Frequency Based Cellular Microgrid Control Demand Side Management and Supply Side Management Using Grid Frequency in a Cellular Microgrid

Total Page:16

File Type:pdf, Size:1020Kb

Frequency Based Cellular Microgrid Control Demand Side Management and Supply Side Management Using Grid Frequency in a Cellular Microgrid Frequency Based Cellular Microgrid Control Demand Side Management and Supply Side Management using Grid Frequency in a Cellular Microgrid Thijs Vral Technische Universiteit Delft F REQUENCY B ASED C ELLULAR M ICROGRID C ONTROL D EMAND S IDE M ANAGEMENTAND S UPPLY S IDE M ANAGEMENTUSING G RID F REQUENCYINA C ELLULAR M ICROGRID by Thijs Vral in partial fulfilment of the requirements for the degree of Master of Science in Sustainable Energy Technology Electrical Sustainable Energy at the Delft University of Technology, to be defended publicly on Monday September 19, 2016 at 14:00. Student number: 4414578 Supervisor: Prof.dr.eng. P.Bauer Thesis committee: Dr.ir. L.M. Ramirez Elizondo Dr.ir. J.L. Rueda Torres Thesis committee guests: Ir. E. Raaijen, Alfen BV Ir. R. van Wesenbeeck, Alfen BV An electronic version of this thesis is available at http://repository.tudelft.nl/. A BSTRACT In the world as we know it, huge transitions are ongoing. By now, everyone has heard the words Global Warming and seen news articles and documentaries about the dangers of climate change. Multiple approaches have been described to tackle these problems, of which one is switching to a fully renewable energy supply. This means switching to a situation where the energy resources will be of a decentralized kind. More importantly, the energy resources of tomorrow will not be as controllable as they are today. Establishing this transaction is not an easy job, turning towards distributed renewable energy sources as main energy supplier brings along a lot of new challenges. The introduction of cellular microgrids can offer tools to facilitate this. On top of that, it can offer benefits in terms of increasing the electrification rate in currently non-electrified regions. These cellular microgrids exist of islanded systems: small cells with respective loads, energy suppliers and buffers, that can be interconnected in order to support each other. One drawback of current solutions is that they rely on dedicated communication equipment, in order to reach the required operations. Introducing the necessity of communication tools has a negative impact on the system costs, complexity and reliability. For this, a proposal for the concept of a microgrid was made, enabling the microgrid to have a modular structure, thus to work satisfactorily both when working independently and when interconnected with other cells. On top of that, the grid is flexible both in terms of types of end-users and energy resources, and it grants a means of demand and supply side management. This ensures that a microgrid powered by uncontrollable renewable resources operates in a stable and satisfactory way on the longer term. This is fulfilled while omitting the need for dedicated communication equipment. In order to allow an exchange of information between actors, local grid parameters are used: the grid voltage and frequency. To achieve this, droop speed control is applied, though its static nature is adapted in order to make it represent the actual state of the microgrid. This way, a modular grid is established, to which different actors contribute according to their capabilities and setpoints. After designing the control strategy, first and foremost its stability is tested and improved. Subsequently, the controller is implemented and tested using advanced simulation software. The results show that the proposed strategy is effectively able to fulfil the requirements: it is possible to interface multiple inverter-based microgrids, without the need of adding dedicated communication equipment, and give the microgrids the decision over power sharing, load shedding and renewable energy curtailment, depending on their state of energy and power. Keywords: Cellular Microgrid, Islanding, Demand Side Management, Supply Side Management, Battery Storage, Distributed Renewable Energy Sources, Droop Control iii A CKNOWLEDGEMENTS After about nine months of work, I can honestly say that I am delighted that I am writing these words. The graduation project is finished, and very soon I should be an engineer from TU Delft. Of course, I was not alone during this process, therefore I would like to use this page to thank some people. I would like to thank my supervisors from TU Delft, Pavol Bauer and Laura Ramirez, for introducing me to the CSGriP project, and subsequently guiding me throughout the thesis and the graduation process. My daily supervisor, Seyedmahdi Izadkhast, has proven to be a very helpful person throughout the thesis. I remind the hours of discussions in his office, trying to find solutions to the ever arising problems. The work would have been less complete if not for Mahdi. Furthermore, I want to thank Jose Rueda Torres for his willingness to complete the thesis committee. Two important people that come to my mind are Evert Raaijen and René van Wesenbeeck, my supervisors from the company Alfen. It was Evert who took the time to have a discussion with me, almost one and a half year ago, and offered me an internship in Alfen. After successfully finishing this, the graduation project was offered as well. I would like to thank Evert and René for the interesting discussions we had during the time I was in Alfen, for their insights and steering whenever needed. Furthermore, I definitely cannot forget Jeyakrishna Sridhar; my dear friend JK. Thank you for making me familiar with the project, answering all my small questions, for guiding me around Alfen, and for the interesting discussions we had in the office and on the bike. Finally, I want to thank the rest of the team from Alfen, for the many nice moments during the days I was there. A special word can be placed for my colleague and friend Nikos Bilidis, with whom I cooperated intensively throughout the thesis process, given the common ground of our projects. Throughout the year, by means of long discussions that sometimes took us really far, I learned a lot from the collaboration. Also other students and friends, to mention Antía, Ivan and Behzad, helped me a lot throughout the process, not only on scientific grounds, but also in offering me a listening ear whenever needed. Building further on this, I would like to finalize this letter with expressing my greatest gratitude to my family, and all my friends from Delft and Belgium, for the nice times and for the never-ceasing support. Thijs Vral Delft, September 2016 v C ONTENTS List of Figures xi List of Tables xv 1 An Introduction to the Project1 1.1 Motivation and Existing Problems................................1 1.2 Research Goals..........................................3 1.2.1 Research Questions....................................4 1.3 Methodology...........................................4 1.4 Contributions of the Thesis....................................5 1.5 Alfen BV..............................................5 1.6 Organization of the Document..................................6 2 Background Review on Cellular Microgrids7 2.1 Scientific Literature: A Review..................................7 2.1.1 Introduction........................................7 2.1.2 Microgrids in the Smart Grid Concept...........................8 2.1.3 Power Electronics..................................... 10 2.1.4 Prospection of the Controller............................... 13 2.1.5P/ f and Q/V Droop Schemes............................... 15 2.1.6 Power Quality....................................... 25 2.1.7 Distributed Energy Resources............................... 25 2.1.8 Demand Side Management................................ 29 2.1.9 Supply Side Management................................. 36 2.1.10 Energy Storage....................................... 38 2.1.11 Gaps in the Literature................................... 40 2.2 A Short History of SOPRA and CSGriP............................... 41 2.2.1 Introductory........................................ 41 2.2.2 Main Requirements.................................... 42 2.2.3 Application Goal...................................... 44 2.2.4 Expected Outcome CSGriP Project............................. 48 2.2.5 Preceding Work Controller................................. 49 2.2.6 Gaps in the Preceding Work................................ 50 2.3 Summary of the Chapter..................................... 50 3 A Stroll Through the Controller 53 3.1 Introduction........................................... 53 3.2 Grid Forming Controller..................................... 54 3.2.1 Modelling......................................... 54 3.2.2 Storage System....................................... 57 3.2.3 Overall Controller..................................... 58 3.2.4 Frequency Controller................................... 59 3.2.5 Voltage Controller..................................... 67 3.3 Energy Consumers........................................ 68 3.3.1 Load Modelling...................................... 68 3.3.2 Load Shedding....................................... 69 vii viii C ONTENTS 3.4 Distributed Renewable Energy Sources.............................. 70 3.4.1 DRES Modelling...................................... 70 3.4.2 DRES Curtailing...................................... 71 3.5 Summary of the Chapter..................................... 71 4 Stability of the System 73 4.1 Small-signal Stability....................................... 73 4.1.1 Small Signal Model..................................... 74 4.1.2 Eigenvalue Analysis.................................... 76 4.1.3 Discussion and Reservations................................ 77 4.2 Steady-state Stability......................................
Recommended publications
  • Part 1: Study on Eco-Innovation Putting the EU on the Path to a Resource and Energy Efficient Economy
    Policy Department Economic and Scientific Policy Eco-innovation - putting the EU on the path to a resource and energy efficient economy Study and briefing notes IP/A/ITRE/ST/2008-06 & 14 JANUARY 2004 PE 416.218 This study was requested by the European Parliament's committee on Industry, Research and Energy (ITRE). Only published in English. Authors: Part 1: Study on Eco-innovation putting the EU on the path to a resource and energy efficient economy Wuppertal Institute for Climate, Environment, Energy Prof. Dr. Raimund Bleischwitz (Coordination and lead chapter 4), Bettina Bahn-Walkowiak, Dr. Wolfgang Irrek, Dr. Phillip Schepelmann Factor 10 Institute Prof. Dr. Friedrich Schmidt-Bleek (Lead Chapter 5) SERI Nachhaltigkeitsforschung und Kommunikations GmbH Dr. Stefan Giljum (Lead Chapter 2), Stephan Lutter, Lisa Bohunovski, Dr. Friedrich Hinterberger UNEP/Wuppertal Institute Collaborating Centre on Sustainable Consumption and Production gGmbH (CSCP) Elizabeth Hawkins, Michael Kuhndt (Lead Chapter 3), Dr. Nadine Pratt Part 2: Briefing notes of the Eco-Innovation Workshop of 12 November 2008 Arnold Black - Resource Efficiency Knowledge Transfer Network, UK Challenges, Drivers and Barriers to Eco-Innovation a UK context Geert van der Veen - Technopolis, the Netherland Public policies for Eco-innovation: focus on The Netherlands Birgit Eggl - Forseo, Germany Funding Eco-Innovation Administrator: Ms. Camilla Bursi Policy Department Economy and Science DG Internal Policies European Parliament Rue Wiertz 60 - ATR 00L008 B-1047 Brussels Tel: +32-2-283 22 33 Fax: +32-2-284 69 29 E-mail: [email protected] Manuscript completed in March 2009. The opinions expressed in this document do not necessarily represent the official position of the European Parliament.
    [Show full text]
  • Operating Instructions MOVITRAC® LTP-B, 21270996
    Drive Technology \ Drive Automation \ System Integration \ Services *21270996_0115* Operating Instructions MOVITRAC® LTP-B Edition 01/2015 21270996/EN SEW-EURODRIVE—Driving the world Contents Contents 1 General information .................................................................................................................. 7 1.1 About this documentation ............................................................................................... 7 1.2 Structure of the safety notes .......................................................................................... 7 1.2.1 Meaning of signal words ................................................................................. 7 1.2.2 Structure of section-related safety notes ........................................................ 7 1.2.3 Structure of embedded safety notes............................................................... 7 1.3 Rights to claim under limited warranty ........................................................................... 8 1.4 Content of the documentation ........................................................................................ 8 1.5 Exclusion of liability ........................................................................................................ 8 1.6 Product names and trademarks ..................................................................................... 8 1.7 Copyright notice ............................................................................................................. 8 2 Safety
    [Show full text]
  • An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation
    energies Article An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation Ana Fernández-Guillamón 1,† , Guillermo Martínez-Lucas 2,*,† and Ángel Molina-García 1,† and Jose Ignacio Sarasua 2,† 1 Department of Automatics, Electrical Engineering and Electronic Technology, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain; [email protected] (A.F.-G.); [email protected] (Á.M.-G.) 2 Department of Hydraulic, Energy and Environmental Engineering, Universidad Politécnica de Madrid, 28040 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-91-067-43-33 † These authors contributed equally to this work. Received: 27 May 2020; Accepted: 28 June 2020; Published: 1 July 2020 Abstract: The lack of synchronous inertia, associated with the relevant penetration of variable speed wind turbines (VSWTs) into isolated power systems, has increased their vulnerability to strong frequency deviations. In fact, the activation of load shedding schemes is a common practice when an incident occurs, i.e., the outage of a conventional unit. Under this framework, wind power plants should actively contribute to frequency stability and grid reliability. However, the contribution of VSWTs to frequency regulation involves several drawbacks related to their efficiency and equipment wear due to electrical power requirements, rotational speed changes, and subsequently, shaft torque oscillations. As a result, wind energy producers are not usually willing to offer such frequency regulation. In this paper, a new control technique is proposed to optimize the frequency response of wind power plants after a power imbalanced situation. The proposed frequency controller depends on different power system parameters through a linear regression to determine the contribution of wind power plants for each imbalance condition.
    [Show full text]
  • 24Th OCC Meeting Agenda
    MP POWER TRANSMISSION COMPANY LIMITED STATE LOAD DESPATCH CENTRE, NAYAGAON, JABALPUR 482 008 Phone 0761-2702748 website: www.sldcmpindia.com Fax 0761-2664343 No.07-05/SG-9B-II/ Jabalpur, dated 22-06-2011 To As per distribution list Sub: Agenda of 24th meeting of Operation and Coordination Committee of MP. Please find enclosed herewith the Agenda of 24th meeting of the Operation and Coordination Committee of MP scheduled on 25th June 2011 at 11.00 AM at Banquet Hall, Board Room, Shakti Bhawan Jabalpur. The agenda of the meeting is also available on the website of SLDC ‘www.sldcmpindia.com’. It is also requested to please forward the information required for the meeting and the additional agenda points for inclusion, if any, to SLDC Jabalpur, so that the same could be included in the agenda for discussion in the meeting. ( P.A.R. Bende) Member Secretary, OCC S.E.(LD-OPN), SLDC MPPTCL, Jabalpur Encl : As above. \ Distibution List The Chief Engineer (T&C), The Superintending Engineer (DCC-WZ), MP Power Transmission Co. Limited, DISCOM Control Centre, MP Paschim Jabalpur. Kshetra Vidyut Vitaran Co. Limited, Near Polo Ground, Jail Road, Indore. The Executive Director (T&P), The Executive Engineer (DCC-EZ), MP Power Transmission Co. Limited, DISCOM Control Centre, MP Poorva Jabalpur. Kshetra Vidyut Vitaran Co. Limited, Jabalpur. The Executive Director (Plg & PS), The General Manger (LM), MP Power Transmission Co. Limited, DISCOM Control Centre, MP Madhya Jabalpur Kshetra Vidyut Vitaran Co. Limited, Bhopal. The Executive Director (O&M:Gen.), The Chief Engineer (PM&C), MP Power Generating Co.
    [Show full text]
  • 505HT for Francis/Kaplan Turbines 8200-1402, 8200-1403
    Released Product Manual 35117 (Revision -, 11/2019) Original Instructions 505HT for Francis/Kaplan Turbines 8200-1402, 8200-1403 Installation and Operation Manual Released Read this entire manual and all other publications pertaining to the work to be performed before installing, operating, or servicing this equipment. Practice all plant and safety instructions and precautions. General Failure to follow instructions can cause personal injury and/or property damage. Precautions This publication may have been revised or updated since this copy was produced. To verify that you have the latest revision, check manual 26455 , Customer Publication Cross Reference and Revision Status & Distribution Restrictions , on the publications page of the Woodward website: Revisions http://www.woodward.com/ The latest version of most publications is available on the publications page . If your publication is not there, please contact your customer service representative to get the latest copy. Any unauthorized modifications to or use of this equipment outside its specified mechanical, electrical, or other operating limits may cause personal injury and/or property damage, including damage to the equipment. Any such unauthorized modifications: (i) constitute "misuse" and/or "negligence" within the meaning of Proper Use the product warranty thereby excluding warranty coverage for any resulting damage, and (ii) invalidate product certifications or listings. If the cover of this publication states "Translation of the Original Instructions" please note: The original source of this publication may have been updated since this Translated translation was made. Be sure to check manual 26455 , Customer Publication Publications Cross Reference and Revision Status & Distribution Restrictions , to verify whether this translation is up to date.
    [Show full text]
  • Policy and Regulatory Environment for Utility-Scale Energy Storage: India Amy Rose, Claire Wayner, Sam Koebrich, David Palchak, and Mohit Joshi
    Policy and Regulatory Environment for Utility-Scale Energy Storage: India Amy Rose, Claire Wayner, Sam Koebrich, David Palchak, and Mohit Joshi National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-6A20-78101 Operated by the Alliance for Sustainable Energy, LLC December 2020 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Policy and Regulatory Environment for Utility-Scale Energy Storage: India Amy Rose, Claire Wayner, Sam Koebrich, David Palchak, and Mohit Joshi National Renewable Energy Laboratory Suggested Citation Rose, Amy, Claire Wayner, Sam Koebrich, David Palchak, and Mohit Joshi. 2020. Policy and Regulatory Environment for Utility-Scale Energy Storage: India. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-78101. https://www.nrel.gov/docs/fy21osti/78101.pdf. NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-6A20-78101 Operated by the Alliance for Sustainable Energy, LLC December 2020 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications. 15013 Denver West Parkway Golden, CO 80401 Contract No. DE-AC36-08GO28308 303-275-3000 • www.nrel.gov NOTICE This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S.
    [Show full text]
  • Simulation Methods Development for a Plant Unit Master Control Logic Using Simulink in MATLAB
    Journal of the Korea Academia-Industrial https://doi.org/10.5762/KAIS.2017.18.2.324 cooperation Society ISSN 1975-4701 / eISSN 2288-4688 Vol. 18, No. 2 pp. 324-334, 2017 Simulation Methods Development for a Plant Unit Master Control Logic Using Simulink in MATLAB Changsun Yoon1, Yeon-Chan Hong2* 1Electrical Instrumentation & Control Engineering Department, KEPCO-E&C 2Department of Electronics Engineering, Incheon National University 매트랩 시뮬링크를 이용한 플랜트 유닛마스터 제어로직 시뮬레이션 기법 개발 윤창선1, 홍연찬2* 1한국전력기술(주) 전기계측기술그룹 2인천대학교 전자공학과 Abstract The simulators for a plant unit master control (UMC) developed by domestic or overseas researchers have been developed for operator-training purposes. UMC simulators normally constructed at the end of the plant construction, despite the UMC logics, should be simulated to pre-check many signal interfaces within the power generation systems. Because of the differences in construction schedule, it is difficult for logic designers or commissioning engineers to simulate the UMC logic during the design or commissioning stage. In this background, this paper proposes a simulation method that can be used easily by plant logic designers or operators in the MATLAB Simulink programming environment. The core of the UMC is realized with a unique simulation algorithm based on mathematical analysis and functional blocks combination. In addition, an integer-based configuration was proposed to realize the plant target value control for the equipment in the logic. With these simulation methods, functions, e.g., load distribution, high-low limitations, frequency compensation, etc. were simulated. The results showed that the plant UMC logic can be simulated in Simulink without a plant simulator.
    [Show full text]
  • Ancillary Services Definitions and Capability Study
    Ancillary Services Definitions and Capability Study Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE-EE0003507 Hawai‘i Energy Sustainability Program Task 2: Energy Modeling and Scenario Analysis Prepared by GE Energy Consulting Submitted by Hawai‘i Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawai‘i December 2012 Acknowledgement: This material is based upon work supported by the United States Department of Energy under Cooperative Agreement Number DE-EE0003507. Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference here in to any specific commercial product, process, or service by tradename, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. GE Energy Management Ancillary Services Definitions and Capability Study Part 1, Tasks 1-2, Final Report For Hawaii Natural Energy Institute Principal Contributors: Harjeet Johal Rameet Kohli Beth LaRose Michael O’Connor Sundar Venkataraman Revision 1 Date: 12/19/2012 Ancillary Services Definitions and Capability Study Table of Contents Table of Contents 1 Study Background and Objectives ..............................................................................
    [Show full text]
  • Review on Industrial Generators Load Sharing System Along Withgrid Momentry Synchronization and Setup a Backup Unit for Auxiliary Power for Generators
    International Journal For Technological Research In Engineering Volume 5, Issue 8, April-2018 ISSN (Online): 2347 - 4718 REVIEW ON INDUSTRIAL GENERATORS LOAD SHARING SYSTEM ALONG WITHGRID MOMENTRY SYNCHRONIZATION AND SETUP A BACKUP UNIT FOR AUXILIARY POWER FOR GENERATORS Verma Kunal Subhash1, Asst. Prof. Ashish Aboti2 1PG Scholar, Electrical Department, HJD, Kera, Kutch, Gujarat, India 2Internal Guide, Assistant Professor, Electrical Department, HJD, Kera, Kutch, Gujarat, India ABSTRACT: In this Industrial Define Project we are going variousmanufacturers, and many of theseoptions are to solve the load sharing problems of an industry by sharing not compatible witheach other. So, when electrical power for different type of loads in industry consideringthe paralleling of dissimilar through parallel generating sources by “load sharing generatorsets, or adding generator sets to anexisting control system”. To overcome the overloading and stability paralleling system, it iscritical to understand how problems on system generating sets and so increase the loadsharing can be accomplished. capability of system. There are many different methods for When a generator set is in a paralleled arrangement, load sharing between parallel generators. In the report we the voltage and frequency outputs of the generator had discussed all, but we take the best one for paralleling sets are forced to exactly the same values when they the generators.Connecting different communication areconnected to the same bus. Consequently, systems is possible on the prime-mover side through a generator set control systems cannotsimply monitor converter. According to the information gathered in this bus voltage and speed as a reference for maintaining thesis it is recommended that a PLCs are used for load equaloutput levels, as they do when operated in sharing between the existing power plants.We will also isolation from one another.
    [Show full text]
  • SMART GRIDS and RENEWABLES: a Guide for Effective Deployment TABLE of CONTENTS
    IRENA International Renewable Energy Agency SMART GRIDS AND RENEWABLES A Guide for Effective Deployment Working Paper Working November 2013 Copyright © IRENA 2013 Unless otherwise indicated, material in this publication may be used freely, shared or reprinted, so long as IRENA is acknowledged as the source. About IRENA The International Renewable Energy Agency (IRENA) is an intergovernmental organisation that supports countries in their transition to a sustainable energy future, and serves as the principal platform for international cooperation, a centre of excel- lence, and a repository of policy, technology, resource and financial knowledge on renewable energy. IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy in the pursuit of sustainable development, energy access, energy security and low-carbon eco- nomic growth and prosperity. www.irena.org Acknowledgements The work for the preparation of this paper was led by Paul Komor and Anderson Hoke, University of Colorado, Boulder, Colo- rado, USA. The paper benefitted from very valuable comments from Rainer Bacher (Bacher Energie, Switzerland), Melissa Chan (Navigant Consulting, USA), Kazuyuki Takada (New Energy and Industrial Technology Development Organization, Japan), Matt Wakefield (EPRI, USA). Authors: Ruud Kempener (IRENA), Paul Komor and Anderson Hoke (University of Colorado) For further information or to provide feedback, please contact: Ruud Kempener, IRENA Innovation and Technology Centre. E-mail: [email protected] or [email protected]. Disclaimer The designations employed and the presentation of materials herein do not imply the e xpression of any opinion whatsoever on the part of the International Renewable Energy Agency concerning the legal status of any country, territory, city or area, or concerning their authorities or the delimitation of their frontiers or boundaries.
    [Show full text]
  • Download Brochure (PDF)
    smallhydro PRIME ENGINEERING LIMITED IS AN ELECTRICAL ENGINEERING AND SERVICES FIRM THAT SPECIALIZES IN HYDROELECTRIC POWER AND CONTROL SYSTEM DESIGN, IMPLEMENTATION AND MAINTENANCE. OUR TEAM OF PROFESSIONALS HAVE WORKED TOGETHER ON AN EXTENSIVE NUMBER OF PROJECTS AND HAVE OBTAINED A PROVEN TRACK RECORD IN THE SMALL HYDRO INDUSTRY. WE OFFER OUR CLIENTS A WIDE RANGE OF SERVICES INCLUDING DESIGN-BUILD, ELECTRICAL BALANCE OF PLANT (EBOP) SUPPLY, AND ASSISTANCE WITH TURBINE / GENERATOR WATER TO WIRE PACKAGES AS WELL AS TESTING AND COMMISSIONING SERVICES. CONTROL PANELS STATION SERVICES E-HOUSES INTAKE CONTROL SYSTEMS REMOTE HV SUBSTATIONS UNIT PANELS MV SWITCHGEAR UNIT SUBSTATIONS MCC’s ENGINEERING SERVICES & INTEGRATION • Overall Electrical Design; Water to Wire, Balance of Plant, & Utility Interconnections • Power System Modeling for Arc Flash Analysis, Coordination & Fault Studies, Load Flow Analysis, & Ground Grid Studies • PLC Control & Automation System Designs (incl. Digital Speed Governor) & HMI Systems • Protective Relaying Systems Design & Programming • Communications: Including Ethernet Network Architecture, Plant Firewall/ Security, Protocol/ Medium Conversions & RTUs & SCADA System Design • Emergency & DC Systems Design PROTECTION & CONTROL SYSTEMS • PLC Based Turbine / Generator Protection & Control System for Isochronous (Isolated/Islanded) & Grid Connected Generation Systems • HMI / SCADA • Integrated Turbine / Generator & Auxiliary Equipment Protective Relaying systems • Integrated Interconnection Substation Protection, Transmission
    [Show full text]
  • Unlike the Conventional Generators That We Use on Land, a Ship's Generator Requires a Special Procedure for Starting and Stopp
    Unlike the conventional generators that we use on land, a ship’s generator requires a special procedure for starting and stopping it. Though not a very complex one, the process demands a step-by-step system to be followed. Missing even a single step might lead to failure in starting or stopping the generator and can even lead to “black-out”, a situation which everyone on ship tries their best to stay away from. In this article, we bring to you an accurate, step by step procedure for starting and stopping a generator on a ship. Generator starting procedure Automatic Start 1. Ÿ This method is only possible if sufficient amount of starting air is available. The air valves and interlocks are operated like in the turning gear operation. 2. Ÿ In this method the operator has nothing to do, for the generator starts itself depending on the load requirement. 3. Ÿ However during the Maneuvering process and in restricted areas, the operator has to start by going into the computer based Power Management System (pms). Once inside the system, the operator needs to go to the generator page and click start. 4. Ÿ In PMS system, the automation follows sequence of starting, matching voltage and frequency of the incoming generator and the generator comes on load automatically. 5. Ÿ In case of a blackout condition or a dead ship condition, the operator might have to start the generator manually. Manual start The manual process is totally different from the automatic start system. The following steps need to be followed: 1.
    [Show full text]