Cyanobacteria in the Environment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Early Photosynthetic Eukaryotes Inhabited Low-Salinity Habitats
Early photosynthetic eukaryotes inhabited PNAS PLUS low-salinity habitats Patricia Sánchez-Baracaldoa,1, John A. Ravenb,c, Davide Pisanid,e, and Andrew H. Knollf aSchool of Geographical Sciences, University of Bristol, Bristol BS8 1SS, United Kingdom; bDivision of Plant Science, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; cPlant Functional Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia; dSchool of Biological Sciences, University of Bristol, Bristol BS8 1TH, United Kingdom; eSchool of Earth Sciences, University of Bristol, Bristol BS8 1TH, United Kingdom; and fDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 Edited by Peter R. Crane, Oak Spring Garden Foundation, Upperville, Virginia, and approved July 7, 2017 (received for review December 7, 2016) The early evolutionary history of the chloroplast lineage remains estimates for the origin of plastids ranging over 800 My (7). At the an open question. It is widely accepted that the endosymbiosis that same time, the ecological setting in which this endosymbiotic event established the chloroplast lineage in eukaryotes can be traced occurred has not been fully explored (8), partly because of phy- back to a single event, in which a cyanobacterium was incorpo- logenetic uncertainties and preservational biases of the fossil re- rated into a protistan host. It is still unclear, however, which cord. Phylogenomics and trait evolution analysis have pointed to a Cyanobacteria are most closely related to the chloroplast, when the freshwater origin for Cyanobacteria (9–11), providing an approach plastid lineage first evolved, and in what habitats this endosym- to address the early diversification of terrestrial biota for which the biotic event occurred. -
Oscillatoriales, Microcoleaceae), Nuevo Reporte Para El Perú
Montoya et al.: Diversidad fenotípica de la cianobacteria Pseudophormidium tenue (Oscillatoriales, Microcoleaceae), nuevo reporte para el Perú Arnaldoa 24 (1): 369 - 382, 2017 ISSN: 1815-8242 (edición impresa) http://doi.org/10.22497/arnaldoa.241.24119 ISSN: 2413-3299 (edición online) Diversidad fenotípica de la cianobacteria Pseudophormidium tenue (Oscillatoriales, Microcoleaceae), nuevo reporte para el Perú Phenotypic diversity of the cyanobacterium Pseudo- phormidium tenue (Oscillatoriales, Microcoleaceae), new record for Peru Haydee Montoya T., José Gómez C., Mauro Mariano A., Enoc Jara P., Egma Mayta H., Mario Benavente P. Museo de Historia Natural, Departamento de Simbiosis Vegetal, UNMSM. Av. Arenales 1256. Apartado 14-0434. Lima 14, PERÚ. Instituto de Investigación de Ciencias Biológicas, Facultad de CC. Biológicas, UNMSM [email protected], [email protected], [email protected] [email protected] 24 (1): Enero - Junio, 2017 369 Este es un artículo de acceso abierto bajo la licencia CC BY-NC 4.0: https://creativecommons.org/licenses/by-nc/4.0/ Montoya et al.: Diversidad fenotípica de la cianobacteria Pseudophormidium tenue (Oscillatoriales, Microcoleaceae), nuevo reporte para el Perú Recibido: 20-I-2017; Aceptado: 15-III-2017; Publicado: VI-2017; Edición online: 05-VI-2017 Resumen Los ecosistemas desérticos costeros tropicales están distribuidos ampliamente en el oeste de Sudamérica. No obstante las tierras áridas de esta región, la disponibilidad hídrica de la humedad proveniente de las neblinas a nivel del océano Pacífico acarreadas hacia las colinas (lomas) y las garúas anuales invernales fluctuantes favorecen el desarrollo de comunidades cianobacteriales extremas. El área de evaluación fue las Lomas de Pachacámac, al sur de Lima, y las colecciones cianobacteriales estándar (costras, biofilms o matas terrestres) fueron realizadas irregularmente en 1995 y 2012. -
Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide
antioxidants Review Anoxygenic Photosynthesis in Photolithotrophic Sulfur Bacteria and Their Role in Detoxication of Hydrogen Sulfide Ivan Kushkevych 1,* , Veronika Bosáková 1,2 , Monika Vítˇezová 1 and Simon K.-M. R. Rittmann 3,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] (V.B.); [email protected] (M.V.) 2 Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic 3 Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1090 Vienna, Austria * Correspondence: [email protected] (I.K.); [email protected] (S.K.-M.R.R.); Tel.: +420-549-495-315 (I.K.); +431-427-776-513 (S.K.-M.R.R.) Abstract: Hydrogen sulfide is a toxic compound that can affect various groups of water microorgan- isms. Photolithotrophic sulfur bacteria including Chromatiaceae and Chlorobiaceae are able to convert inorganic substrate (hydrogen sulfide and carbon dioxide) into organic matter deriving energy from photosynthesis. This process takes place in the absence of molecular oxygen and is referred to as anoxygenic photosynthesis, in which exogenous electron donors are needed. These donors may be reduced sulfur compounds such as hydrogen sulfide. This paper deals with the description of this metabolic process, representatives of the above-mentioned families, and discusses the possibility using anoxygenic phototrophic microorganisms for the detoxification of toxic hydrogen sulfide. Moreover, their general characteristics, morphology, metabolism, and taxonomy are described as Citation: Kushkevych, I.; Bosáková, well as the conditions for isolation and cultivation of these microorganisms will be presented. V.; Vítˇezová,M.; Rittmann, S.K.-M.R. -
Limits of Life on Earth Some Archaea and Bacteria
Limits of life on Earth Thermophiles Temperatures up to ~55C are common, but T > 55C is Some archaea and bacteria (extremophiles) can live in associated usually with geothermal features (hot springs, environments that we would consider inhospitable to volcanic activity etc) life (heat, cold, acidity, high pressure etc) Thermophiles are organisms that can successfully live Distinguish between growth and survival: many organisms can survive intervals of harsh conditions but could not at high temperatures live permanently in such conditions (e.g. seeds, spores) Best studied extremophiles: may be relevant to the Interest: origin of life. Very hot environments tolerable for life do not seem to exist elsewhere in the Solar System • analogs for extraterrestrial environments • `extreme’ conditions may have been more common on the early Earth - origin of life? • some unusual environments (e.g. subterranean) are very widespread Extraterrestrial Life: Spring 2008 Extraterrestrial Life: Spring 2008 Grand Prismatic Spring, Yellowstone National Park Hydrothermal vents: high pressure in the deep ocean allows liquid water Colors on the edge of the at T >> 100C spring are caused by different colonies of thermophilic Vents emit superheated water (300C or cyanobacteria and algae more) that is rich in minerals Hottest water is lifeless, but `cooler’ ~50 species of such thermophiles - mostly archae with some margins support array of thermophiles: cyanobacteria and anaerobic photosynthetic bacteria oxidize sulphur, manganese, grow on methane + carbon monoxide etc… Sulfolobus: optimum T ~ 80C, minimum 60C, maximum 90C, also prefer a moderately acidic pH. Live by oxidizing sulfur Known examples can grow (i.e. multiply) at temperatures which is abundant near hot springs. -
Algae & Marine Plants of Point Reyes
Algae & Marine Plants of Point Reyes Green Algae or Chlorophyta Genus/Species Common Name Acrosiphonia coalita Green rope, Tangled weed Blidingia minima Blidingia minima var. vexata Dwarf sea hair Bryopsis corticulans Cladophora columbiana Green tuft alga Codium fragile subsp. californicum Sea staghorn Codium setchellii Smooth spongy cushion, Green spongy cushion Trentepohlia aurea Ulva californica Ulva fenestrata Sea lettuce Ulva intestinalis Sea hair, Sea lettuce, Gutweed, Grass kelp Ulva linza Ulva taeniata Urospora sp. Brown Algae or Ochrophyta Genus/Species Common Name Alaria marginata Ribbon kelp, Winged kelp Analipus japonicus Fir branch seaweed, Sea fir Coilodesme californica Dactylosiphon bullosus Desmarestia herbacea Desmarestia latifrons Egregia menziesii Feather boa Fucus distichus Bladderwrack, Rockweed Haplogloia andersonii Anderson's gooey brown Laminaria setchellii Southern stiff-stiped kelp Laminaria sinclairii Leathesia marina Sea cauliflower Melanosiphon intestinalis Twisted sea tubes Nereocystis luetkeana Bull kelp, Bullwhip kelp, Bladder wrack, Edible kelp, Ribbon kelp Pelvetiopsis limitata Petalonia fascia False kelp Petrospongium rugosum Phaeostrophion irregulare Sand-scoured false kelp Pterygophora californica Woody-stemmed kelp, Stalked kelp, Walking kelp Ralfsia sp. Silvetia compressa Rockweed Stephanocystis osmundacea Page 1 of 4 Red Algae or Rhodophyta Genus/Species Common Name Ahnfeltia fastigiata Bushy Ahnfelt's seaweed Ahnfeltiopsis linearis Anisocladella pacifica Bangia sp. Bossiella dichotoma Bossiella -
Potential Cyanobacterial Inoculants for Rice Described from a Polyphasic Approach
Agrociencia Uruguay 2020 | Volume 24 | Number 2 | Article 52 DOI: 10.31285/AGRO.24.52 ISSN 2301-1548 Potential cyanobacterial inoculants for rice described from a polyphasic approach Editor Eduardo Abreo Instituto Nacional de Investigación Potenciales inoculantes Agropecuaria (INIA), Colonia, Uruguay. cianobacterianos para arroz Correspondence descritos desde un enfoque Pilar Irisarri [email protected] polifásico Received 20 May 2019 Accepted 29 Set 2020 Published 09 Nov 2020 Potential cyanobacterial inoculants Citation for rice described from a polyphasic Pérez G, Cerecetto V, Irisarri P. Potential cyanobacterial inocu- lants for rice described from a approach polyphasic approach. Agrocien- cia Uruguay [Internet]. 2020 [cited dd mmm yyyy];24(2):52. Available from: http://agrocien- ciauruguay. uy/ojs/in- dex.php/agrociencia/arti- cle/view/52 Pérez, G. 1; Cerecetto, V. 1; Irisarri, P. 1 1Universidad de la República, Facultad de Agronomía, Departamento de Biología Vegetal, Montevideo, Uruguay. Potential cyanobacterial inoculants described by a polyphasic approach Abstract Ten heterocyst cyanobacteria isolated from a temperate ricefield in Uruguay were characterized using a poly- phasic approach. Based on major phenotypic features, the isolates were divided into two different morphotypes within the Order Nostocales, filamentous without true branching. The isolates were also phylogenetically evalu- ated by their 16S rRNA and hetR gene sequences. Although the morphological classification of cyanobacteria has not always been supported by the analysis of the 16S rRNA gene, in this case the morphological identifica- tion agreed with the 16S rRNA gene phylogenetic analysis and the ten isolates were ascribed at the genus level to Nostoc or Calothrix. Four isolates were identified at species level. -
Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae -
THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost. -
Worksheet Class 7Th ( Science ) Chapter 1St Nutrition in Plants
Worksheet Class 7th ( science ) Chapter 1st Nutrition in plants 1. Autotrophic nutrition 2. Heterotrophic Nutrition The mode of nutrition in which organisms obtain their food from others ( plants and animals ) is called heterotrophic nutrition. Heterotrophs :- Organisms that are not capable of synthesising their own food and depend on other organisms for their food requirements are called heterotrophs. They are also called consumers. Heterotrophic Nutrition in plants Heterotrophic nutrition in non-green plants are of three types- (i) Saprotrophic (ii) Parasitic (iii) Symbiotic (I) Saprotrophic nutrition The mode of nutrition in which organisms take in nutrients from dead and decaying matter is called saprotrophic nutrition. Saprotrophs or saprophytes Saprotrophs are the organisms that feed on dead and decaying matter. Example :- Fungi, mushrooms Saprophytes are also called cleaners of the environment. (II) Parasitic Nutrition The mode of nutrition in which an organism lives on or inside the body of other living organism (host) is called parasitic nutrition. Parasitic plants are of two types • Total parasites • Partial parasites Total parasites These plants cannot make their own food and derive all of it from the host plant. E.g.- cuscuta (amarbel) is total stem parasite and Rafflesia is total root parasite plant. Partial parasites They have green leaves, therefore can make their food for themselves. However, they get water and minerals from host plant. E.g.- mistletoe is a partial stem parasite and sandalwood is a partial root parasite. (III) Symbiotic Nutrition Symbionts:- Two organisms living in close physical contact with each other and providing mutual benefits are called symbionts. Symbiosis:- Condition of living together is called symbiosis. -
Biophysical Aspects of Resource Acquisition and Competition in Algal Mixotrophs
vol. 178, no. 1 the american naturalist july 2011 Biophysical Aspects of Resource Acquisition and Competition in Algal Mixotrophs Ben A. Ward,* Stephanie Dutkiewicz, Andrew D. Barton, and Michael J. Follows Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Submitted November 10, 2010; Accepted March 15, 2011; Electronically published June 6, 2011 polar waters, for example, mixotrophy provides dinofla- abstract: Mixotrophic organisms combine autotrophic and het- gellates with the flexibility to endure large environmental erotrophic nutrition and are abundant in both freshwater and marine environments. Recent observations indicate that mixotrophs consti- changes during tidal and seasonal cycles (Li et al. 2000; tute a large fraction of the biomass, bacterivory, and primary pro- Litchman 2007). However, in the low-seasonality sub- duction in oligotrophic environments. While mixotrophy allows tropical oceans, where such nonequilibrium dynamics are greater flexibility in terms of resource acquisition, any advantage presumably much less important, mixotrophy remains a must be traded off against an associated increase in metabolic costs, prevalent strategy. Zubkov and Tarran (2008) recently which appear to make mixotrophs uncompetitive relative to obligate found that photosynthetic protist species, which account autotrophs and heterotrophs. Using an idealized model of cell phys- iology and community competition, we identify one mechanism by for more than 80% of the total chlorophyll in regions of which mixotrophs can effectively outcompete specialists for nutrient the North Atlantic, were also responsible for 40%–95% of elements. At low resource concentrations, when the uptake of nu- the total bacterivory. Small mixotrophs have been shown trients is limited by diffusion toward the cell, the investment in cell to be of similar importance in coastal oligotrophic waters membrane transporters can be minimized. -
Algal Accessory Pigment Detection Using Aviris Image
ALGAL ACCESSORY PIGMENT DETECTION USING AVIRIS IMAGE-DERIVED SPECTRAL RADIANCE DATA hurie L. Richardson, Florida International University, Miami, Florida, and Vincent G. Ambrosia, JCWS, Inc., NASA Ames Research Center, Moffett Field, California. 1. INTRODUCTION Visual and derivative analyses of AVIRIS spectral data can be used to detect algal accessory pigments in squat ic communities (Richardson et al. 1994). This capability extends the use of remote sensing for the study of aquatic ecosystems by allowing detection of taxonomically significant pigment signatures which yield information about the type of algae present. Such information allows remote sensing-based assessment of squat ic ecosystem health, as in the detection of nuisance blooms of cyanobacteria (Dekker et al., 1992) or toxic blooms of dinoflagellates (Carder and Steward, 1985). Remote sensing of aquatic systems has traditionally focused on quantification of chlorophyll a, a photoreactive (and light-harvesting) pigment which is common to all algae as well as cyanobacteria (bIuegrcxm algae). Due to the ubiquitousness of this pigment within algae, chl a is routinely measured to estimate algal biomass both during ground-truthing and using various airborne or satellite based sensors (Clark, 1981; Smith and Baker, 1982; Galat and Verdin, 1989; Mittenzwey et al., 1992), including AVIRIS (Hamilton et al., 1993). Within the remote sensing and aquatic sciences communities, ongoing research has been performed to detect algal accessory pigments for assessment of algal population composition (Gieskew 1991; Millie et al., 1993; Richardson, 1996). This research is based on the fact that many algal accessory pigments are taxonomically significant, and all are spectrally unique (Foppen, 1971; Morton, 1975; Bj#mland and Liaaen- Jensen, 1989; Rowan, 1989), Aquatic scientists have been refining pigment analysis techniques, primarily high performance liquid chromatography, or HPLC, (e.g. -
Planktothrix Agardhii É a Mais Comum
Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters Catarina Isabel Prata Pereira Leitão Churro Doutoramento em Biologia Departamento Biologia 2015 Orientador Vitor Manuel de Oliveira e Vasconcelos, Professor Catedrático Faculdade de Ciências iv FCUP Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters The research presented in this thesis was supported by the Portuguese Foundation for Science and Technology (FCT, I.P.) national funds through the project PPCDT/AMB/67075/2006 and through the individual Ph.D. research grant SFRH/BD65706/2009 to Catarina Churro co-funded by the European Social Fund (Fundo Social Europeu, FSE), through Programa Operacional Potencial Humano – Quadro de Referência Estratégico Nacional (POPH – QREN) and Foundation for Science and Technology (FCT). The research was performed in the host institutions: National Institute of Health Dr. Ricardo Jorge (INSA, I.P.), Lisboa; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Porto and Centre for Microbial Resources (CREM - FCT/UNL), Caparica that provided the laboratories, materials, regents, equipment’s and logistics to perform the experiments. v FCUP Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters vi FCUP Accessing Planktothrix species diversity and associated toxins using quantitative real-time PCR in natural waters ACKNOWLEDGMENTS I would like to express my gratitude to my supervisor Professor Vitor Vasconcelos for accepting to embark in this research and supervising this project and without whom this work would not be possible. I am also greatly thankful to my co-supervisor Elisabete Valério for the encouragement in pursuing a graduate program and for accompanying me all the way through it.