, Julie Medaliea, Walter Frattab, Subramanian K. Vadivelc, Alexandros Makriyannisc, Daniele Piomellid, Eva Mikicse, Jozsef Hallere, Sevil Yasarf, Gianluigi Tandag, and Steven R. Goldberga,* aPreclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA bB.B. Brodie Department of Neuroscience, University of Cagliari, Italy cCenter for Drug Discovery, Northeastern University, Boston, MA, USA dDepartment of Pharmacology, University of California, Irvine, USA eInstitute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary fDivision of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA gPsychobiology Section, Medications Discovery Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224, USA Summary Converging evidence suggests that the endocannabinoid system is an important constituent of neuronal substrates involved in brain reward processes and emotional responses to stress. Here, we evaluated motivational effects of intravenously administered anandamide, an endogenous ligand for cannabinoid-CB1 receptors, in Sprague-Dawley rats, using a place-conditioning procedure in which drugs abused by humans generally produce conditioned place preferences (reward). Anandamide (0.03 to 3mg/kg intravenous) produced neither conditioned place preferences nor aversions.
    [Show full text]
  • JPET 143487 Synergy Between Enzyme Inhibitors of Fatty Acid
    JPET Fast Forward. Published on January 9, 2009 as DOI:10.1124/jpet.108.143487 JPET 143487 Synergy between enzyme inhibitors of fatty acid amide hydrolase and cyclooxygenase in visceral nociception* Pattipati S. Naidu, Lamont Booker, Benjamin F. Cravatt, and Aron H. Lichtman Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298-0613. (P.S.N., L.B., and A.H.L.) The Skaggs Institute for Chemical Biology and Departments of Cell Biology and Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd. La Jolla, CA 92037. (B.F.C.) 1 Copyright 2009 by the American Society for Pharmacology and Experimental Therapeutics. JPET 143487 Running Title: Synergy between FAAH and COX inhibitors Corresponding Author: Aron H. Lichtman P.O. Box 980613 Richmond, VA 23298-0613 Telephone: 804-828-8480 Facsimile: 804-828-2117 E-mail: [email protected] Number of text pages: 16 Number of figures: 6 Number of tables: 1 Number of references: 38 Number of words in the Abstract: 247 Number of words in the Introduction: 720 Number of words in the Discussion: 1463 Abbreviations: CB1, cannabinoid receptor 1; CB2 cannabinoid receptor 2; CNS, central nervous system; FAAH, fatty acid amide hydrolase, COX, cyclooxygenase; NSAIDs, Nonsteroidal anti- inflammatory drugs; URB597, 3'-carbamoyl-biphenyl-3-yl-cyclohexylcarbamate Recommended section assignment: Behavioral pharmacology 2 JPET 143487 Abstract The present study investigated whether inhibition of fatty acid amide hydrolase (FAAH), the enzyme responsible for anandamide catabolism, produces antinociception in the acetic acid- induced abdominal stretching model of visceral nociception. Genetic deletion or pharmacological inhibition of FAAH reduced acetic acid-induced abdominal stretching.
    [Show full text]
  • Behavioral and Electrophysiological Effects of Endocannabinoid and Dopaminergic Systems on Salient Stimuli
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Frontiers - Publisher Connector ORIGINAL RESEARCH ARTICLE published: 19 May 2014 BEHAVIORAL NEUROSCIENCE doi: 10.3389/fnbeh.2014.00183 Behavioral and electrophysiological effects of endocannabinoid and dopaminergic systems on salient stimuli Daniela Laricchiuta 1,2*, Alessandra Musella 1,3, Silvia Rossi 1,3 and Diego Centonze 1,3 1 IRCCS Fondazione Santa Lucia, Rome, Italy 2 Dipartimento di Psicologia, Facoltà di Medicina e Psicologia, Università “Sapienza” di Roma, Rome, Italy 3 Dipartimento di Neuroscienze, Università Tor Vergata, Rome, Italy Edited by: Rewarding effects have been related to enhanced dopamine (DA) release in James P.Herman, University of corticolimbic and basal ganglia structures. The DAergic and endocannabinoid interaction Cincinnati, USA in the responses to reward is described. This study investigated the link between Reviewed by: Gregg Stanwood, Vanderbilt endocannabinoid and DAergic transmission in the processes that are related to response University, USA to two types of reward, palatable food and novelty. Mice treated with drugs acting on Steven R. Laviolette, University of endocannabinoid system (ECS) (URB597, AM251) or DAergic system (haloperidol) were Western Ontario, Canada submitted to approach-avoidance conflict tasks with palatable food or novelty. In the same *Correspondence: mice, the cannabinoid type-1 (CB1)-mediated GABAergic transmission in medium spiny Daniela Laricchiuta, Dipartimento di Psicologia, Facoltà di Medicina e neurons
    [Show full text]
  • Cannabinoid Antagonist Drug Discrimination in Nonhuman Primates
    1521-0103/372/1/119–127$35.00 https://doi.org/10.1124/jpet.119.261818 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 372:119–127, January 2020 Copyright ª 2019 by The American Society for Pharmacology and Experimental Therapeutics Cannabinoid Antagonist Drug Discrimination in Nonhuman Primates Brian D. Kangas, Ani S. Zakarian, Kiran Vemuri, Shakiru O. Alapafuja, Shan Jiang, Spyros P. Nikas, Alexandros Makriyannis, and Jack Bergman Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (B.D.K., A.S.Z., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (K.V., S.O.A., S.J., S.P.N., A.M.) Received July 29, 2019; accepted October 21, 2019 Downloaded from ABSTRACT Despite a growing acceptance that withdrawal symptoms can inhibitors AM3506 (0.3–5.6 mg/kg), URB597 (3.0–5.6 mg/kg), and emerge following discontinuation of cannabis products, espe- nonselective FAAH/MGL inhibitor AM4302 (3.0–10.0 mg/kg) cially in high-intake chronic users, there are no Food and Drug revealed that only agonists with CB1 affinity were able to Administration (FDA)–approved treatment options. Drug devel- reduce the rimonabant-like discriminative stimulus effects opment has been hampered by difficulties studying cannabis of withholding daily agonist treatment. Although the pres- jpet.aspetjournals.org withdrawal in laboratory animals. One preclinical approach that ent studies did not document physiologic disturbances has been effective in studying withdrawal from drugs in several associated with withdrawal, the results are consistent pharmacological classes is antagonist drug discrimination.
    [Show full text]
  • Beneficial Changes in Rat Vascular Endocannabinoid System In
    International Journal of Molecular Sciences Article Beneficial Changes in Rat Vascular Endocannabinoid System in Primary Hypertension and under Treatment with Chronic Inhibition of Fatty Acid Amide Hydrolase by URB597 Marta Baranowska-Kuczko 1,2,* , Hanna Kozłowska 1, Monika Kloza 1, Ewa Harasim-Symbor 3, Michał Biernacki 4 , Irena Kasacka 5 and Barbara Malinowska 1 1 Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; [email protected] (H.K.); [email protected] (M.K.); [email protected] (B.M.) 2 Department of Clinical Pharmacy, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland 3 Department of Physiology, Medical University of Białystok, ul. Mickiewicza 2C, 15-222 Białystok, Poland; [email protected] 4 Department of Analytical Chemistry, Medical University of Białystok, ul. Mickiewicza 2D, 15-222 Białystok, Poland; [email protected] 5 Department of Histology and Cytophysiology, Medical University of Białystok, ul. Mickiewicza 2C, 15-222 Białystok, Poland; [email protected] * Correspondence: [email protected]; Tel./Fax: +48-85-74-856-99 Citation: Baranowska-Kuczko, M.; Abstract: Our study aimed to examine the effects of hypertension and the chronic administration of Kozłowska, H.; Kloza, M.; the fatty acid amide hydrolase (FAAH) inhibitor URB597 on vascular function and the endocannabi- Harasim-Symbor, E.; Biernacki, M.; noid system in spontaneously hypertensive rats (SHR). Functional studies were performed on small Kasacka, I.; Malinowska, B. Beneficial mesenteric G3 arteries (sMA) and aortas isolated from SHR and normotensive Wistar Kyoto rats Changes in Rat Vascular (WKY) treated with URB597 (1 mg/kg; twice daily for 14 days).
    [Show full text]
  • The Fatty-Acid Amide Hydrolase Inhibitor URB597 Inhibits MICA/B
    www.nature.com/scientificreports OPEN The fatty‑acid amide hydrolase inhibitor URB597 inhibits MICA/B shedding Kazuma Sekiba1,2, Motoyuki Otsuka1*, Takahiro Seimiya1,2, Eri Tanaka1, Kazuyoshi Funato1, Yu Miyakawa1 & Kazuhiko Koike1 MICA/B proteins are expressed on the surface of various types of stressed cells, including cancer cells. Cytotoxic lymphocytes expressing natural killer group 2D (NKG2D) receptor recognize MICA/B and eliminate the cells. However, cancer cells evade such immune recognition by inducing proteolytic shedding of MICA/B proteins. Therefore, preventing the shedding of MICA/B proteins could enhance antitumor immunity. Here, by screening a protease inhibitor library, we found that the fatty-acid amide hydrolase (FAAH) inhibitor, URB597, suppresses the shedding of MICA/B. URB597 signifcantly reduced the soluble MICA level in culture medium and increased the MICA level on the surface of cancer cells. The efect was indirect, being mediated by increased expression of tissue inhibitor of metalloproteinases 3 (TIMP3). Knockdown of TIMP3 expression reversed the efect of URB597, confrming that TIMP3 is required for the MICA shedding inhibition by URB597. In contrast, FAAH overexpression reduced TIMP3 expression and the cell-surface MICA level and increased the soluble MICA level. These results suggest that inhibition of FAAH could prevent human cancer cell evasion of immune-mediated clearance. Abbreviations NKG2D Natural killer group 2D FAAH Fatty-acid amide hydrolase TIMP3 Tissue inhibitor of metalloproteinases 3 MICA Major histocompatibility complex class I polypeptide-related sequence A NK Natural killer HCC Hepatocellular carcinoma DMSO Dimethyl sulfoxide MMP Matrix metalloproteinase ADAM A disintegrin and metalloproteinase PCR Polymerase chain reaction PBS Phosphate-bufered saline qRT-PCR Quantitative reverse-transcription PCR SD Standard deviation Major histocompatibility complex class I polypeptide-related sequence A (MICA) and MICB are highly expressed in many infected or transformed human cells.
    [Show full text]
  • Synthetic Cannabinoids in Europe
    UPDATED 31. 5. 2016 UPDATED PERSPECTIVES ON DRUGS Synthetic cannabinoids in Europe Synthetic cannabinoids represent the Synthetic cannabinoids are a group of substances that mimic largest group of substances currently the effects of (–)-trans-Δ9-tetrahydrocannabinol (THC), which is the substance that is primarily responsible for the major monitored in Europe by the EMCCDA psychoactive effects of cannabis. Like THC, the synthetic through the EU Early Warning System. cannabinoids bind to the cannabinoid receptors in the body. Current knowledge on these substances This is why these substances have been used to create a large range of ‘legal high’ products sold as legal replacements for and trends in production, availability, use cannabis. They are the largest group of new psychoactive and harms are presented in this analysis. substances monitored by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA). ‘Legal high’ products containing synthetic cannabinoids have been sold as ‘herbal smoking mixtures’ since the mid-2000s. These products do not contain cannabis, but when smoked produce similar effects. They have been subject to innovative marketing approaches and are widely and openly available on the web, and in some countries in bricks-and-mortar (‘head’ and ‘smart’) shops. The number of synthetic cannabinoids, their chemical diversity and the speed of their emergence make this group of compounds particularly challenging in terms of detection, monitoring, and responding. Suppliers simply aim to mimic the effects of THC. In essence, this makes each synthetic cannabinoid disposable. When one synthetic cannabinoid is, or is about to be, legally controlled manufacturers can have one or more replacement substance ready for sale.
    [Show full text]
  • The CB1 Receptor Antagonist AM251 Impairs Reconsolidation of Pavlovian Fear Memory in the Rat Basolateral Amygdala
    Neuropsychopharmacology (2014) 39, 2529–2537 & 2014 American College of Neuropsychopharmacology. All rights reserved 0893-133X/14 www.neuropsychopharmacology.org The CB1 Receptor Antagonist AM251 Impairs Reconsolidation of Pavlovian Fear Memory in the Rat Basolateral Amygdala 1,2 1 ,1 Patrizia Ratano , Barry J Everitt and Amy L Milton* 1Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK; 2Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy We have investigated the requirement for signaling at CB1 receptors in the reconsolidation of a previously consolidated auditory fear memory, by infusing the CB1 receptor antagonist AM251, or the FAAH inhibitor URB597, directly into the basolateral amygdala (BLA) in conjunction with memory reactivation. AM251 disrupted memory restabilization, but only when administered after reactivation. URB597 produced a small, transient enhancement of memory restabilization when administered after reactivation. The amnestic effect of AM251 was rescued by coadministration of the GABA receptor antagonist bicuculline at reactivation, indicating that the disruption of A reconsolidation was mediated by altered GABAergic transmission in the BLA. These data show that the endocannabinoid system in the BLA is an important modulator of fear memory reconsolidation and that its effects on memory are mediated by an interaction with the GABAergic system. Thus, targeting the endocannabinoid system may have therapeutic potential to reduce the impact of maladaptive memories in neuropsychiatric disorders such as posttraumatic stress disorder. Neuropsychopharmacology (2014) 39, 2529–2537; doi:10.1038/npp.2014.103; published online 4 June 2014 INTRODUCTION Drugs that alter levels of endogenous endocannabinoids may provide a new drug target for treating psychiatric Memory reconsolidation is the process by which a well- disorders using reconsolidation-based therapies.
    [Show full text]
  • Regulation of Inflammatory Pain by Inhibition of Fatty Acid Amide Hydrolase□S
    0022-3565/10/3341-182–190$20.00 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Vol. 334, No. 1 Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics 164806/3596864 JPET 334:182–190, 2010 Printed in U.S.A. Regulation of Inflammatory Pain by Inhibition of Fatty Acid Amide Hydrolase□S Pattipati S. Naidu, Steven G. Kinsey, Tai L. Guo, Benjamin F. Cravatt, and Aron H. Lichtman Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia (P.S.N., S.G.K., T.L.G., A.H.L.); and The Skaggs Institute for Chemical Biology and Departments of Cell Biology and Chemical Physiology, The Scripps Research Institute, La Jolla, California (B.F.C.) Received December 14, 2009; accepted April 5, 2010 ABSTRACT Although cannabinoids are efficacious in laboratory animal models of 1,3,3-trimethyl bicyclo [2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphe- inflammatory pain, their established cannabimimetic actions diminish nyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide] blocked this non- enthusiasm for their therapeutic development. Conversely, fatty acid neuronal, anti-inflammatory phenotype, and the CB1 cannabinoid amide hydrolase (FAAH), the chief catabolic enzyme regulating the receptor (CB1) antagonist rimonabant [SR141716, N-(piperidin-1-yl)- endogenous cannabinoid N-arachidonoylethanolamine (anand- 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3- amide), has emerged as an attractive target for treating pain and other carboxamide] blocked the antihyperalgesic phenotype. The FAAH conditions. Here, we tested WIN 55212-2 [(R)-(ϩ)-[2,3-dihydro-5- inhibitor URB597 [cyclohexylcarbamic acid 3Ј-carbamoylbiphenyl- methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de)-1,4-benzoxazin-6- 3-yl ester] attenuated the development of LPS-induced paw edema yl]-1-napthalenylmethanone], a cannabinoid receptor agonist, and and reversed LPS-induced hyperalgesia through the respective CB2 genetic deletion or pharmacological inhibition of FAAH in the lipo- and CB1 mechanisms of action.
    [Show full text]