The Nature, Origin and Modification of Insoluble Organic Matter

Total Page:16

File Type:pdf, Size:1020Kb

The Nature, Origin and Modification of Insoluble Organic Matter University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Navy Research U.S. Department of Defense 2017 The an ture, origin and modification of insoluble organic matter inchondrites, the major source of Earth’s C and N C. M. O'D. Alexander Carnegie Institution of Washington, [email protected] G. D. Cody Carnegie Institution of Washington B. T. De Gregorio U.S. Naval Research Laboratory L. R. Nittler Carnegie Institution of Washington R. M. Stroud U.S. Naval Research Laboratory Follow this and additional works at: http://digitalcommons.unl.edu/usnavyresearch Alexander, C. M. O'D.; Cody, G. D.; De Gregorio, B. T.; Nittler, L. R.; and Stroud, R. M., "The an ture, origin and modification of insoluble organic matter inchondrites, the major source of Earth’s C and N" (2017). U.S. Navy Research. 117. http://digitalcommons.unl.edu/usnavyresearch/117 This Article is brought to you for free and open access by the U.S. Department of Defense at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in U.S. Navy Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Chemie der Erde 77 (2017) 227–256 Contents lists available at ScienceDirect Chemie der Erde j ournal homepage: www.elsevier.de/chemer The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth’s C and N a,∗ b c a c C.M.O’D. Alexander , G.D. Cody , B.T. De Gregorio , L.R. Nittler , R.M. Stroud a Dept. Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, Washington, DC 20015, USA b Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, DC 20015, USA c Materials Science and Technology Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA a r t i c l e i n f o a b s t r a c t Article history: All chondrites accreted ∼3.5 wt.% C in their matrices, the bulk of which was in a macromolecular solvent Received 20 July 2016 and acid insoluble organic material (IOM). Similar material to IOM is found in interplanetary dust particles Received in revised form (IDPs) and comets. The IOM accounts for almost all of the C and N in chondrites, and a significant fraction 21 December 2016 of the H. Chondrites and, to a lesser extent, comets were probably the major sources of volatiles for the Accepted 12 January 2017 Earth and the other terrestrial planets. Hence, IOM was both the major source of Earth’s volatiles and a Editorial handling - Klaus Keil potential source of complex prebiotic molecules. 15 Large enrichments in D and N, relative to the bulk solar isotopic compositions, suggest that IOM or Keywords: Meteorites its precursors formed in very cold, radiation-rich environments. Whether these environments were in Chondrites the interstellar medium (ISM) or the outer Solar System is unresolved. Nevertheless, the elemental and Comets isotopic compositions and functional group chemistry of IOM provide important clues to the origin(s) Interplanetary dust of organic matter in protoplanetary disks. IOM is modified relatively easily by thermal and aqueous Organic matter processes, so that it can also be used to constrain the conditions in the solar nebula prior to chondrite Interstellar accretion and the conditions in the chondrite parent bodies after accretion. Solar nebula Here we review what is known about the abundances, compositions and physical nature of IOM in the Protoplanetary disk most primitive chondrites. We also discuss how the IOM has been modified by thermal metamorphism and aqueous alteration in the chondrite parent bodies, and how these changes may be used both as petrologic indicators of the intensity of parent body processing and as tools for classification. Finally, we critically assess the various proposed mechanisms for the formation of IOM in the ISM or Solar System. ᄅ 2017 Elsevier GmbH. All rights reserved. Contents 1. Introduction . 228 2. Classification of chondritic meteorites and IDPs . 229 3. The inventory of chondritic organics . 229 4. Where are the organics? . 230 5. The nature of the most primitive IOM in meteorites . 232 5.1. The physical nature of the IOM . 232 5.2. Elemental and isotopic compositions . 233 5.3. Functional group chemistry . 234 5.3.1. Chemical degradation . 234 5.3.2. Pyrolysis . 235 5.3.3. NMR . 237 5.3.4. EPR and related techniques . 238 ∗ Corresponding author. E-mail address: [email protected] (C.M.O’D. Alexander). http://dx.doi.org/10.1016/j.chemer.2017.01.007 0009-2819/ᄅ 2017 Elsevier GmbH. All rights reserved. 228 C.M.O’D. Alexander et al. / Chemie der Erde 77 (2017) 227–256 5.3.5. C, N, O and S XANES and EELS. .239 5.3.6. FTIR . 240 5.4. Conclusions about the nature of primitive chondritic IOM . 241 5.5. IOM in IDPs and UCAMMs . 241 6. The effects of parent body alteration. .243 6.1. Aqueous alteration . 243 6.1.1. Source(s) of water, alteration processes and conditions . 243 6.1.2. Effects of alteration on IOM . 243 6.2. Thermal metamorphism . 246 6.2.1. Conditions and processes . 246 6.2.3. Effects on the IOM. .246 6.3. Was there a common IOM precursor? . 247 7. Where and how did the IOM form? . ..
Recommended publications
  • Fe,Mg)S, the IRON-DOMINANT ANALOGUE of NININGERITE
    1687 The Canadian Mineralogist Vol. 40, pp. 1687-1692 (2002) THE NEW MINERAL SPECIES KEILITE, (Fe,Mg)S, THE IRON-DOMINANT ANALOGUE OF NININGERITE MASAAKI SHIMIZU§ Department of Earth Sciences, Faculty of Science, Toyama University, 3190 Gofuku, Toyama 930-8555, Japan § HIDETO YOSHIDA Department of Earth and Planetary Science, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan § JOSEPH A. MANDARINO 94 Moore Avenue, Toronto, Ontario M4T 1V3, and Earth Sciences Division, Royal Ontario Museum, 100 Queens’s Park, Toronto, Ontario M5S 2C6, Canada ABSTRACT Keilite, (Fe,Mg)S, is a new mineral species that occurs in several meteorites. The original description of niningerite by Keil & Snetsinger (1967) gave chemical analytical data for “niningerite” in six enstatite chondrites. In three of those six meteorites, namely Abee and Adhi-Kot type EH4 and Saint-Sauveur type EH5, the atomic ratio Fe:Mg has Fe > Mg. Thus this mineral actually represents the iron-dominant analogue of niningerite. By analogy with synthetic MgS and niningerite, keilite is cubic, with space group Fm3m, a 5.20 Å, V 140.6 Å3, Z = 4. Keilite and niningerite occur as grains up to several hundred ␮m across. Because of the small grain-size, most of the usual physical properties could not be determined. Keilite is metallic and opaque; in reflected light, it is isotropic and gray. Point-count analyses of samples of the three meteorites by Keil (1968) gave the following amounts of keilite (in vol.%): Abee 11.2, Adhi-Kot 0.95 and Saint-Sauveur 3.4.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • M Iei1canjlusellm PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK 24, N.Y
    jovitatesM iei1canJlusellm PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2173 APRIL I4, I964 The Chainpur Meteorite BY KLAUS KEIL,1 BRIAN MASON,2 H. B. WIIK,3 AND KURT FREDRIKSSON4 INTRODUCTION This remarkable meteorite fell on May 9, 1907, at 1.30 P.M. as a shower of stones at and near the village of Chainpur (latitude 210 51' N., longi- tude 83° 29' E.) on the Ganges Plain. Some 8 kilograms were recovered. The circumstances of the fall and the recovery of the stones, and a brief description of the material, were given by Cotter (1912). One of us (Mason), when examining the Nininger Meteorite Collection in Arizona State University in January, 1962, noticed the unusual ap- pearance of a fragment of this meteorite, particularly the large chondrules and the friable texture, and obtained a sample for further investigation. Shortly thereafter, Keil was studying the Nininger Meteorite Collection, also remarked on this meteorite, and began independently to investigate it. In the meantime, Mason had sent a sample to Wiik for analysis. Under these circumstances, it seems desirable to report all these investi- gations in a single paper. 1 Ames Research Center, Moffett Field, California. 2 Chairman, Department of Mineralogy, the American Museum of Natural History. 3Research Associate, Department of Mineralogy, the American Museum of Natural History. 4Scripps Institution of Oceanography, La Jolla. 2 AMERICAN MUSEUM NOVITATES NO. 2173 FIG. 1. Photomicrograph of a thin section of the Chainpur meteorite, showing chondrules of olivine and pyroxene in a black matrix.
    [Show full text]
  • History of the Institute of Meteoritics G
    University of New Mexico UNM Digital Repository UNM History Essays UNM History 1988 History of the Institute of Meteoritics G. Jeffrey Taylor Follow this and additional works at: https://digitalrepository.unm.edu/unm_hx_essays Recommended Citation Taylor, G. Jeffrey. "History of the Institute of Meteoritics." (1988). https://digitalrepository.unm.edu/unm_hx_essays/12 This Article is brought to you for free and open access by the UNM History at UNM Digital Repository. It has been accepted for inclusion in UNM History Essays by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. History of the Institute of Meteoritics G. Jeffrey Taylor The story of the Institute of Meteoritics centers on the lives of two dynamic men. One of them, Lincoln LaPaz, founded the Institute. He grew up in Kansas, where he saw Halley’s Comet at age 13 and where he gazed up at the night sky from the top of his house, studying meteors as they blazed through the atmosphere. While a student at Fairmount College in Wichita, LaPaz rode his horse, Belle, to class, letting her graze in a neighboring field while he studied mathematics. The other key figure in the Institute’s history is Klaus Keil, Director since 1968. He grew up in what became East Germany, and escaped the stifling, totalitarian life behind the iron curtain when in his young twenties, carrying meteorite specimens with him. Though having vastly different roots, LaPaz and Keil share the same fascination with stones that fall from the sky. The Institute’s story can be told in three parts: LaPaz’s era, a period of transition, and Keil’s era.
    [Show full text]
  • 1968 Oct 8-10 Council Minutes
    Minutes of the Council Meeting of the Meteoritical Society October 8, 1968 Hoffman Geological Laboratory Harvard University Cambridge The meeting was convened at 2:15 p.m. with President Carleton B. Moore presiding. In attendance were Vice Presidents Barandon Barringer, Robert S. Dietz and John A. O'Keefe, Secretary Roy S. Clarke, Jr., Treasurer Ursula B. Marvin, Editor Dorrit Hoffleit, Past President Peter M. Millman, and Councilors Richard Barringer, Kurt Fredriksson, Gerald S. Hawkins, Klaus Keil, Brian H. Mason and John A. Wood. Robin Brett, John T. Wasson and Fred L. Whipple attended the meeting as visitors. Minutes The minutes of the Council meeting held at the Holiday Inn, Mountain View California, on October 24, 1967, were approved as submitted. Program, 31st Annual Meeting Ursula Marvin presented the program for the Annual Meeting and discussed arrangements and last minute changes. The Council unanimously approved the program as presented and thanked Mrs. Marvin and her coworkers for their efforts on behalf of the Society. Secretary's Report The report of the Secretary was submitted to the Council in writing and was accepted as submitted (copy attached). There was brief discussion of the nomenclature problem of Barringer Meteor Crater. It was pointed out that in the final analysis usage determines the name that becomes accepted. It was suggested that Society members use the name Barringer Meteor Crater in speaking and writing and that we encourage others to do the same. No other action was suggested at this time. The problem of dues for foreign members was discussed, and several individuals suggested that funds are available to help in cases of demonstrated need.
    [Show full text]
  • Insights Into the Origin of Carbonaceous Chondrite Organics from Their Triple Oxygen Isotope Composition
    The University of Manchester Research Insights into the origin of carbonaceous chondrite organics from their triple oxygen isotope composition DOI: 10.1073/pnas.1808101115 Document Version Accepted author manuscript Link to publication record in Manchester Research Explorer Citation for published version (APA): Tartese, R., Chaussidon, M., Gurenko, A., Delarue, F., & Robert, F. (2018). Insights into the origin of carbonaceous chondrite organics from their triple oxygen isotope composition. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.1808101115 Published in: Proceedings of the National Academy of Sciences of the United States of America Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:04. Oct. 2021 1 Insights into the origin of carbonaceous chondrite organics from their triple 2 oxygen isotope composition 3 4 Romain Tartèsea,*, Marc Chaussidonb, Andrey Gurenkoc, Frédéric Delarued, François Roberte 5 6 7 aSchool of Earth and Environmental Sciences, The University of Manchester, Manchester, M13 8 9PL, UK.
    [Show full text]
  • Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies Final Report
    PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies Final Report Committee to Review Near-Earth Object Surveys and Hazard Mitigation Strategies Space Studies Board Aeronautics and Space Engineering Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This study is based on work supported by the Contract NNH06CE15B between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the agency that provided support for the project. International Standard Book Number-13: 978-0-309-XXXXX-X International Standard Book Number-10: 0-309-XXXXX-X Copies of this report are available free of charge from: Space Studies Board National Research Council 500 Fifth Street, N.W. Washington, DC 20001 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu.
    [Show full text]
  • The Buritizal Meteorite
    Rogerio Nogueira Salaverry et al. GeosciencesGeociências The Buritizal meteorite: classification http://dx.doi.org/10.1590/0370-44672016700081 of a new Brazilian chondrite Rogerio Nogueira Salaverry Abstract Mestre Universidade Federal do Rio de Janeiro - UFRJ On August 14, 1967, the reporter Saulo Gomes, working at TV Tupi, went to a Instituto de Geociências small city in the State of São Paulo called Buritizal to investigate reports of a mete- Departamento de Geologia orite fall and write a newspaper report. He actually recovered three fragments of the Rio de Janeiro - Rio de Janeiro - Brasil meteorite at a small farm. In 2014, he donated one of the fragments to the Museu [email protected] Nacional of the Universidade Federal do Rio de Janeiro (MN/UFRJ). We named this meteorite Buritizal and studied its petrology, geochemistry, magnetic properties and Maria Elizabeth Zucolotto cathodoluminescence with the intent to determine the petrologic classification of the Professora Adjunta meteorite. In this manner, the Buritizal meteorite is classified as an ordinary chondrite Universidade Federal do Rio de Janeiro - UFRJ LL 3.2 breccia (as indicated by lithic fragments). The meteorite consists of ~ 2% of me- Museu Nacional – Departamento de tallic Fe,Ni and many well-defined chondrules with ~ 0.8 mm in average diameter. An Geologia e Paleontologia ultramafic ferromagnesian mineralogy is predominant in the meteorite, represented by Rio de Janeiro - Rio de Janeiro – Brasil olivine, orthopyroxene, clinopyroxene, Fe-Ni alloy, troilite and glass. The total iron [email protected] content was calculated as 20.88 wt%. Furthermore, the meteorite was classified as weathering grade W1 and shock stage S3.
    [Show full text]
  • Analytical Protocols for Phobos Regolith Samples Returned by The
    Fujiya et al. Earth, Planets and Space (2021) 73:120 https://doi.org/10.1186/s40623-021-01438-9 FULL PAPER Open Access Analytical protocols for Phobos regolith samples returned by the Martian Moons eXploration (MMX) mission Wataru Fujiya1* , Yoshihiro Furukawa2, Haruna Sugahara3 , Mizuho Koike4 , Ken‑ichi Bajo5 , Nancy L. Chabot6 , Yayoi N. Miura7, Frederic Moynier8 , Sara S. Russell9 , Shogo Tachibana3,10, Yoshinori Takano11 , Tomohiro Usui3 and Michael E. Zolensky12 Abstract Japan Aerospace Exploration Agency (JAXA) will launch a spacecraft in 2024 for a sample return mission from Phobos (Martian Moons eXploration: MMX). Touchdown operations are planned to be performed twice at diferent landing sites on the Phobos surface to collect > 10 g of the Phobos surface materials with coring and pneumatic sampling systems on board. The Sample Analysis Working Team (SAWT) of MMX is now designing analytical protocols of the returned Phobos samples to shed light on the origin of the Martian moons as well as the evolution of the Mars– moon system. Observations of petrology and mineralogy, and measurements of bulk chemical compositions and stable isotopic ratios of, e.g., O, Cr, Ti, and Zn can provide crucial information about the origin of Phobos. If Phobos is a captured asteroid composed of primitive chondritic materials, as inferred from its refectance spectra, geochemical data including the nature of organic matter as well as bulk H and N isotopic compositions characterize the volatile materials in the samples and constrain the type of the captured asteroid. Cosmogenic and solar wind components, most pronounced in noble gas isotopic compositions, can reveal surface processes on Phobos.
    [Show full text]
  • Deuterium- and 15N-Signatures of Organic Globules in Murchison and Northwest Africa 801 Meteorites
    Title Deuterium- and 15N-signatures of organic globules in Murchison and Northwest Africa 801 meteorites Author(s) Hashiguchi, Minako; Kobayashi, Sachio; Yurimoto, Hisayoshi Geochemical Journal, 49(4), 377-391 Citation https://doi.org/10.2343/geochemj.2.0363 Issue Date 2015 Doc URL http://hdl.handle.net/2115/59616 Type article File Information GJ_49_04_0377.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Geochemical Journal, Vol. 49, pp. 377 to 391, 2015 doi:10.2343/geochemj.2.0363 Deuterium- and 15N-signatures of organic globules in Murchison and Northwest Africa 801 meteorites MINAKO HASHIGUCHI,1* SACHIO KOBAYASHI2 and HISAYOSHI YURIMOTO1,2 1Department of Natural History Sciences, Hokkaido University, Sapporo 060-0810, Japan 2Isotope Imaging Laboratory, Creative Research Institution Sousei, Hokkaido University, Sapporo 001-0021, Japan (Received December 1, 2014; Accepted March 11, 2015) Carbonaceous matter from the matrix of the Murchison (CM2) meteorite and Northwest Africa (NWA) 801 (CR2) meteorite that were extremely rich in deuterium (D) and 15N was studied using in situ isotope imaging. The association of carbon, hydrogen, and nitrogen suggests that the carbonaceous matter was organic in nature, and the maximum magnitudes 15 15 of D- and N-enrichment in the organic matter were dD = 2,880‰ and d N = 2,590‰ in Murchison, and dD = 7,500‰ 15 and d N = 2,200‰ in NWA 801. The organic matter did not display a simple correlation between the magnitudes of D- and 15N-enrichment, and the isotopically anomalous organic matter was classified into three types based on the H and N isotopic characteristics: ex- tremely 15N-rich without large D-enrichment (15N-rich), extremely D-rich without large 15N-enrichment (D-rich), and highly D- and 15N-rich (D-15N-rich).
    [Show full text]
  • An Appreciation of Dieter Stˆffler
    Meteoritics & Planetary Science 40, Nr 9/10, 1277–1281 (2005) Abstract available online at http://meteoritics.org An appreciation of Dieter Stˆffler Klaus KEIL Hawai’i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai’i at Manoa, Honolulu, Hawai’i 96822, USA E-mail: [email protected] With this volume of Meteoritics & Planetary Science, we honor Dieter Stˆffler (Fig. 1) on the occasion of his (obligatory) retirement from university service, for his many outstanding contributions as a teacher, researcher, and servant of the profession. Dieter was born on May 23, 1939, in Schramberg, Kreis Rottweil, Germany. He began his studies of mineralogy and geology at the Eberhard Karls University in T¸bingen, Germany in 1958 and received his doctorate in natural sciences in 1963. Until 1970, he was assistant to Professor Wolf von Engelhardt at that university (Fig. 2) and, in 1970, earned his “Habilitation” (an advanced doctorate at German universities that is a prerequisite for teaching at the university level). He was docent at T¸bingen until 1974 and then moved to the Westf‰lische Wilhelms-University in M¸nster as Professor of Petrography and Mineral Deposits, a position he held until 1987. In that year, Dieter became Professor of Cosmic Mineralogy and Director of the newly founded Institute for Planetology at M¸nster, the only chair and institute of its kind in Germany. In 1993, Dieter moved on to Humboldt University in the then–re-united Berlin, where he served as Director of the Naturhistorisches Forschungsinstitut and the Museum f¸r Naturkunde until 1999 and, until 2004, as Professor of Mineralogy and Petrology and Director of the Institute of Mineralogy.
    [Show full text]
  • ORIGIN and EVOLUTIOK of ORDINARY CHONDRITE METEORITES, Edward R.D
    78 -: J ORIGIN AND EVOLUTIOK OF ORDINARY CHONDRITE METEORITES, Edward R.D. Scott, G. Jeffrey Tsylor and Klaus Keil, inetitute of Meteoritics and Department of Geology, University of New Mexico, Albuquerque, NM 87131 About 85% of the meteorites that hit the earth's surface are rocks called chondrites, which are aggregates of materials that formed 4.6 billion years ago from a cloud of dust and gas. These rocks are important for what they can tell us about the origin of the solar system and because they probably resembie the rocks from which the earth formed and its inhabitants evolved. The great majority of chondrites (90%) have very similar chemistry and mineralogy : these 'ordinary' chondrites are pieces of three unidentified asteroids that were removed and transported to earth by collisions among asteroids and comets. Chondrites are named after their major constituent : millimeter-sized spherules called chondrules, which formed from molten droplets in a cloud of dust and gas. A small fraction of the chondrites (15%) are made of materials that have never been heated above 6OOOC ; these chondrites have been studied intensively for clues to the origin of the solar system. But the great majority of chondrites, including 95% of the ordinary chondrites, are largely made of ingredients that were heated to temperatures between 600 and 900OC. To decipher their history, we need to understand how these rocks were heated inside asteroids and how their mineral textures and compositions were affected. Then we can hope to understand how their ingredients were formed from the primordial cloud of dust ana gas - the 'solar nebula'.
    [Show full text]