Modeling, Design and Optimization of Computer- Generated Holograms with Binary Phases

Total Page:16

File Type:pdf, Size:1020Kb

Modeling, Design and Optimization of Computer- Generated Holograms with Binary Phases Modeling, design and optimization of computer- generated holograms with binary phases Thèse Jing Wang Doctorat en physique Philosophiæ doctor (Ph. D.) Québec, Canada © Jing Wang, 2019 Modeling, design and optimization of computer- generated holograms with binary phases Thè se JING WANG Sous la direction de : Yunlong Sheng Résumé L’hologramme généré par ordinateur (HGO) a été démontré à jouer un rôle important depuis son invention par Lohmann dans les années 1960 dans de nombreuses applications telles que l’ingénierie du front d'onde, l’éclairage structuré et l’affichage optique, etc. Dans le travail de thèse ci-présent, la modélisation, la conception et l’optimisation d’HGO avec des phases binaires sont étudiées. Nous avons examiné un système pratique de projection d’image avec certaines spécifications de travail, par exemple, une distance de travail de 40 cm, une profondeur de champ de 10 cm et un angle de diffraction de 53 degré pour une longueur d’onde de travail de 632 nm, et ensuite conçu et optimisé un hologramme de phase binaire en passant par une recherche directe binaire pour ce système d’image. L’hologramme a été fabriqué par la lithographie à faisceau d’électrons. Pour atteindre l’angle de diffraction requis, nous avons discuté de l’architecture optique dans le système de projection d’image holographique. L’HGO conçu et le système de projection d’image holographique ont été validés expérimentalement par reconstruction optique. Étant donné que les pixels finiront par se regrouper pour former des ouvertures polygonales en hologramme, qui peut être vu clairement dans le processus de recherche directe binaire, nous avons proposé une nouvelle approche pour la conception directe des ouvertures polygonales basée sur la disposition triangulaire en HGO de grande taille en pixels. La diffraction de l’ouverture a été calculée par la transformation analytique d’Abbe. L’image reconstruite peut être exprimée comme une addition cohérente de motifs de diffraction à partir de tous les bords droits d’orientations et de longueurs différentes. Une optimisation en deux étapes comprenant l’algorithme génétique avec la recherche locale de codage des phases binaires des ouvertures, suivie par la recherche directe de co-sommets flottants des ouvertures triangulaires élémentaires a été développée. Nous avons en outre proposé une disposition d’ouverture quadrilatérale, qui fournit plus de degrés de liberté et peut former des ouvertures polygonales plus diverses en hologrammes. L’algorithme génétique parallèle avec la recherche locale a été adopté dans une première étape pour assigner des phases binaires, et la recherche directe a ensuite été utilisée pour III optimiser des emplacements de co-sommets d'ouvertures quadrilatérales lors de la deuxième étape. Trois schémas différents pour l'algorithme en deux étapes ont été discutés pour fournir des moyens flexibles afin d’équilibrer la performance de l’optimisation et la durée nécessaire. IV Abstract The computer-generated hologram (CGH) has been demonstrated to play an important role, since its invention by Lohmann in 1960s, in many applications such as wavefront engineering, structured illumination and optical display, etc. In this thesis, the modeling, design and optimization of CGH with binary phases are studied. We considered a practical projection image system with certain working specification, e.g. working distance of 40 cm, depth of field of 10 cm and a diffraction angle of 53 degree for 632 nm working wavelength, and then designed and optimized a binary-phase hologram by direct binary search for this image system. The hologram was fabricated by E-beam lithography. To achieve the required diffraction angle, we discussed the optical architecture in holographic projection image system. The designed CGH and holographic projection image system were validated experimentally by optical reconstruction. Since the pixels will eventually cluster to form polygonal apertures in hologram, which can be seen clearly during the process of direct binary search, we proposed a new approach to directly design polygonal apertures based on triangular layout in CGH of a large number of pixels. The diffraction of aperture was calculated by analytical Abbe transform. The reconstructed image can be expressed as a coherent addition of diffraction patterns from all the straight edges of different orientations and lengths. A two-step optimization including genetic algorithm with local search for encoding binary phases of apertures, followed by direct search for floating covertices of the elementary triangular apertures was developed. We further proposed a quadrilateral aperture layout, which provides more degrees of freedom and can form more diverse polygonal apertures in holograms. The parallel genetic algorithm with local search was adopted to assign binary phases in the first step, and direct search was then used to optimize of locations of covertices of quadrilateral apertures in the second step. Three different schemes for the two-step algorithm were discussed to provide flexible ways to balance the optimization performance and time cost. V Contents Résumé ................................................................................................................................. III Abstract .................................................................................................................................. V Contents ................................................................................................................................ VI List of figures ........................................................................................................................ X List of tables ...................................................................................................................... XIII Abbreviations .................................................................................................................... XIV Acknowledge .................................................................................................................... XVII Foreword ......................................................................................................................... XVIII General introduction ............................................................................................................... 1 Historical events of holography .......................................................................................... 1 Computer-generated holography and conventional optical holography ............................. 2 Categories of CGHs ............................................................................................................ 3 Current research of CGHs ................................................................................................... 4 Design procedures of CGHs ............................................................................................... 5 The motivation .................................................................................................................... 6 Organization of thesis ......................................................................................................... 7 Chapter 1 Theory, algorithms and fabrications of holograms ................................................ 9 1.1 Fundamental of holography .......................................................................................... 9 1.2 Scalar diffraction theory ............................................................................................. 12 1.2.1 Wave equation ...................................................................................................... 12 1.2.2 Spatial frequency transfer function ...................................................................... 13 1.2.3 Fresnel diffraction and Fraunhofer diffraction ..................................................... 14 VI 1.3 Conventional algorithms for CGHs design ................................................................. 15 1.3.1 Direct Binary Search ............................................................................................ 16 1.3.2 Simulated Annealing ............................................................................................ 16 1.3.3 Genetic algorithm ................................................................................................. 17 1.3.4 Iterative Fourier Transform Algorithm ................................................................ 17 1.4 Industrial schemes for CGH design ............................................................................ 18 1.4.1 Dot matrix hologram ............................................................................................ 18 1.4.2 Holographic printer .............................................................................................. 19 1.5 Fabrication technologies of holograms ....................................................................... 21 1.5.1 Diamond machining ............................................................................................. 21 1.5.2 Photolithography .................................................................................................. 22 1.5.3 Direct laser writing ............................................................................................... 22 1.5.4 Electron beam lithography ................................................................................... 23 Chapter 2 Design of holograms by direct binary
Recommended publications
  • Phase Retrieval Without Prior Knowledge Via Single-Shot Fraunhofer Diffraction Pattern of Complex Object
    Phase retrieval without prior knowledge via single-shot Fraunhofer diffraction pattern of complex object An-Dong Xiong1 , Xiao-Peng Jin1 , Wen-Kai Yu1 and Qing Zhao1* Fraunhofer diffraction is a well-known phenomenon achieved with most wavelength even without lens. A single-shot intensity measurement of diffraction is generally considered inadequate to reconstruct the original light field, because the lost phase part is indispensable for reverse transformation. Phase retrieval is usually conducted in two means: priori knowledge or multiple different measurements. However, priori knowledge works for certain type of object while multiple measurements are difficult for short wavelength. Here, by introducing non-orthogonal measurement via high density sampling scheme, we demonstrate that one single-shot Fraunhofer diffraction pattern of complex object is sufficient for phase retrieval. Both simulation and experimental results have demonstrated the feasibility of our scheme. Reconstruction of complex object reveals depth information or refraction index; and single-shot measurement can be achieved under most scenario. Their combination will broaden the application field of coherent diffraction imaging. Fraunhofer diffraction, also known as far-field diffraction, problem12-14. These matrix complement methods require 4N- does not necessarily need any extra optical devices except a 4 (N stands for the dimension) generic measurements such as beam source. The diffraction field is the Fourier transform of Gaussian random measurements for complex field15. the original light field. However, for visible light or X-ray Ptychography is another reliable method to achieve image diffraction, the phase part is hardly directly measurable1. with good resolution if the sample can endure scanning16-19. Therefore, phase retrieval from intensity measurement To achieve higher spatial resolution around the size of atom, becomes necessary for reconstructing the original field.
    [Show full text]
  • Fresnel Diffraction.Nb Optics 505 - James C
    Fresnel Diffraction.nb Optics 505 - James C. Wyant 1 13 Fresnel Diffraction In this section we will look at the Fresnel diffraction for both circular apertures and rectangular apertures. To help our physical understanding we will begin our discussion by describing Fresnel zones. 13.1 Fresnel Zones In the study of Fresnel diffraction it is convenient to divide the aperture into regions called Fresnel zones. Figure 1 shows a point source, S, illuminating an aperture a distance z1away. The observation point, P, is a distance to the right of the aperture. Let the line SP be normal to the plane containing the aperture. Then we can write S r1 Q ρ z1 r2 z2 P Fig. 1. Spherical wave illuminating aperture. !!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!!!! 2 2 2 2 SQP = r1 + r2 = z1 +r + z2 +r 1 2 1 1 = z1 + z2 + þþþþ r J þþþþþþþ + þþþþþþþN + 2 z1 z2 The aperture can be divided into regions bounded by concentric circles r = constant defined such that r1 + r2 differ by l 2 in going from one boundary to the next. These regions are called Fresnel zones or half-period zones. If z1and z2 are sufficiently large compared to the size of the aperture the higher order terms of the expan- sion can be neglected to yield the following result. l 1 2 1 1 n þþþþ = þþþþ rn J þþþþþþþ + þþþþþþþN 2 2 z1 z2 Fresnel Diffraction.nb Optics 505 - James C. Wyant 2 Solving for rn, the radius of the nth Fresnel zone, yields !!!!!!!!!!! !!!!!!!! !!!!!!!!!!! rn = n l Lorr1 = l L, r2 = 2 l L, , where (1) 1 L = þþþþþþþþþþþþþþþþþþþþ þþþþþ1 + þþþþþ1 z1 z2 Figure 2 shows a drawing of Fresnel zones where every other zone is made dark.
    [Show full text]
  • Fraunhofer Diffraction Effects on Total Power for a Planckian Source
    Volume 106, Number 5, September–October 2001 Journal of Research of the National Institute of Standards and Technology [J. Res. Natl. Inst. Stand. Technol. 106, 775–779 (2001)] Fraunhofer Diffraction Effects on Total Power for a Planckian Source Volume 106 Number 5 September–October 2001 Eric L. Shirley An algorithm for computing diffraction ef- Key words: diffraction; Fraunhofer; fects on total power in the case of Fraun- Planckian; power; radiometry. National Institute of Standards and hofer diffraction by a circular lens or aper- Technology, ture is derived. The result for Fraunhofer diffraction of monochromatic radiation is Gaithersburg, MD 20899-8441 Accepted: August 28, 2001 well known, and this work reports the re- sult for radiation from a Planckian source. [email protected] The result obtained is valid at all temper- atures. Available online: http://www.nist.gov/jres 1. Introduction Fraunhofer diffraction by a circular lens or aperture is tion, because the detector pupil is overfilled. However, a ubiquitous phenomenon in optics in general and ra- diffraction leads to losses in the total power reaching the diometry in particular. Figure 1 illustrates two practical detector. situations in which Fraunhofer diffraction occurs. In the All of the above diffraction losses have been a subject first example, diffraction limits the ability of a lens or of considerable interest, and they have been considered other focusing optic to focus light. According to geo- by Blevin [2], Boivin [3], Steel, De, and Bell [4], and metrical optics, it is possible to focus rays incident on a Shirley [5]. The formula for the relative diffraction loss lens to converge at a focal point.
    [Show full text]
  • Fraunhofer Diffraction with a Laser Source
    Second Year Laboratory Fraunhofer Diffraction with a Laser Source L3 ______________________________________________________________ Health and Safety Instructions. There is no significant risk to this experiment when performed under controlled laboratory conditions. However: • This experiment involves the use of a class 2 diode laser. This has a low power, visible, red beam. Eye damage can occur if the laser beam is shone directly into the eye. Thus, the following safety precautions MUST be taken:- • Never look directly into the beam. The laser key, which is used to switch the laser on and off, preventing any accidents, must be obtained from and returned to the lab technician before and after each lab session. • Do not remove the laser from its mounting on the optical bench and do not attempt to use the laser in any other circumstances, except for the recording of the diffraction patterna. • Be aware that the laser beam may be reflected off items such as jewellery etc ______________________________________________________________ 26-09-08 Department of Physics and Astronomy, University of Sheffield Second Year Laboratory 1. Aims The aim of this experiment is to study the phenomenon of diffraction using monochromatic light from a laser source. The diffraction patterns from single and multiple slits will be measured and compared to the patterns predicted by Fourier methods. Finally, Babinet’s principle will be applied to determine the width of a human hair from the diffraction pattern it produces. 2. Apparatus • Diode Laser – see Laser Safety Guidelines before use, • Photodiode, • Optics Bench, • Traverse, • Box of apertures, • PicoScope Analogue to Digital Converter, • Voltmeter, • Personal Computer. 3. Background (a) General The phenomenon of diffraction occurs when waves pass through an aperture whose width is comparable to their wavelength.
    [Show full text]
  • Huygens Principle; Young Interferometer; Fresnel Diffraction
    Today • Interference – inadequacy of a single intensity measurement to determine the optical field – Michelson interferometer • measuring – distance – index of refraction – Mach-Zehnder interferometer • measuring – wavefront MIT 2.71/2.710 03/30/09 wk8-a- 1 A reminder: phase delay in wave propagation z t t z = 2.875λ phasor due In general, to propagation (path delay) real representation phasor representation MIT 2.71/2.710 03/30/09 wk8-a- 2 Phase delay from a plane wave propagating at angle θ towards a vertical screen path delay increases linearly with x x λ vertical screen (plane of observation) θ z z=fixed (not to scale) Phasor representation: may also be written as: MIT 2.71/2.710 03/30/09 wk8-a- 3 Phase delay from a spherical wave propagating from distance z0 towards a vertical screen x z=z0 path delay increases quadratically with x λ vertical screen (plane of observation) z z=fixed (not to scale) Phasor representation: may also be written as: MIT 2.71/2.710 03/30/09 wk8-a- 4 The significance of phase delays • The intensity of plane and spherical waves, observed on a screen, is very similar so they cannot be reliably discriminated – note that the 1/(x2+y2+z2) intensity variation in the case of the spherical wave is too weak in the paraxial case z>>|x|, |y| so in practice it cannot be measured reliably • In many other cases, the phase of the field carries important information, for example – the “history” of where the field has been through • distance traveled • materials in the path • generally, the “optical path length” is inscribed
    [Show full text]
  • Monte Carlo Ray-Trace Diffraction Based on the Huygens-Fresnel Principle
    Monte Carlo Ray-Trace Diffraction Based On the Huygens-Fresnel Principle J. R. MAHAN,1 N. Q. VINH,2,* V. X. HO,2 N. B. MUNIR1 1Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA 2Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA *Corresponding author: [email protected] The goal of this effort is to establish the conditions and limits under which the Huygens-Fresnel principle accurately describes diffraction in the Monte Carlo ray-trace environment. This goal is achieved by systematic intercomparison of dedicated experimental, theoretical, and numerical results. We evaluate the success of the Huygens-Fresnel principle by predicting and carefully measuring the diffraction fringes produced by both single slit and circular apertures. We then compare the results from the analytical and numerical approaches with each other and with dedicated experimental results. We conclude that use of the MCRT method to accurately describe diffraction requires that careful attention be paid to the interplay among the number of aperture points, the number of rays traced per aperture point, and the number of bins on the screen. This conclusion is supported by standard statistical analysis, including the adjusted coefficient of determination, adj, the root-mean-square deviation, RMSD, and the reduced chi-square statistics, . OCIS codes: (050.1940) Diffraction; (260.0260) Physical optics; (050.1755) Computational electromagnetic methods; Monte Carlo Ray-Trace, Huygens-Fresnel principle, obliquity factor 1. INTRODUCTION here. We compare the results from the analytical and numerical approaches with each other and with the dedicated experimental The Monte Carlo ray-trace (MCRT) method has long been utilized to results.
    [Show full text]
  • Chapter 14 Interference and Diffraction
    Chapter 14 Interference and Diffraction 14.1 Superposition of Waves.................................................................................... 14-2 14.2 Young’s Double-Slit Experiment ..................................................................... 14-4 Example 14.1: Double-Slit Experiment................................................................ 14-7 14.3 Intensity Distribution ........................................................................................ 14-8 Example 14.2: Intensity of Three-Slit Interference ............................................ 14-11 14.4 Diffraction....................................................................................................... 14-13 14.5 Single-Slit Diffraction..................................................................................... 14-13 Example 14.3: Single-Slit Diffraction ................................................................ 14-15 14.6 Intensity of Single-Slit Diffraction ................................................................. 14-16 14.7 Intensity of Double-Slit Diffraction Patterns.................................................. 14-19 14.8 Diffraction Grating ......................................................................................... 14-20 14.9 Summary......................................................................................................... 14-22 14.10 Appendix: Computing the Total Electric Field............................................. 14-23 14.11 Solved Problems ..........................................................................................
    [Show full text]
  • Diffraction Effects in Transmitted Optical Beam Difrakční Jevy Ve Vysílaném Optickém Svazku
    BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF RADIO ELECTRONICS FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV RADIOELEKTRONIKY DIFFRACTION EFFECTS IN TRANSMITTED OPTICAL BEAM DIFRAKČNÍ JEVY VE VYSÍLANÉM OPTICKÉM SVAZKU DOCTORAL THESIS DIZERTAČNI PRÁCE AUTHOR Ing. JURAJ POLIAK AUTOR PRÁCE SUPERVISOR prof. Ing. OTAKAR WILFERT, CSc. VEDOUCÍ PRÁCE BRNO 2014 ABSTRACT The thesis was set out to investigate on the wave and electromagnetic effects occurring during the restriction of an elliptical Gaussian beam by a circular aperture. First, from the Huygens-Fresnel principle, two models of the Fresnel diffraction were derived. These models provided means for defining contrast of the diffraction pattern that can beused to quantitatively assess the influence of the diffraction effects on the optical link perfor- mance. Second, by means of the electromagnetic optics theory, four expressions (two exact and two approximate) of the geometrical attenuation were derived. The study shows also the misalignment analysis for three cases – lateral displacement and angular misalignment of the transmitter and the receiver, respectively. The expression for the misalignment attenuation of the elliptical Gaussian beam in FSO links was also derived. All the aforementioned models were also experimentally proven in laboratory conditions in order to eliminate other influences. Finally, the thesis discussed and demonstrated the design of the all-optical transceiver. First, the design of the optical transmitter was shown followed by the development of the receiver optomechanical assembly. By means of the geometric and the matrix optics, relevant receiver parameters were calculated and alignment tolerances were estimated. KEYWORDS Free-space optical link, Fresnel diffraction, geometrical loss, pointing error, all-optical transceiver design ABSTRAKT Dizertačná práca pojednáva o vlnových a elektromagnetických javoch, ku ktorým dochádza pri zatienení eliptického Gausovského zväzku kruhovou apretúrou.
    [Show full text]
  • Laser Beam Profile & Beam Shaping
    Copyright by Priti Duggal 2006 An Experimental Study of Rim Formation in Single-Shot Femtosecond Laser Ablation of Borosilicate Glass by Priti Duggal, B.Tech. Thesis Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering The University of Texas at Austin August 2006 An Experimental Study of Rim Formation in Single-Shot Femtosecond Laser Ablation of Borosilicate Glass Approved by Supervising Committee: Adela Ben-Yakar John R. Howell Acknowledgments My sincere thanks to my advisor Dr. Adela Ben-Yakar for showing trust in me and for introducing me to the exciting world of optics and lasers. Through numerous valuable discussions and arguments, she has helped me develop a scientific approach towards my work. I am ready to apply this attitude to my future projects and in other aspects of my life. I would like to express gratitude towards my reader, Dr. Howell, who gave me very helpful feedback at such short notice. My lab-mates have all positively contributed to my thesis in ways more than one. I especially thank Dan and Frederic for spending time to review the initial drafts of my writing. Thanks to Navdeep for giving me a direction in life. I am excited about the future! And, most importantly, I want to thank my parents. I am the person I am, because of you. Thank you. 11 August 2006 iv Abstract An Experimental Study of Rim Formation in Single-Shot Femtosecond Laser Ablation of Borosilicate Glass Priti Duggal, MSE The University of Texas at Austin, 2006 Supervisor: Adela Ben-Yakar Craters made on a dielectric surface by single femtosecond pulses often exhibit an elevated rim surrounding the crater.
    [Show full text]
  • This Is a Repository Copy of Ptychography. White Rose
    This is a repository copy of Ptychography. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/127795/ Version: Accepted Version Book Section: Rodenburg, J.M. orcid.org/0000-0002-1059-8179 and Maiden, A.M. (2019) Ptychography. In: Hawkes, P.W. and Spence, J.C.H., (eds.) Springer Handbook of Microscopy. Springer Handbooks . Springer . ISBN 9783030000684 https://doi.org/10.1007/978-3-030-00069-1_17 This is a post-peer-review, pre-copyedit version of a chapter published in Hawkes P.W., Spence J.C.H. (eds) Springer Handbook of Microscopy. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-00069-1_17. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Ptychography John Rodenburg and Andy Maiden Abstract: Ptychography is a computational imaging technique. A detector records an extensive data set consisting of many inference patterns obtained as an object is displaced to various positions relative to an illumination field.
    [Show full text]
  • 4. Fresnel and Fraunhofer Diffraction
    13. Fresnel diffraction Remind! Diffraction regimes Fresnel-Kirchhoff diffraction formula E exp(ikr) E PF= 0 ()θ dA ()0 ∫∫ irλ ∑ z r Obliquity factor : F ()θθ= cos = r zE exp (ikr ) E x,y = 0 ddξ η () ∫∫ 2 irλ ∑ Aperture (ξ,η) Screen (x,y) 22 rzx=+−+−2 ()()ξ yη 22 22 ⎡⎤11⎛⎞⎛⎞xy−−ξη()xy−−ξ ()η ≈+zz⎢⎥1 ⎜⎟⎜⎟ + =+ + ⎣⎦⎢⎥22⎝⎠⎝⎠zz 22 zz ⎛⎞⎛⎞xy22ξη 22⎛⎞ xy ξη =++++−+z ⎜⎟⎜⎟⎜⎟ ⎝⎠⎝⎠22zz 22 zz⎝⎠ zz E ⎡⎤k Exy(),expexp=+0 ()ikz i() x22 y izλ ⎣⎦⎢⎥2 z ⎡⎤⎡⎤kk22 ×+−+∫∫ exp⎢⎥⎢⎥ii()ξ ηξ exp()xyη ddξη ∑ ⎣⎦⎣⎦2 zz E ⎡⎤k Exy(),expexp=+0 ()ikz i() x22 y r izλ ⎣⎦⎢⎥2 z ⎡⎤⎡⎤kk ×+−+exp iiξ 22ηξexp xyη dξdη ∫∫ ⎢⎥⎢⎥() () Aperture (ξ,η) Screen (x,y) ∑ ⎣⎦⎣⎦2 zz ⎡⎤⎡⎤kk22 =+−+Ci∫∫ exp ⎢⎥⎢⎥()ξ ηξexp ixydd()η ξη ∑ ⎣⎦⎣⎦2 zz Fresnel diffraction ⎡⎤⎡⎤kk E ()xy,(,)=+ C Uξ ηξηξηξηexp i ()22 exp−i() x+ y d d ∫∫ ⎣⎦⎣⎦⎢⎥⎢⎥2 zz k 22 ⎧ j ()ξη+ ⎫ Exy(, )∝F ⎨ U()ξη , e2z ⎬ ⎩⎭ Fraunhofer diffraction ⎡⎤k Exy(),(,)=−+ C Uξη expi() xξ y η dd ξ η ∫∫ ⎣⎦⎢⎥z =−+CU(,)expξ ηξθηθξη⎡⎤ ik sin sin dd ∫∫ ⎣⎦()ξη Exy(, )∝F { U(ξ ,η )} Fresnel (near-field) diffraction This is most general form of diffraction – No restrictions on optical layout • near-field diffraction k 22 ⎧ j ()ξη+ ⎫ • curved wavefront Uxy(, )≈ F ⎨ U()ξη , e2z ⎬ – Analysis somewhat difficult ⎩⎭ Curved wavefront (parabolic wavelets) Screen z Fresnel Diffraction Accuracy of the Fresnel Approximation 3 π 2 2 2 z〉〉[()() x −ξ + y η −] 4λ max • Accuracy can be expected for much shorter distances for U(,)ξ ηξ smooth & slow varing function; 2x−=≤ D 4λ z D2 z ≥ Fresnel approximation 16λ In summary, Fresnel diffraction is … 13-7.
    [Show full text]
  • Numerical Techniques for Fresnel Diffraction in Computational
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2006 Numerical techniques for Fresnel diffraction in computational holography Richard Patrick Muffoletto Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Computer Sciences Commons Recommended Citation Muffoletto, Richard Patrick, "Numerical techniques for Fresnel diffraction in computational holography" (2006). LSU Doctoral Dissertations. 2127. https://digitalcommons.lsu.edu/gradschool_dissertations/2127 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. NUMERICAL TECHNIQUES FOR FRESNEL DIFFRACTION IN COMPUTATIONAL HOLOGRAPHY A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Computer Science by Richard Patrick Muffoletto B.S., Physics, Louisiana State University, 2001 B.S., Computer Science, Louisiana State University, 2001 December 2006 Acknowledgments I would like to thank my major professor, Dr. John Tyler, for his patience and soft-handed guidance in my pursual of a dissertation topic. His support and suggestions since then have been vital, especially in the editing of this work. I thank Dr. Joel Tohline for his unwavering enthusiasm over the past 8 years of my intermittant hologram research; it has always been a source of motivation and inspiration. My appreciation goes out to Wesley Even for providing sample binary star system simulation data from which I was able to demonstrate some of the holographic techniques developed in this research.
    [Show full text]