Foundations of Physical Law

Total Page:16

File Type:pdf, Size:1020Kb

Foundations of Physical Law The Foundations of Physical Law 9258hc_9789814618373_tp.indd 1 15/7/14 9:57 am May 2, 2013 14:6 BC: 8831 - Probability and Statistical Theory PST˙ws This page intentionally left blank Peter Rowlands University of Liverpool, UK The Foundations of Physical Law World Scientific NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI 9258hc_9789814618373_tp.indd 2 15/7/14 9:57 am Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Control Number: 2014018315 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. THE FOUNDATIONS OF PHYSICAL LAW Copyright © 2015 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 978-981-4618-37-3 In-house Editor: Ng Kah Fee Typeset by Stallion Press Email: [email protected] Printed in Singapore KahFee - The Foundations of Physical Law.indd 1 12/9/2014 10:45:57 AM August 30, 2014 16:44 The Foundations of ... - 9in x 6in b1877-fm pagev Preface The success of physics as the ultimate explanation of everything in the world around us has been phenomenal, but we still have a major problem: we can’t formulate the story from the beginning. We have laws of physics, funda- mental particles, and concepts like space and time, but we don’t have any understanding of their foundations. We don’t know where they come from or why they are there. This, of course, is not for want of trying: the search for the ultimate foundations of human knowledge of the world is one of the biggest quests ever undertaken, and it is certainly one of the most expensive, requiring massive international collaborations and incredibly sophisticated facilities. On the experimental side, the search has been successful beyond all expectation, but the results have been disappointing to many because they have repeatedly confirmed existing theories — quantum mechanics, the Standard Model of particle physics, general relativity — without sug- gesting any new direction leading towards a more general unification. We seem to be no nearer to solving the foundational problems than we were when the Standard Model of particle physics first reached its most complete form around 1973. I am not convinced that finding ‘new physics’ would actually help to solve the problems of the old, and I don’t think our failure to date has anything to do with the lack of resources or with the subject’s inherent difficulty. I think it is a question of mind-set. It seems to me that we may have been asking the wrong questions or perhaps asking the right questions in the wrong way. We haven’t properly accepted that if tried and trusted techniques fail to give us answers, then perhaps we need to try new ones. In that sense, the primary aim of this book is to devise a methodology for a subject that we would like to exist but have not yet really attempted to create. v August 30, 2014 16:44 The Foundations of ... - 9in x 6in b1877-fm pagevi vi The Foundations of Physical Law It is remarkable that, for all its importance, the foundations of physics has virtually no recognition as a subject in its own right. It has never been seen as a branch of physics of equal importance as quantum mechanics, particle physics or relativity. It has no place in most university physics courses, and has no legion of PhD students working out details to be tested by experiment. For whatever reason, the subject is not entirely ‘respectable’. You can’t do it in the hard-edged way that most of physics is done, and so it is very difficult to write a paper that the most pres- tigious journals would accept. Even though John Bell and others have made it acceptable to talk in a certain way about the foundations of quantum mechanics, it still doesn’t take us very far in explaining the foundations of physics itself. Quantum mechanics is still a given in all the discussions, it isn’t explained in a more fundamental way. In fact, one of the problems with our failure to define the foundations of physics as a separate subject is the fact that many people think that founda- tional results can be obtained by extending existing areas, such as quan- tum mechanics, particle physics, general relativity or cosmology. Expe- rience tells us that they cannot. Foundational ideas have to be simpler than the subjects they are explaining. Extending existing ideas that are already complicated will not bring us nearer to the more primitive starting points. Nevertheless, for all the general lack of appreciation of the kind of the- ory needed to explain the foundations of physics and physical law, the desire for such a theory is very strong. My own experience is that students usually enter physics because they really want to know where everything comes from, and that a course which really explains how the search for the foundations should be carried out would come the closest to fulfilling this need. And it is not only physicists and physics students who would benefit from such knowledge for the desire to understand origins and fundamental explanations is part of a much more general human requirement. Clearly, a book or a course of lectures on such a subject, if it reached a deeper level than current investigations would seem to allow, would be of interest to a great number of people. So, what can one say that is new and positively useful if so many attempts have failed to make any headway? Perhaps we could begin by defining a few negatives — things we want to avoid. The list would certainly include, among other things, major challenges to existing theo- ries, model-dependent ideas, theories that are more complicated than the ideas we are trying to explain, and ideas which are not sufficiently generic. August 30, 2014 16:44 The Foundations of ... - 9in x 6in b1877-fm pagevii Preface vii We could also focus on some ideas which seem to reflect successful previous approaches: minimalism, a high (and preferably total) degree of abstrac- tion, simplicity, symmetry and recurring patterns. In effect, our experience suggests that we need to think in a way that maximises the second list and minimises the first. Even if we adopt such a programme, there is no guarantee that we will be successful, but I would like to suggest that there isn’t even a possibility of success if we don’t. Nevertheless, this is still not fully understood. Theories are still being produced which do not respect the principles of minimalism and abstraction. By consciously setting out on a path which privileges them, we are already formulating a methodol- ogy which, even in this very generalised and simplified form, is diverging from many of the existing approaches towards fundamental theory. The aim of this book is to show that such a methodology can lead to successful results. Even in purely conventional terms, the version of quan- tum mechanics that emerges from more abstract foundations using argu- ments based largely on symmetry appears to be more powerful and effec- tive than alternative versions. Many significant results in physics follow purely from relatively simple arguments privileging symmetry. A generic kind of physics can be constructed from a combination of pure abstrac- tion, symmetry and mathematics without any model-dependent or empir- ical input. Even gravity and particle physics can be treated in this purely abstract way. It seems to me important that we take the most successful generic the- ories and try to find their constituent elements, rather than treat them as elementary and fundamental in themselves. Ultimately, there should be no separate ‘physical’ constituency to which mathematics is merely applied. At the fundamental level, physics has to be about the simplest ideas, and, almost by definition, these must be the most abstract. This necessarily forces us in the direction of pure mathematics, although (as will be pro- posed at the end of the last chapter) this mathematics may incorporate ideas which have yet to be written down. We should also expect even familiar areas of physics to look different in a fundamental context while preserving their standard forms at the more complex levels at which they are currently known. This is especially true of general relativity, which, as Einstein developed it, became a purely abstract theory not based on any specifically physical assumptions, and the struc- tures of fundamental particles where the empirically-observed properties clearly have an abstract generic foundation in symmetry principles which have not yet been completely uncovered. As in other areas, the proposed August 30, 2014 16:44 The Foundations of ... - 9in x 6in b1877-fm pageviii viii The Foundations of Physical Law treatment of these subjects at the fundamental level leads to extremely interesting possibilities at the level of observation. In the case of general relativity, the abstract treatment in Chapter 8 leads to the conclusion that the validity of the theory will extend well beyond the limits currently assumed, together with a prediction of dark energy produced long before its experimental discovery which is very close to the currently observed numerical value.
Recommended publications
  • Kissing Numbers: Surprises in Dimension Four Günter M
    Kissing numbers: Surprises in Dimension Four Günter M. Ziegler, TU Berlin The “kissing number problem” is a basic geometric problem that got its name from billards: Two balls “kiss” if they touch. The kissing number problem asks how many other balls can touch one given ball at the same time. If you arrange the balls on a pool ta- ble, it is easy to see that the answer is exactly six: Six balls just perfectly surround a given ball. Graphic: Detlev Stalling, ZIB Berlin and at the same time Vladimir I. Levenstein˘ in Russia proved that the correct, exact maximal numbers for the kissing number prob- lem are 240 in dimension 8, and 196560 in dimension 24. This is amazing, because these are also the only two dimensions where one knows a precise answer. It depends on the fact that mathemati- cians know very remarkable configurations in dimensions 8 and 24, which they call the E8 lattice and the Leech lattice, respectively. If, however, you think about this as a three-dimensional problem, So the kissing number problem remained unsolved, in particular, the question “how many balls can touch a given ball at the same for the case of dimension four. The so-called 24-cell, a four- time” becomes much more interesting — and quite complicated. In dimensional “platonic solid” of remarkable beauty (next page), fact, The 17th century scientific genius Sir Isaac Newton and his yields a configuration of 24 balls that would touch a given one in colleague David Gregory had a controversy about this in 1694 — four-dimensional space.
    [Show full text]
  • Gazette Des Mathématiciens
    JUILLET 2018 – No 157 la Gazette des Mathématiciens • Autour du Prix Fermat • Mathématiques – Processus ponctuels déterminantaux • Raconte-moi... le champ libre gaussien • Tribune libre – Quelle(s) application(s) pour le plan Torossian-Villani la GazetteComité de rédaction des Mathématiciens Rédacteur en chef Sébastien Gouëzel Boris Adamczewski Université de Nantes Institut Camille Jordan, Lyon [email protected] [email protected] Sophie Grivaux Rédacteurs Université de Lille [email protected] Thomas Alazard École Normale Supérieure de Paris-Saclay [email protected] Fanny Kassel IHÉS Maxime Bourrigan [email protected] Lycée Saint-Geneviève, Versailles [email protected] Pauline Lafitte Christophe Eckès École Centrale, Paris Archives Henri Poincaré, Nancy [email protected] [email protected] Damien Gayet Romain Tessera Institut Fourier, Grenoble Université Paris-Sud [email protected] [email protected] Secrétariat de rédaction : smf – Claire Ropartz Institut Henri Poincaré 11 rue Pierre et Marie Curie 75231 Paris cedex 05 Tél. : 01 44 27 67 96 – Fax : 01 40 46 90 96 [email protected] – http://smf.emath.fr Directeur de la publication : Stéphane Seuret issn : 0224-8999 À propos de la couverture. Cette image réalisée par Alejandro Rivera (Institut Fourier) est le graphe de la partie positive du champ libre gaussien sur le tore plat 2=(2á2) projeté sur la somme des espaces propres du laplacien de valeur propre plus petite que 500. Les textures et couleurs ajoutées sur le graphe sont pure- ment décoratives. La fonction a été calculée avec C++ comme une somme de polynômes trigonométriques avec des poids aléatoires bien choisis, le graphe a été réalisé sur Python et les textures et couleurs ont été réalisées avec gimp.
    [Show full text]
  • Local Covering Optimality of Lattices: Leech Lattice Versus Root Lattice E8
    Local Covering Optimality of Lattices: Leech Lattice versus Root Lattice E8 Achill Sch¨urmann, Frank Vallentin ∗ 10th November 2004 Abstract We show that the Leech lattice gives a sphere covering which is locally least dense among lattice coverings. We show that a similar result is false for the root lattice E8. For this we construct a less dense covering lattice whose Delone subdivision has a common refinement with the Delone subdivision of E8. The new lattice yields a sphere covering which is more than 12% less dense than the formerly ∗ best known given by the lattice A8. Currently, the Leech lattice is the first and only known example of a locally optimal lattice covering having a non-simplicial Delone subdivision. We hereby in particular answer a question of Dickson posed in 1968. By showing that the Leech lattice is rigid our answer is even strongest possible in a sense. 1 Introduction The Leech lattice is the exceptional lattice in dimension 24. Soon after its discovery by Leech [Lee67] it was conjectured that it is extremal for several geometric problems in R24: the kissing number problem, the sphere packing problem and the sphere covering problem. In 1979, Odlyzko and Sloane and independently Levenshtein solved the kissing number problem in dimension 24 by showing that the Leech lattice gives an optimal solution. Two years later, Bannai and Sloane showed that it gives the unique solution up to isometries (see [CS88], Ch. 13, 14). Unlike the kissing number problem, the other two problems are still open. Recently, Cohn and Kumar [CK04] showed that the Leech lattice gives the unique densest lattice sphere packing in R24.
    [Show full text]
  • The BEST WRITING on MATHEMATICS
    The BEST WRITING on MATHEMATICS 2012 The BEST WRITING on MATHEMATICS 2012 Mircea Pitici, Editor FOREWORD BY DAVID MUMFORD P RI NC E TO N U N IVER S I T Y P RE SS P RI NC E TO N A N D OX FORD Copyright © 2013 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved ISBN 978- 0- 691-15655-2 This book has been composed in Perpetua Printed on acid- free paper. ∞ Printed in the United States of America 1 3 5 7 9 10 8 6 4 2 For my parents Contents Foreword: The Synergy of Pure and Applied Mathematics, of the Abstract and the Concrete DAVID MUMFORD ix Introduction MIRCEA PITICI xvii Why Math Works MARIO LIVIO 1 Is Mathematics Discovered or Invented? TIMOTHY GOWERS 8 The Unplanned Impact of Mathematics PETER ROWLETT 21 An Adventure in the Nth Dimension BRIAN HAYES 30 Structure and Randomness in the Prime Numbers TERENCE TAO 43 The Strangest Numbers in String Theory JOHN C. BAEZ AND JOHN HUERTA 50 Mathematics Meets Photography: The Viewable Sphere DAVID SWART AND BRUCE TORRENCE 61 Dancing Mathematics and the Mathematics of Dance SARAH- MARIE BELCASTRO AND KARL SCHAFFER 79 Can One Hear the Sound of a Theorem? ROB SCHNEIDERMAN 93 Flat- Unfoldability and Woven Origami Tessellations ROBERT J. LANG 113 A Continuous Path from High School Calculus to University Analysis TIMOTHY GOWERS 129 viii Contents Mathematics Teachers’ Subtle, Complex Disciplinary Knowledge BRENT DAVIS 135 How to Be a Good Teacher Is an Undecidable Problem ERICA FLAPAN 141 How Your Philosophy of Mathematics Impacts Your Teaching BONNIE GOLD 149 Variables in Mathematics Education SUSANNA S.
    [Show full text]
  • Mathematical Circus & 'Martin Gardner
    MARTIN GARDNE MATHEMATICAL ;MATH EMATICAL ASSOCIATION J OF AMERICA MATHEMATICAL CIRCUS & 'MARTIN GARDNER THE MATHEMATICAL ASSOCIATION OF AMERICA Washington, DC 1992 MATHEMATICAL More Puzzles, Games, Paradoxes, and Other Mathematical Entertainments from Scientific American with a Preface by Donald Knuth, A Postscript, from the Author, and a new Bibliography by Mr. Gardner, Thoughts from Readers, and 105 Drawings and Published in the United States of America by The Mathematical Association of America Copyright O 1968,1969,1970,1971,1979,1981,1992by Martin Gardner. All riglhts reserved under International and Pan-American Copyright Conventions. An MAA Spectrum book This book was updated and revised from the 1981 edition published by Vantage Books, New York. Most of this book originally appeared in slightly different form in Scientific American. Library of Congress Catalog Card Number 92-060996 ISBN 0-88385-506-2 Manufactured in the United States of America For Donald E. Knuth, extraordinary mathematician, computer scientist, writer, musician, humorist, recreational math buff, and much more SPECTRUM SERIES Published by THE MATHEMATICAL ASSOCIATION OF AMERICA Committee on Publications ANDREW STERRETT, JR.,Chairman Spectrum Editorial Board ROGER HORN, Chairman SABRA ANDERSON BART BRADEN UNDERWOOD DUDLEY HUGH M. EDGAR JEANNE LADUKE LESTER H. LANGE MARY PARKER MPP.a (@ SPECTRUM Also by Martin Gardner from The Mathematical Association of America 1529 Eighteenth Street, N.W. Washington, D. C. 20036 (202) 387- 5200 Riddles of the Sphinx and Other Mathematical Puzzle Tales Mathematical Carnival Mathematical Magic Show Contents Preface xi .. Introduction Xlll 1. Optical Illusions 3 Answers on page 14 2. Matches 16 Answers on page 27 3.
    [Show full text]
  • Basic Understanding of Condensed Phases of Matter Via Packing Models S
    Perspective: Basic understanding of condensed phases of matter via packing models S. Torquato Citation: The Journal of Chemical Physics 149, 020901 (2018); doi: 10.1063/1.5036657 View online: https://doi.org/10.1063/1.5036657 View Table of Contents: http://aip.scitation.org/toc/jcp/149/2 Published by the American Institute of Physics Articles you may be interested in Announcement: Top reviewers for The Journal of Chemical Physics 2017 The Journal of Chemical Physics 149, 010201 (2018); 10.1063/1.5043197 Perspective: How to understand electronic friction The Journal of Chemical Physics 148, 230901 (2018); 10.1063/1.5035412 Aqueous solvation from the water perspective The Journal of Chemical Physics 148, 234505 (2018); 10.1063/1.5034225 Perspective: Ring-polymer instanton theory The Journal of Chemical Physics 148, 200901 (2018); 10.1063/1.5028352 Communication: Contact values of pair distribution functions in colloidal hard disks by test-particle insertion The Journal of Chemical Physics 148, 241102 (2018); 10.1063/1.5038668 Adaptive resolution molecular dynamics technique: Down to the essential The Journal of Chemical Physics 149, 024104 (2018); 10.1063/1.5031206 THE JOURNAL OF CHEMICAL PHYSICS 149, 020901 (2018) Perspective: Basic understanding of condensed phases of matter via packing models S. Torquatoa) Department of Chemistry, Department of Physics, Princeton Center for Theoretical Science, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA (Received 17 April 2018; accepted 14 June 2018; published online 10 July 2018) Packing problems have been a source of fascination for millennia and their study has produced a rich literature that spans numerous disciplines.
    [Show full text]
  • Sphere Packing, Lattice Packing, and Related Problems
    Sphere packing, lattice packing, and related problems Abhinav Kumar Stony Brook April 25, 2018 Sphere packings Definition n A sphere packing in R is a collection of spheres/balls of equal size which do not overlap (except for touching). The density of a sphere packing is the volume fraction of space occupied by the balls. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ In dimension 1, we can achieve density 1 by laying intervals end to end. In dimension 2, the best possible is by using the hexagonal lattice. [Fejes T´oth1940] Sphere packing problem n Problem: Find a/the densest sphere packing(s) in R . In dimension 2, the best possible is by using the hexagonal lattice. [Fejes T´oth1940] Sphere packing problem n Problem: Find a/the densest sphere packing(s) in R . In dimension 1, we can achieve density 1 by laying intervals end to end. Sphere packing problem n Problem: Find a/the densest sphere packing(s) in R . In dimension 1, we can achieve density 1 by laying intervals end to end. In dimension 2, the best possible is by using the hexagonal lattice. [Fejes T´oth1940] Sphere packing problem II In dimension 3, the best possible way is to stack layers of the solution in 2 dimensions. This is Kepler's conjecture, now a theorem of Hales and collaborators. mmm m mmm m There are infinitely (in fact, uncountably) many ways of doing this! These are the Barlow packings. Face centered cubic packing Image: Greg A L (Wikipedia), CC BY-SA 3.0 license But (until very recently!) no proofs. In very high dimensions (say ≥ 1000) densest packings are likely to be close to disordered.
    [Show full text]
  • New Upper Bounds for Kissing Numbers from Semidefinite Programming
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 21, Number 3, July 2008, Pages 909–924 S 0894-0347(07)00589-9 Article electronically published on November 29, 2007 NEW UPPER BOUNDS FOR KISSING NUMBERS FROM SEMIDEFINITE PROGRAMMING CHRISTINE BACHOC AND FRANK VALLENTIN 1. Introduction In geometry, the kissing number problem asks for the maximum number τn of unit spheres that can simultaneously touch the unit sphere in n-dimensional Euclidean space without pairwise overlapping. The value of τn is only known for n =1, 2, 3, 4, 8, 24. While its determination for n =1, 2 is trivial, it is not the case for other values of n. The case n = 3 was the object of a famous discussion between Isaac Newton and David Gregory in 1694. For a historical perspective of this discussion we refer to [6]. The first valid proof of the fact “τ3 = 12”, as in the icosahedron configuration, was only given in 1953 by K. Sch¨utte and B.L. van der Waerden in [23]. In the 1970s, P. Delsarte developed a method, initially aimed at bounding codes on finite fields (see [8]) that yields an upper bound for τn as a solution of a linear program and more generally yields an upper bound for the size of spherical codes of given minimal distance. We shall refer to this method as the LP method. With this method, A.M. Odlyzko and N.J.A. Sloane ([16]), and independently V.I. Leven- shtein ([14]), proved τ8 = 240 and τ24 = 196560 which are, respectively, the number of shortest vectors in the root lattice E8 and in the Leech lattice.
    [Show full text]
  • Focm 2017 Foundations of Computational Mathematics Barcelona, July 10Th-19Th, 2017 Organized in Partnership With
    FoCM 2017 Foundations of Computational Mathematics Barcelona, July 10th-19th, 2017 http://www.ub.edu/focm2017 Organized in partnership with Workshops Approximation Theory Computational Algebraic Geometry Computational Dynamics Computational Harmonic Analysis and Compressive Sensing Computational Mathematical Biology with emphasis on the Genome Computational Number Theory Computational Geometry and Topology Continuous Optimization Foundations of Numerical PDEs Geometric Integration and Computational Mechanics Graph Theory and Combinatorics Information-Based Complexity Learning Theory Plenary Speakers Mathematical Foundations of Data Assimilation and Inverse Problems Multiresolution and Adaptivity in Numerical PDEs Numerical Linear Algebra Karim Adiprasito Random Matrices Jean-David Benamou Real-Number Complexity Alexei Borodin Special Functions and Orthogonal Polynomials Mireille Bousquet-Mélou Stochastic Computation Symbolic Analysis Mark Braverman Claudio Canuto Martin Hairer Pierre Lairez Monique Laurent Melvin Leok Lek-Heng Lim Gábor Lugosi Bruno Salvy Sylvia Serfaty Steve Smale Andrew Stuart Joel Tropp Sponsors Shmuel Weinberger 2 FoCM 2017 Foundations of Computational Mathematics Barcelona, July 10th{19th, 2017 Books of abstracts 4 FoCM 2017 Contents Presentation . .7 Governance of FoCM . .9 Local Organizing Committee . .9 Administrative and logistic support . .9 Technical support . 10 Volunteers . 10 Workshops Committee . 10 Plenary Speakers Committee . 10 Smale Prize Committee . 11 Funding Committee . 11 Plenary talks . 13 Workshops . 21 A1 { Approximation Theory Organizers: Albert Cohen { Ron Devore { Peter Binev . 21 A2 { Computational Algebraic Geometry Organizers: Marta Casanellas { Agnes Szanto { Thorsten Theobald . 36 A3 { Computational Number Theory Organizers: Christophe Ritzenhaler { Enric Nart { Tanja Lange . 50 A4 { Computational Geometry and Topology Organizers: Joel Hass { Herbert Edelsbrunner { Gunnar Carlsson . 56 A5 { Geometric Integration and Computational Mechanics Organizers: Fernando Casas { Elena Celledoni { David Martin de Diego .
    [Show full text]
  • Random Packing of Colloids and Granular Matter
    Random packing of colloids and granular matter ISBN 0 Subject headings: random packing/hard spheres/spherocylinders/cut spheres/spheroids/granular matter/colloids/computer simulation. Random packing of colloids and granular matter Willekeurige stapeling van colloijdenen granulaire materie (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magni¯cus, prof. dr. J. C. Stoof, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op maandag 18 februari 2008 des ochtends te 10.30 uur door Alan Wouterse geboren op 29 december 1978 te Utrecht Promotor: Prof. dr. A.P. Philipse This work is part of the Granular Matter programme of the `Stichting voor Funda- menteel Onderzoek der Materie (FOM)', ¯nancially supported by the `Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)'. Contents Chapter 1. Introduction 1 Chapter 2. Random particle packings: A review 3 2.1. Introduction 3 2.2. Random packing of particles 4 2.3. Random packing of spheres 11 2.4. Theory 14 2.5. Simulations 18 2.6. Summary and conclusions for sphere packings 24 2.7. Non-spherical particles 25 2.8. Theory 28 2.9. Simulations 31 2.10. Methods for non-spherical particles 31 2.11. Summary and conclusions for non-spherical particle packings 34 Chapter 3. On the caging number of two- and three-dimensional hard spheres 37 3.1. Introduction 38 3.2. Caging by uncorrelated contacts 39 3.3. Caging by three hard disks 41 3.4. Caging and parking numbers for hard disks of di®erent size 44 3.5.
    [Show full text]
  • Concepts, Techniques, Ideas & Proofs
    Concepts, Techniques, Ideas & Proofs 1. 2-SAT 21. Approximate vertex cover 41. Busy beaver problem 2. 2-Way automata 22. Approximations 42. C programs 3. 3-colorability 23. Artificial intelligence 43. Canonical order 4. 3-SAT 24. Asimov’s laws of robotics 44. Cantor dust 5. Abstract complexity 25. Asymptotics 45. Cantor set 6. Acceptance 26. Automatic theorem proving 46. Cantor’s paradox 7. Ada Lovelace 27. Autonomous vehicles 47. CAPCHA 8. Algebraic numbers 28. Axiom of choice 48. Cardinality arguments 9. Algorithms 29. Axiomatic method 49. Cartesian coordinates 10. Algorithms as strings 30. Axiomatic system 50. Cellular automata 11. Alice in Wonderland 31. Babbage’s analytical engine 51. Chaos 12. Alphabets 32. Babbage’s difference engine 52. Chatterbots 13. Alternation 33. Bin packing 53. Chess-playing programs 14. Ambiguity 34. Binary vs. unary 54. Chinese room 15. Ambiguous grammars 35. Bletchley Park 55. Chomsky hierarchy 16. Analog computing 36. Bloom axioms 56. Chomsky normal form 17. Anisohedral tilings 37. Boolean algebra 57. Chomskyan linguistics 18. Aperiodic tilings 38. Boolean functions 58. Christofides’ heuristic 19. Approximate min cut 39. Bridges of Konigsberg 59. Church-Turing thesis 20. Approximate TSP 40. Brute force 60. Clay Mathematics Institute Concepts, Techniques, Ideas & Proofs 61. Clique problem 81. Computer viruses 101. Cross-product construction 62. Cloaking devices 82. Concatenation 102. Cryptography 63. Closure properties 83. Co-NP 103. DARPA Grand Challenge 64. Cogito ergo sum 84. Consciousness and sentience 104. DARPA Math Challenges 65. Colorings 85. Consistency of axioms 105. De Morgan’s law 66. Commutativity 86. Constructions 106. Decidability 67. Complementation 87. Context free grammars 107.
    [Show full text]
  • A Survey on the Kissing Numbers
    Kissing numbers – a survey Peter Boyvalenkov, Stefan Dodunekov Oleg Musin∗ Inst. of Mathematics and Informatics Department of Mathematics Bulgarian Academy of Sciences University of Texas at Brownswille 8 G. Bonchev str., 1113 Sofia, Bulgaria 80 Fort Brown, TX 78520, USA Abstract. The maximum possible number of non-overlapping unit spheres that can touch a unit sphere in n dimensions is called kissing number. The problem for finding kissing numbers is closely connected to the more general problems of finding bounds for spherical codes and sphere packings. We survey old and recent results on the kissing numbers keeping the generality of spherical codes. 1 Introduction How many equal billiard balls can touch (kiss) simultaneously another billiard ball of the same size? This was the subject of a famous dispute between Newton and Gregory in 1694. The more general problem in n dimensions, how many non- overlapping spheres of radius 1 can simultaneously touch the unit sphere Sn−1, is called the kissing number problem. The answer τn is called kissing number, also Newton number (in fact, Newton was right, without proof indeed, with his answer τ3 = 12) or contact number. Further generalization of the problem leads to investigation of spherical codes. A spherical code is a non-empty finite subset of Sn−1. Important parameters of a spherical code C Sn−1 are its cardinality C , the dimension n (it is convenient ⊂ | | to assume that the vectors of C span Rn) and the maximal inner product arXiv:1507.03631v1 [math.MG] 13 Jul 2015 s(C) = max x,y : x,y C,x = y .
    [Show full text]