The Mathematical Gazette (2010–2019)

Total Page:16

File Type:pdf, Size:1020Kb

The Mathematical Gazette (2010–2019) A Complete Bibliography of The Mathematical Gazette (2010{2019) Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 21 December 2019 Version 1.18 Title word cross-reference $ [Cou11]. (a + b)p [Jam14e]. (a + b)p +(a − b)p [Jam14e]. (a; b; b +1)[HJ19]. 1=x [Geo10]. $12-95 [Rua12]. $129.00 [Sch14]. $14.95 [LP10]. $14.99 [Lev12c]. 15 [Lor12i]. $16.95 [Tol15c]. $16.99 [Tol15f]. $18.99 [Mac14d]. $19 [Lor17g]. $19.95 [Ban14b]. $19.99 [Tol19f]. $195 [Cou14]. 1: 2 [Nic14b]. $23.99 [Hal11c, Hud10a]. $24 [Lev14e]. $24.95 [Lev10f, Tol17g]. $26 [Lev14p]. $26.99 [Tol17e]. $27 [Lor18f]. $27-00 [Lev14h]. $27-95 [Gri14b]. $27.95 [Lev14n, Tol17i]. $29 [Gri10b, Hud10c]. $29.95 [Hun13d]. $29.99 [Tol17b]. 2 <e<3 [Lor11m]. 267 − 1 [Shi15d]. 3 [CP10, Had19, Rot10d, dVS18]. $30.00 [Jac19, Mac18]. $32 [Lor11g]. $32.00 [Tol15d]. $35.00 [And13b]. $36.39 [Shi16b]. $39 [Lev10e]. $39.00 [Shi10i]. $39.20 [Hun17d]. $39.95 [Lor17e]. 3 × 3 [Bea17a, Lor15f]. 4 [Rot10d]. $42.00 [Hun14a]. $45.00 [Cou10, Mac16c]. $49-00 [Gib10b]. $49.00 [Ban10a, Hun13c]. $49.95 [Tol17f]. 5 [Lor12i]. $50 [Lev11d, Lor18e]. $56.00 [Shi17a]. $59 [App11]. $59-00 [Hud11a]. $59.95 [Lev13g, Yeo16]. 1 2 $60 [De 14b]. 60 [Lor12i]. $68.95 [Lev14k]. $69.95 [Lea10]. 6n 1 [Lor14l]. $70 [Had19]. $70.50 [Shi18b]. $75.00 [Eat12]. $79-00 [For12]. $79.95 [Lev12a]. $94.95 [App10a]. $97.50 [App10b]. [x][Orm14]. 2 [LRQ10]. a [AT12]. A + B + C = π [Sub18b]. A=(x + B)+C=(x + D) [Cel17]. $A115 [Lev17e]. aa [AT12]. an = bn + cn [Lor15b]. arctan( x) [Den10]. n +1 aX2 + bXY + cY 2 = dZ 2 [Pla14]. b [Coo19]. [DeM10]. · [KK10]. 2 csc 2x =cotx − cot 2x [Cha15]. deg(0) = −∞ [Haj17e]. e [Bro12a, Mac10d]. e<2 [Shi14a]. e<3[You13].e1=M [Ton16]. ex ≥ 1+x [Lor17c]. exp(−x2) [Che18].R F [All18, MW18, Pla16]. f(x)=x [MW18]. Γ2(1=2) [MGC13a]. 1 α 2 1 2 RI(α)= 0 1=(1 + x ) dx [Mur12].Rint01=(1 + x ) dx = π/R 4 [You11b]. 1 2 1 sin x 1 0 1=(1 + x ) dx = π/2 [You11a]. 0 = xdx [Lor16e]. 0 sin(x)=x dx R 1 R [Sik18]. j sina(x)+cosb(x)j=xp dx [Mur11c]. π log(2 sin u)du [Mer19]. R 0 P0 m k m csc xdxp [JO14]. k [ES11, PdVF14]. limp m!1 k=0 m [Lor16a]. ln 2 < 1 2 [Lor14k]. log x [OJN16]. Z [10] [Sim19]. m × (m +1)[EM16]. n! [Lor17b]. N [PdVF14, Ber18, Lor17b, Ste19a]. n(x + y + z)=xyz [Dol16a]. n = 3 [Bar17]. n2 [DeM10]. p [Hun14b, Sch11]. p= sin θ + q= cos θ = 1 [Sta18]. p>1 [Nil13]. φ(m)=k! [Shi13b, Sur14]. π [Hir11e, Lev12f, Lip13, Lor12a, Lor19a, Lor19e, Mac10d, MGC13a, NL16, Osl10a,Q Osl11b, Osl12b, SS12, Shi14a, You12, Zor11]. π ln k [Pla11a]. 1 ¨ 2 4 n=2 ζ(n)[Okt15]. py = x + x [Dol13a, ZF10]. Si(x)[JLM15].σ(n)=k! 2 2 2 n [Shi13b]. sin A +sin B +sinp Cp=4sinA sinpB sin C [Sub18b]. sin x=xm 3 [Tra10]. SL(2;p) [Suc11]. (x); 3 [Hir11h].p 2 p p [Lor15l, Lor17h,p MGC13b,P Raj18, Ste12b]. 2Pπ [Lor15c]. abcd [Lor12g]. d n n 2 P[Yan14]. N [Lor18a]. 1 rP(r + 1) [Lor14i]. 1Pr [Lor14i]. 1 2 2 1 2 1 p k=1 1=k = π =6 [Lor16f]. n=1 1=n [JL13]. n=1 1=n [Nil13]. n +2 T + T + ···+ T = [Sub15a]. × [Har10a]. x2 + ry2 = z2 [Rea19]. 1 2 n 3 x2 + z2 [Dol17a]. ζ(2) [Shi16a, Sik18]. ζ(2) = π2=6 [Jam13c]. ζ(2n) [Lor14c]. ζ(3) [Hir11d, Jam14f]. ζ(n) [Jam14d]. jxj [Orm14]. -adic [Hun14b, Sch11]. -D [dVS18]. -dimensional [CP10]. -folds [Rot10d, Rot10d]. -gonal [ES11]. -gons [Lor12i]. -mean [Pla16]. -ratio [All18]. -Spinout [Coo19]. [Jon19]. 0-521-61999-8 [Lev10c]. 0-691-13576-2 [Mac10b]. 0-906588-67-7 [Hal10b]. 0-907669-46-8 [Kil10]. 0-9516701-8-2 [Rot10a]. 1 [BL12]. 1-56881-234-5 [Mah10b]. 100.C [Ret17]. 100.I [Bea18a]. 1000 [Yeo17a, Yeo17a]. 101.F [Gib19a]. 117-00 [Shi11d]. 13-978-1-4020-8886-5 [Sch10]. 1439-7382 [App14b]. 15-00 [Hun10b]. 15th [Lor16d]. 17 [Gri14a]. 3 18th [FR02]. 19-99 [Hal10b]. 1908-2008 [M+08]. 1997 [Sch14]. 1997-2011 [Sch14]. 19th [GG10a, Cra07, FR02]. 1st [Fre15]. 2010 [Lev12d]. 2011 [Lev14l, Sch14]. 2012 [Hun16, Lev14m]. 2013 [Lev15b]. 2013.ISBN [Lev14e]. 2014 [Ano14a]. 2015 [Ano14f, Ano15d, Lev17g]. 2016 [How16, Mac17, Lev18d, Tol15g]. 2017 [Gol17]. 2019 [Ano18f, Ano19c, Aul19, How19]. 2020 [Ano19d]. 2025 [Sto14c]. 20th [Lev15a]. 21st [Ano12d, Aul19, Rou13a]. 22-50 [De 11b]. 23-99 [Hal10b]. 24th [Kum11]. 2nd [Bay11a, Cou17b, Gib17a, Gri11d, Hal11c, Hud11a, Hun17d, Jon19, Lor14e, Shi10i, Shi10g, Sut10]. 3-folds [Cor07]. 31st [Aul19]. 387 [App10b]. 3D [De 13]. 3rd [Bay14a, Gib11c, Gri17d, Mun12, Shi15c, Shi16b, Tol16c]. 4 [Cri15a, Sut10]. 4-folds [Cor07]. 44-99 [Hai10]. 4th [Gri14e, Lor10e, Mac10c]. 5 [Mac13b]. 5-99 [Hal10a]. 50 [Lev10a, War10a]. 55th [Ano14a]. 56-00 [Mah10b]. 6 [Pea11, Hal13]. 61614-423-4 [Lev14h]. 70-99 [Mun12]. 8-99 [Bay10a, Wil10]. 9 [Gri14b]. 9-789813-2026-10 [Lor18d]. 9-789814-651639 [Lor17f]. 90-50 [Gri14e]. 90th [Sut11, GDDR08]. 977-1-84724-008-8 [Lev10a]. 978-0-00-743808-2 [Hal13]. 978-0-00-747601-5 [Hal14]. 978-0-128-04153-6 [Hun18a]. 978-0-12804-317-2 [Tol18b]. 978-0-12814-759-7 [Hun19a]. 978-0-14-103023-4 [Lor10e]. 978-0-19-280722-9 [Wil10]. 978-0-19-531076-4 [Lev12a]. 978-0-19-536790-4 [War10b]. 978-0-19-856599-4 [Cou10]. 978-0-19-857061-5 [Rot10d]. 978-0-19-870259-7 [Rua17]. 978-0-19-875335-3 [Gib17b]. 978-0-19-875523-4 [Hop18b]. 978-0-19-879492-9 [Lor18f]. 978-0-19-880454-3 [Gib18b, McB18]. 978-0-19-911779-6 [Dav10]. 978-0-19-911780-2 [Rot10b]. 978-0-19-911781-9 [Gol10]. 978-0-19-911782-6 [Hal10c]. 978-0-19-913430-4 [Gri11d]. 978-0-19-921291-0 [Cou12]. 978-0-19-921986-5 [And10a, And10b]. 978-0-19-922730-3 [Shi10e, Shi10f]. 978-0-19-923769-2 [War11a]. 978-0-19-928201-2 [Mac10c]. 978-0-19-953987-1 [De 11b]. 978-0-19-953988-8 [De 11b]. 978-0-19-956207-7 [Haw11]. 978-0-19-956307-4 [Shi10g]. 978-0-19-956684-6 [And13c]. 978-0-19-957400-1 [Sch13]. 4 978-0-19-958405-5 [Cri13]. 978-0-19-959968-4 [Lev14o]. 978-0-19-960139-4 [Lev13e]. 978-0-19-960542-2 [Lev14i]. 978-0-19-960587-3 [Gib13a]. 978-0-19-964008-9 [Bay14b]. 978-0-19-965444-4 [Mac16a]. 978-0-19-965659-2 [Lev14b]. 978-0-19-966132-9 [Fos14b]. 978-0-19-966437-5 [Mac15b]. 978-0-19-967085-7 [Mac14b]. 978-0-19-967086-4 [Mac14b]. 978-0-19-968197-6 [Lev14g]. 978-0-19-973259-3 [Fre15]. 978-0-19-974044-4 [Gri14c]. 978-0-19-975656-8 [Bev13, Kee18]. 978-0-19-989100-9 [And13b]. 978-0-19-993161-3 [Tol14b]. 978-0-195-36789-8 [Bay11b]. 978-0-19666-541-1 [Hun15]. 978-0-19870643-4 [Sto17b]. 978-0-19872-349-3 [Row19]. 978-0-19874-989-9 [Hun17f]. 978-0-19875-404-6 [Mac19]. 978-0-19875-547-0 [Bay19b]. 978-0-19878-828-7 [Tol18a]. 978-0-230-25208-0 [Gri13b, Mac13a]. 978-0-262-51429-3 [Haw12]. 978-0-273-72891-7 [Ten12]. 978-0-309-25473-1 [Rou13a]. 978-0-309-28457-8 [Sto14c]. 978-0-387-72475-1 [Lor10c]. 978-0-387-74640-1 [Lor11h]. 978-0-387-74646-3 [Bay11a]. 978-0-387-79714-4 [Gib10c]. 978-0-387-79851-6 [Hun12b]. 978-0-387-85528-8 [Shi10d]. 978-0-387-87858-4 [Hai12]. 978-0-387-89491-1 [Shi11d]. 978-0-393-07195-5 [Lev14f]. 978-0-444-63555-6 [Gib17a]. 978-0-465-00910-7 [Lev10f]. 978-0-465-01123-0 [Lev10d]. 978-0-465-02198-7 [Zet13]. 978-0-465-02331-8 [Lev14c]. 978-0-465-02837-5 [Mac14d]. 978-0-465-03292-1 [Lev13f]. 978-0-465-05074-1 [Lev14d]. 978-0-465-05497-8 [Tol15f]. 978-0-465-09377-9 [Lor18f]. 978-0-465-09463-9 [Tol19f]. 978-0-465-09612-1 [Dav18]. 978-0-46505-373-5 [Tol17b]. 978-0-46506-095-5 [Tol17e]. 978-0-46509-334-2 [Jac19]. 978-0-46509-758-6 [Mac18]. 978-0-470-14619-7 [Shi10c]. 978-0-470-23288-0 [App10b]. 978-0-470-74532-8 [Hal11a]. 978-0-470-87890-3 [Lor14e]. 978-0-486-44593-9 [Rua12]. 978-0-521-71978-0 [Lev10b]. 978-0-521-73524-7 [Sut11]. 978-0-521-73525-4 [Bay10a]. 978-0-521-75994-6 [War11b]. 978-0-674-04661-0 [Gib11b]. 978-0-674-05755-5 [Ban13]. 978-0-674-08891-7 [Tol17k]. 978-0-691-04955-7 [Shi10h]. 978-0-691-11713-3 [Dav17]. 978-0-691-11927-4 [Hoa17a]. 978-0-691-12067-6 [Cou11]. 978-0-691-12677-7 [Rot10c]. 978-0-691-12745-3 [Lev11d]. 978-0-691-12895-5 [For11]. 978-0-691-12956-3 [Hoa10]. 978-0-691-12973-0 [Rua11]. 978-0-691-13444-4 [Mac11b]. 978-0-691-13759-9 [Hud10b]. 978-0-691-14014-8 [Hud13a]. 978-0-691-14020-9 [And11]. 978-0-691-14175-6 [Cou18].
Recommended publications
  • Journal Abbreviations
    Abbreviations of Names of Serials This list gives the form of references used in Mathematical Reviews (MR). not previously listed ⇤ The abbreviation is followed by the complete title, the place of publication journal indexed cover-to-cover § and other pertinent information. † monographic series Update date: July 1, 2016 4OR 4OR. A Quarterly Journal of Operations Research. Springer, Berlin. ISSN Acta Math. Hungar. Acta Mathematica Hungarica. Akad. Kiad´o,Budapest. § 1619-4500. ISSN 0236-5294. 29o Col´oq. Bras. Mat. 29o Col´oquio Brasileiro de Matem´atica. [29th Brazilian Acta Math. Sci. Ser. A Chin. Ed. Acta Mathematica Scientia. Series A. Shuxue † § Mathematics Colloquium] Inst. Nac. Mat. Pura Apl. (IMPA), Rio de Janeiro. Wuli Xuebao. Chinese Edition. Kexue Chubanshe (Science Press), Beijing. ISSN o o † 30 Col´oq. Bras. Mat. 30 Col´oquio Brasileiro de Matem´atica. [30th Brazilian 1003-3998. ⇤ Mathematics Colloquium] Inst. Nac. Mat. Pura Apl. (IMPA), Rio de Janeiro. Acta Math. Sci. Ser. B Engl. Ed. Acta Mathematica Scientia. Series B. English § Edition. Sci. Press Beijing, Beijing. ISSN 0252-9602. † Aastaraam. Eesti Mat. Selts Aastaraamat. Eesti Matemaatika Selts. [Annual. Estonian Mathematical Society] Eesti Mat. Selts, Tartu. ISSN 1406-4316. Acta Math. Sin. (Engl. Ser.) Acta Mathematica Sinica (English Series). § Springer, Berlin. ISSN 1439-8516. † Abel Symp. Abel Symposia. Springer, Heidelberg. ISSN 2193-2808. Abh. Akad. Wiss. G¨ottingen Neue Folge Abhandlungen der Akademie der Acta Math. Sinica (Chin. Ser.) Acta Mathematica Sinica. Chinese Series. † § Wissenschaften zu G¨ottingen. Neue Folge. [Papers of the Academy of Sciences Chinese Math. Soc., Acta Math. Sinica Ed. Comm., Beijing. ISSN 0583-1431.
    [Show full text]
  • Simplification of Radical Expressions
    Simplification of Radical Expressions by B. F. Caviness (I) Computer Science Department lllinois Institute of Technology Chicago, lllinois and R. J. Fateman Computer Science Division Department of Electrical Engineering and Computer Sciences University of California at Berkeley Berkeley, California Abstract As is the case with all simplification problems there are three desirable attributes for In this paper we discuss the problem of any solution. First it is desirable to have a simplifying unnested radical expressions. We clean theoretical solution to the problem. Second describe an algorithm implemented in ~CSYMA that the algorithms to carry out the simplifications simplifies radical expressions and then follow should be as efficient as possible, and finally the this description with a formal treatment of the solution should have good human engineering features, problem. Theoretical computing times for some of i.e., the use and actions of the simplification the algorithms are briefly discussed as is related procedures should be as natural and transparent as work of other authors. possible. Unfortunately these three aspects of a solution are not usually compatible with each other I. Introduction and compromises and choices must be made. This is certainly the case for the simplification of radical In this paper we discuss the problem of expressions. Standard techniques from the theory simplifying unnested radical expressions. By of algebraic field extensions can be used to get a radical expressions we mean, roughly speaking, nice theoretical solution to the problem. However sums, differences, products, and quotients of the nice theoretical solution neither leads to fast rational functions raised to rational powers. algorithms nor possesses nice human engineering Thus we will be discussing algorithms for carrying features.
    [Show full text]
  • WINTER 2015 the Brick Architecture
    B B R R I I C C K K B B U U L L L L E E T T I I N N The brick architecture of Kirkland Fraser Moor | First person: Alex Gordon of Jestico & Whiles Masonry masterpieces: 2015 Brick Awards | Satish Jassal Architects in London; SO-IL in New York WINTER 2015 Sutherland Hussey Harris in St Andrews | Acme’s prefabricated ‘pleated’ brick panels in Leeds 2 • BB WINTER 2015 BriCk Bulletin winter 2015 Contents 4 NEWS/FIRST PERSON New brick projects by Sergison Bates and Herzog &deMeurOn; First Person –Alex Gordon of Jestico &Whiles on brick’s ability to harmonise modern interventions with traditional contexts. 6 BRICK AWARDS 2015 Showcase of all 15 category winners. 12 PROJECTS Diego Arraigada Arquitectos, Alma-nac, Feilden Fowles, PollardThomas Edwards, Sutherland Hussey Harris, SO-IL,Make, Satish Jassal Architects, and TDO Architecture. 20 PROFILE David Kirkland discusses Kirkland Fraser Moor’s fascination with clay building products and vernacular design. 26 PRECEDENT Geraint Franklin on HKPA’sHouses for Visiting Mathematicians at the University of Warwick. 28 TECHNICAL The wave-likefacade of Marlies Rohmer’s Sportblok in Groningen, Holland, is constructed from brick-slips. 30 TECHNICAL Prefabricated ‘pleated’ brick panels articulate the exterior of amajor retail-led development in Leeds by Acme. extraordinary from the ordinary The ubiquity of brick means that it is all too easy to overlook its aesthetic qualities, performance benefits and historic importance. Not so David Kirkland of Kirkland Fraser Moor (p20-25), who marvels at the cleverness of being able to takeclay from the ground and, by way of making bricks, produce architecture.
    [Show full text]
  • Vol 21, No 3, July
    THE LINNEAN N e wsletter and Pr oceedings of THE LINNEAN SOCIETY OF LONDON Bur lington House , Piccadill y, London W1J 0BF VOLUME 21 • NUMBER 3 • JULY 2005 THE LINNEAN SOCIETY OF LONDON Burlington House, Piccadilly, London W1J 0BF Tel. (+44) (0)20 7434 4479; Fax: (+44) (0)20 7287 9364 e-mail: [email protected]; internet: www.linnean.org President Secretaries Council Professor Gordon McG Reid BOTANICAL The Officers and Dr John R Edmondson Dr Louise Allcock President-elect Prof John R Barnett Professor David F Cutler ZOOLOGICAL Prof Janet Browne Dr Vaughan R Southgate Dr J Sara Churchfield Vice-Presidents Dr John C David Professor Richard M Bateman EDITORIAL Prof Peter S Davis Dr Jenny M Edmonds Professor David F Cutler Dr Aljos Farjon Dr Vaughan R Southgate Dr Michael F Fay COLLECTIONS Dr D J Nicholas Hind Treasurer Mrs Susan Gove Dr Sandra D Knapp Professor Gren Ll Lucas OBE Dr D Tim J Littlewood Dr Keith N Maybury Executive Secretary Librarian & Archivist Dr Brian R Rosen Mr Adrian Thomas OBE Miss Gina Douglas Dr Roger A Sweeting Office/Facilities Manager Deputy Librarian Mr Dominic Clark Mrs Lynda Brooks Finance Library Assistant Conservator Mr Priya Nithianandan Mr Matthew Derrick Ms Janet Ashdown THE LINNEAN Newsletter and Proceedings of the Linnean Society of London Edited by B G Gardiner Editorial .................................................................................................................... 1 Society News ...........................................................................................................
    [Show full text]
  • Simplifying Square Roots of Square Roots by Denesting 63
    4 Simplifying Square Ro ots of Square Ro ots by Denesting David J. Je rey Alb ert D. Rich The UniversityofWestern Ontario Soft Warehouse, Inc. Abstract: We discuss why it is imp ortant to try to simplify the square ro ot of an expression containing other square ro ots, and we give rules for doing this when it is p ossible. The square ro ot of an expression containing nth ro ots is also considered brie y. This article, in addition to treating a sp eci c mathematical topic, shows some of the steps that develop ers must take when writing computer algebra systems. 4.1 Intro duction p p 3 1 2 and 5 are called surds [Chrystal64, Hall88]. The more general Numb ers suchas terms radical and algebraic number are also used, but surd is the most sp eci c. It is 2 avenerable term that has b een revived for use in computer systems . Given p ositive n integers n and k , the unique p ositive real ro ot of the equation x = k will b e denoted p n k and called a surd. Most b o oks [Chrystal64, Hall88]allow k to b e a p ositive rational numb er, and there is no great di erence in principle if we accept that generalization; in this article, however, all the examples use integers. Another p ointofvariation is p p 8or2 2; here we the treatment of p erfect-p ower factors, i.e., whether one writes use whichever form is more convenient. The term radical may b e familiar to some readers from the common phrase `solvable in terms of radicals', which is used whenever a textb o ok discusses the ro ots of a p olynomial [Dickson26].
    [Show full text]
  • Continued Radicals Jamie Johnson Western Kentucky University
    Western Kentucky University TopSCHOLAR® Masters Theses & Specialist Projects Graduate School 2005 Continued Radicals Jamie Johnson Western Kentucky University Follow this and additional works at: http://digitalcommons.wku.edu/theses Part of the Geometry and Topology Commons Recommended Citation Johnson, Jamie, "Continued Radicals" (2005). Masters Theses & Specialist Projects. Paper 240. http://digitalcommons.wku.edu/theses/240 This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by an authorized administrator of TopSCHOLAR®. For more information, please contact [email protected]. CONTINUED RADICALS A Thesis Presented to The Faculty of the Department of Mathematics Western Kentucky University Bowling Green, Kentucky In Partial Fulfillment Of the Requirements for the Degree Master of Science By Jamie Johnson May, 2005 CONTINUED RADICALS Date Recommended _____12/10/04_____ Dr. Tom Richmond, Chair Dr. John Spraker Dr. Daniel C. Biles Elmer Gray, Dean, Graduate Studies and Research, May 4, 2005 Contents Title page i Signatures ii Table of contents iii Abstract iv Chapter 1. Foundations and Motivations 1 Chapter 2. Introduction 5 Chapter 3. Continued radicals with nonzero terms 9 Chapter 4. Representation allowing 0 as a term 16 Chapter 5. Continued radicals whose terms assume only two values 24 Chapter 6. Further Results 26 6.1. Periodic Representations 26 6.2. A Pattern 28 6.3. Computer Generated Partial Representations 29 Bibliography 35 iii CONTINUED RADICALS Name: Jamie Johnson Date: May, 2005 Pages: 35 Directed by Dr. Tom Richmond Department of Mathematics Western Kentucky University Abstract √ If a1, a2, . , an are nonnegative real numbers and fj(x) = aj + x, then f1 ◦f2 ◦· · ·◦ fn(0) is a nested radical with terms a1, .
    [Show full text]
  • Quantitative Literacy: Why Numeracy Matters for Schools and Colleges, Held at the National Academy of Sciences in Washington, D.C., on December 1–2, 2001
    NATIONAL COUNCIL ON EDUCATION AND THE DISCIPLINES The goal of the National Council on Education and the Disciplines (NCED) is to advance a vision that will unify and guide efforts to strengthen K-16 education in the United States. In pursuing this aim, NCED especially focuses on the continuity and quality of learning in the later years of high school and the early years of college. From its home at The Woodrow Wilson National Fellowship Foundation, NCED draws on the energy and expertise of scholars and educators in the disciplines to address the school-college continuum. At the heart of its work is a national reexamination of the core literacies—quantitative, scientific, historical, and communicative — that are essential to the coherent, forward-looking education all students deserve. Copyright © 2003 by The National Council on Education and the Disciplines All rights reserved. International Standard Book Number: 0-9709547-1-9 Printed in the United States of America. Foreword ROBERT ORRILL “Quantitative literacy, in my view, means knowing how to reason and how to think, and it is all but absent from our curricula today.” Gina Kolata (1997) Increasingly, numbers do our thinking for us. They tell us which medication to take, what policy to support, and why one course of action is better than another. These days any proposal put forward without numbers is a nonstarter. Theodore Porter does not exaggerate when he writes: “By now numbers surround us. No important aspect of life is beyond their reach” (Porter, 1997). Numbers, of course, have long been important in the management of life, but they have never been so ubiquitous as they are now.
    [Show full text]
  • Ramanujan's Route to Roots of Roots
    Ramanujan's route to roots of roots Talk in IIT Madras on the occasion of s r q p Ramanujan's 1 + 119 1 + 120 1 + 121 ¢ ¢ ¢-th birthday B.Sury Stat-Math Unit Indian Statistical Institute Bangalore Introduction The fancy title points out to a subject which originated with Ramanujan or, at least, one to which he gave crucial impetus to. We can't help but feel a sense of bewilderment on encountering formulae such as q s s s 3 p 1 2 4 3 2 ¡ 1 = 3 ¡ 3 + 3 ; 9 9 9 q p p 1 p p 3 28 ¡ 3 27 = ¡ (¡ 3 98 + 3 28 + 1); 3 q p p 1 p p p 3 5 ¡ 3 4 = (¡ 3 25 + 3 20 + 3 2); 3 s s s s p 2¼ 4¼ 8¼ 3 5 ¡ 3 7 3 cos + 3 cos + 3 cos = ; 7 7 7 2 q s s 6 p 5 2 7 3 20 ¡ 19 = 3 ¡ 3 ; 3 3 r q p p 8 ¡ 8 + 8 ¡ ¢ ¢ ¢ = 1 + 2 3 sin 20±; s r q p p 23 ¡ 2 23 + 2 23 + 2 23 ¡ ¢ ¢ ¢ = 1 + 4 3 sin 20±; s p p e¡2¼=5 e¡2¼ e¡4¼ e¡6¼ 5 + 5 5 + 1 ¢ ¢ ¢ = ¡ : 1+ 1+ 1+ 1+ 2 2 The last expressions for the so-called Rogers-Ramanujan continued fraction appeared in Ramanujan's ¯rst letter to Hardy. These formulae are among some problems posed by Ramanujan in the Journal of the Indian Mathemat- ical Society. As was usual with Ramanujan, he had a general formula hidden in the background and, singled out striking special cases in these problem sections.
    [Show full text]
  • Newsletter and Proceedings of the LINNEAN SOCIETY of LONDON Burlington House, Piccadilly, London W1J 0BF
    THE LINNEAN Newsletter and Proceedings of THE LINNEAN SOCIETY OF LONDON Burlington House, Piccadilly, London W1J 0BF VOLUME 19 • NUMBER 2 • APRIL 2003 THE LINNEAN SOCIETY OF LONDON Burlington House, Piccadilly, London W1J 0BF Tel. (+44) (0)20 7434 4479; Fax: (+44) (0)20 7287 9364 e-mail: [email protected]; internet: www.linnean.org President Secretaries Council Sir David Smith FRS FRSE BOTANICAL The Officers and Dr J R Edmondson Dr R M Bateman President-Elect Prof. S Blackmore Professor G McG Reid ZOOLOGICAL Dr H E Gee Dr V R Southgate Mr M D Griffiths Vice Presidents Dr P Kenrick Professor D F Cutler EDITORIAL Dr S D Knapp Dr D T J Littlewood Professor D F Cutler Mr T E Langford Dr V R Southgate Dr A M Lister Dr J M Edmonds Librarian & Archivist Dr D T J Littlewood Miss Gina Douglas Dr E C Nelson Treasurer Mr L A Patrick Professor G Ll Lucas OBE Assistant Librarian Dr A D Rogers Ms Cathy Broad Dr E Sheffield Executive Secretary Dr D A Simpson Dr John Marsden Catalogue Coordinator Ms Lynn Crothall (2002) Assistant Secretary Ms Janet Ashdown (2002) Membership & House Manager Mr David Pescod Finance Mr Priya Nithianandan Information Technology Mr D. Thomas THE LINNEAN Newsletter and Proceedings of the Linnean Society of London Edited by B. G. Gardiner Editorial ................................................................................................................ 4 Society News ............................................................................................................... 5 Library ...............................................................................................................
    [Show full text]
  • Teaching and Learning Geometry 11-19 Report of a Royal Society / Joint Mathematical Council Working Group Teaching and Learning Geometry 11-19
    JMC Teaching and learning geometry 11-19 Report of a Royal Society / Joint Mathematical Council working group Teaching and learning geometry 11-19 Contents page Preparation of this report v Chairman’s preface vii Summary xi 1 Introduction 1 2 Geometry and its teaching and learning 3 3 The place of geometry in the curriculum 5 4 The 11-16 curriculum 7 5 The development of the curriculum 9 6 Status and allocation of time for geometry 13 7 Geometry 16-19 15 8 The role of assessment 17 9 Teaching of geometry 19 10 Improving the take up of mathematics 21 11 Conclusion 23 12 References and glossary 25 Contents (continued) Appendix 1 The working group 27 Appendix 2 National and international contexts for mathematics 31 Appendix 3 Some recent government initiatives in education 35 Appendix 4 Expectations of geometry in education 37 Appendix 5 Geometry in history and society 41 Appendix 6 Geometry in the current 11-16 curriculum 45 Appendix 7 Geometry in the Key Stage 3 mathematics strategy 49 Appendix 8 Spatial thinking and visualisation 55 Appendix 9 Proof – ‘why and what?’ 57 Appendix 10 Examples of applications of geometry 65 Appendix 11 3-dimensional geometry 69 Appendix 12 Frameworks for developing schemes of work for the curriculum 75 Appendix 13 Integrated approaches to geometry teaching 81 Appendix 14 Bibliography and guide to resources 87 © The Royal Society 2001 Requests to reproduce all or part of this document should be submitted to: Education Manager The Royal Society 6 Carlton House Terrace London SW1Y 5AG Preparation of this report This report has been endorsed by the Council of the Royal Society and the JMC.
    [Show full text]
  • Abbreviations of Names of Serials
    Abbreviations of Names of Serials This list gives the form of references used in Mathematical Reviews (MR). ∗ not previously listed The abbreviation is followed by the complete title, the place of publication x journal indexed cover-to-cover and other pertinent information. y monographic series Update date: January 30, 2018 4OR 4OR. A Quarterly Journal of Operations Research. Springer, Berlin. ISSN xActa Math. Appl. Sin. Engl. Ser. Acta Mathematicae Applicatae Sinica. English 1619-4500. Series. Springer, Heidelberg. ISSN 0168-9673. y 30o Col´oq.Bras. Mat. 30o Col´oquioBrasileiro de Matem´atica. [30th Brazilian xActa Math. Hungar. Acta Mathematica Hungarica. Akad. Kiad´o,Budapest. Mathematics Colloquium] Inst. Nac. Mat. Pura Apl. (IMPA), Rio de Janeiro. ISSN 0236-5294. y Aastaraam. Eesti Mat. Selts Aastaraamat. Eesti Matemaatika Selts. [Annual. xActa Math. Sci. Ser. A Chin. Ed. Acta Mathematica Scientia. Series A. Shuxue Estonian Mathematical Society] Eesti Mat. Selts, Tartu. ISSN 1406-4316. Wuli Xuebao. Chinese Edition. Kexue Chubanshe (Science Press), Beijing. ISSN y Abel Symp. Abel Symposia. Springer, Heidelberg. ISSN 2193-2808. 1003-3998. y Abh. Akad. Wiss. G¨ottingenNeue Folge Abhandlungen der Akademie der xActa Math. Sci. Ser. B Engl. Ed. Acta Mathematica Scientia. Series B. English Wissenschaften zu G¨ottingen.Neue Folge. [Papers of the Academy of Sciences Edition. Sci. Press Beijing, Beijing. ISSN 0252-9602. in G¨ottingen.New Series] De Gruyter/Akademie Forschung, Berlin. ISSN 0930- xActa Math. Sin. (Engl. Ser.) Acta Mathematica Sinica (English Series). 4304. Springer, Berlin. ISSN 1439-8516. y Abh. Akad. Wiss. Hamburg Abhandlungen der Akademie der Wissenschaften xActa Math. Sinica (Chin. Ser.) Acta Mathematica Sinica.
    [Show full text]
  • Mathematics: Shaping Australia Proceedings of the Eighteenth Biennial Conference of the Australian Association of Mathematics Teachers Inc
    Proceedings of the Eighteenth Biennial Conference of The Australian Association of Mathematics Teachers Inc. 15–19 January 2001 Australian National University, Canberra ACT Mathematics: Shaping Australia Proceedings of the Eighteenth Biennial Conference of The Australian Association of Mathematics Teachers Inc. © The Australian Association of Mathematics Teachers Inc. 2001 ISBN 1 875900 47 0 Published by The Australian Association of Mathematics Teachers Inc. GPO Box 1729 Adelaide South Australia 5001 Telephone (08) 8363 0288 Facsimile (08) 8362 9288 Email [email protected] Internet http://www.aamt.edu.au All papers in these proceedings were subject to a blind review process. Mathematics: Shaping Australia Contents PAPERS No More (Red-Pen) Marking!............................................................................................ 8 Tony Allan Learning about Learning in Mathematics ...................................................................... 15 Anna Austin Mathematics Education in Thailand: From Kindergarten to Graphics Calculators .................................................................. 29 Nittayaporn Bunyasiri and Peter Jones Unsolved Problems and the Mathematics Challenge for Young Australians............. 38 John Dowsey and Mike Newman I Can Do Maths Too — Count Me In! ............................................................................. 45 Rhonda Faragher Reading the World with Math: Goals for a Criticalmathematical Literacy Curriculum.......................................................................................................................
    [Show full text]