The Complement System (A Complex Innate Immune Surveillance System)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Opsonin-Dependent Stimulation of Bovine Neutrophil Oxidative Metabolism by Brucella Abortus Peter C
Veterinary Microbiology and Preventive Medicine Veterinary Microbiology and Preventive Medicine Publications 2-1988 Opsonin-dependent stimulation of bovine neutrophil oxidative metabolism by Brucella abortus Peter C. Canning U.S. Department of Agriculture Billy L. Deyoe U.S. Department of Agriculture James A. Roth Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/vmpm_pubs Part of the Veterinary Microbiology and Immunobiology Commons, Veterinary Preventive Medicine, Epidemiology, and Public Health Commons, and the Veterinary Toxicology and Pharmacology Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ vmpm_pubs/190. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Veterinary Microbiology and Preventive Medicine at Iowa State University Digital Repository. It has been accepted for inclusion in Veterinary Microbiology and Preventive Medicine Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Opsonin-dependent stimulation of bovine neutrophil oxidative metabolism by Brucella abortus Abstract Nonopsonized Brucella abortus and bacteria treated with fresh antiserum, heat-inactivated antiserum, or normal bovine serum were evaluated for their ability to stimulate production of superoxide anion and myeloperoxidasemediated iodination by neutrophils from cattle. Brucella abortus opsonized with fresh antiserum or beat-inactivated antiserum stimulated production of approximately 3 nmol of 0 2 -/106 neutrophils/30 min. Similarly treated bacteria also stimulated the binding of approximately 4.3 nmol of Nal/ 107 neutrophils/h to protein. -
Objectives Complement (C') Complement Proteins Functions Of
Complement Objectives Foundations of Public Health Identify functions of complement Immunology Recognize the similarities and differences of the three complement pathways Complement Identify important complement components & their functions Identify deleterious effects of complement activation and deficiency 1 2 Complement (C’) Complement Proteins Synthesized in the liver and by several Series of approximately 30 heat-labile proteins cells types (splenic macrophages) Normally inactive in the serum Plays an essential role in Inactive complement proteins known as zymogens inflammation and in facilitating Can be sequentially activated in a antibody effectiveness controlled sequence Amplification of the reaction occurs at each step Severe infections or autoimmune Production of biologically active fragments diseases can result from complement for lysis or killing of the target deficiencies (rare in the population) 3 4 Functions of Complement Functions of Complement Essential role in inflammation Assists antibodies in effector functions (Antibody Dependent Cell- mediated Cytotoxicity- ADCC) Assist in clearing immune complexes Opsonization and facilitation of phagocytosis No antigen specificity 5 6 1 Complement 3 Pathways of Activation Complement Activators Classical Triggered when IgM or certain IgG subclasses bind antigens Alternative (Properdin) Triggered by the deposition of complement protein, C3b, onto microbial surfaces No antibodies required for activation Lectin Triggered by the attachment of plasma mannose-binding lectin (MBL) to microbes No antibodies required for Activators start the domino effect… activation 7 8 Early Steps Late Steps The initial steps vary between pathways Dependent on activating substance C3 convertase quickly forms in all paths to cleave C3 Watch this well-done animation on the activation of complement, the Late steps (after C5 convertase) are same in all pathways steps in the complement pathways, Lead to formation of MAC & the functions of complement. -
Understanding the Complement System
Understanding the Complement System WHAT IS THE IMMUNE SYSTEM? The immune system is a complex network of organs, cells and proteins which work together to protect the body against infection and disease. WHAT IS THE COMPLEMENT SYSTEM? The complement system is a part of the immune system and is essential to the body’s defense against infection. Classical Pathway Lectin Pathway Alternative Pathway Made up of 3 UNIQUE PATHWAYS (Classical, Lectin and Alternative) Each pathway can become activated to trigger a cascade of protein reactions that initiate an immune response Inflammation Marks pathogen/damaged to detect and eliminate: cells for elimination Bacteria Viruses Inflammation Targeted destruction of damaged cells Dead cells When the complement system is working properly, it is a strong and powerful tool that protects the body against harmful invaders. • brain But when the system is thrown out of • nervous system balance, or dysregulated, the proteins can trigger a dangerous, uncontrolled cascade • blood stream of reactions that attack cells and tissues. • kidneys UNLOCKING THE POTENTIAL OF THE COMPLEMENT SYSTEM Alexion’s pioneering legacy in rare diseases is rooted in being the first to translate the complex biology of the complement system into transformative medicines. 3 DECADES 20 YEARS of complement of real-world evidence demonstrating the safety inhibition research and power of targeted complement inhibitors Dysregulation of the complement system is a key driver of many devastating diseases. Alexion has paved the way for a new class of medicines that inhibit the complement system, prevent further damage and reduce disease symptoms. Alexion is committed to continue unlocking the potential of the complement system and accelerating the discovery and development of new life-changing therapies for even more patients. -
Complement Herbert L
Host Defense 2011 Complement Herbert L. Mathews, Ph.D. COMPLEMENT Date: 4/11/11 Reading Assignment: Janeway’s Immunobiology, 7th Edition, pp. 54-55, 61-82, 406- 409, 514-515. Figures: (Unless otherwise noted) Janeway’s Immunobiology, 7th Edition, Murphy et al., Garland Publishing. KEY CONCEPTS AND LEARNING OBJECTIVES You will be able to describe the mechanism and consequences of the activation of the complement system. To attain the goals for these lectures you will be able to: a. List the components of the complement system. b. Describe the three activation pathways for complement. c. Explain the consequences of complement activation. d. Describe the consequence of complement deficiency. Page 1 Host Defense 2011 Complement Herbert L. Mathews, Ph.D. CONTENT SUMMARY Introduction Nomenclature Activation of Complement The classical pathway The mannan-binding lectin pathway The alternative pathway Biological Consequence of Complement Activation Cell lysis and viral neutralization Opsonization Clearance of Immune Complexes Inflammation Regulation of Complement Activation Human Complement Component Deficiencies Page 2 Host Defense 2011 Complement Herbert L. Mathews, Ph.D. Introduction The complement system is a group of more than 30 plasma and membrane proteins that play a critical role in host defense. When activated, complement components interact in a highly regulated fashion to generate products that: Recruit inflammatory cells (promoting inflammation). Opsonize microbial pathogens and immune complexes (facilitating antigen clearance). Kill microbial pathogens (via a lytic mechanism known as the membrane attack complex). Generate an inflammatory response. Complement activation takes place on antigenic surfaces. However, the activation of complement generates several soluble fragments that have important biologic activity. -
Understanding the Immune System: How It Works
Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute NIH Publication No. 03-5423 September 2003 www.niaid.nih.gov www.nci.nih.gov Contents 1 Introduction 2 Self and Nonself 3 The Structure of the Immune System 7 Immune Cells and Their Products 19 Mounting an Immune Response 24 Immunity: Natural and Acquired 28 Disorders of the Immune System 34 Immunology and Transplants 36 Immunity and Cancer 39 The Immune System and the Nervous System 40 Frontiers in Immunology 45 Summary 47 Glossary Introduction he immune system is a network of Tcells, tissues*, and organs that work together to defend the body against attacks by “foreign” invaders. These are primarily microbes (germs)—tiny, infection-causing Bacteria: organisms such as bacteria, viruses, streptococci parasites, and fungi. Because the human body provides an ideal environment for many microbes, they try to break in. It is the immune system’s job to keep them out or, failing that, to seek out and destroy them. Virus: When the immune system hits the wrong herpes virus target or is crippled, however, it can unleash a torrent of diseases, including allergy, arthritis, or AIDS. The immune system is amazingly complex. It can recognize and remember millions of Parasite: different enemies, and it can produce schistosome secretions and cells to match up with and wipe out each one of them. -
Activation of the Complement System on Human Endothelial Cells by Urban Particulate Matter Triggers Inflammation-Related Protein Production
International Journal of Molecular Sciences Article Activation of the Complement System on Human Endothelial Cells by Urban Particulate Matter Triggers Inflammation-Related Protein Production Myoung Su Choi 1,† , Hyungtaek Jeon 2,†, Seung-Min Yoo 2 and Myung-Shin Lee 2,* 1 Department of Otorhinolaryngology, Eulji University Medical Center, Eulji University School of Medicine, Daejeon 35233, Korea; [email protected] 2 Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon 34824, Korea; [email protected] (H.J.); [email protected] (S.-M.Y.) * Correspondence: [email protected]; Tel.: +82-42-259-1662 † These authors have contributed equally to this work. Abstract: Exposure to particulate matter (PM) is becoming a major global health issue. The amount and time of exposure to PM are known to be closely associated with cardiovascular diseases. However, the mechanism through which PM affects the vascular system is still not clear. Endothelial cells line the interior surface of blood vessels and actively interact with plasma proteins, including the complement system. Unregulated complement activation caused by invaders, such as pollutants, may promote endothelial inflammation. In the present study, we sought to investigate whether urban PM (UPM) acts on the endothelial environment via the complement system. UPM-treated human endothelial cells with normal human serum showed the deposition of membrane attack complexes Citation: Choi, M.S.; Jeon, H.; Yoo, (MACs) on the cell surface via the alternative pathway of the complement system. Despite the forma- S.-M.; Lee, M.-S. Activation of the tion of MACs, cell death was not observed, and cell proliferation was increased in UPM-mediated Complement System on Human complement activation. -
Histamine Metabolism in Cells of the Allergic Response
PLATELET RESPONSE TO IMMUNOLOGICAL INJURY. J.G. White, R.M. INDUCTION OF ABNORMAL IMMUNOPOIESIS BY PERSISTENT EMBRYONIC Condie, and G.H.R. Rao. Univ. of Minn. School of Med., Mpls., VIRAL INFECTION. T. Yamauchi, J.1,!. St. GE, Jr., H.L. Itartin, Minn . D.C. Heiner and P1.D. Cooper. UCLA Sch. Ned. Ifarbor Gen. Bosp. Platelets are susceptible to immunological destruction, and Univ. Ala. Pled. Ctr., Depts. Ped., Torr. and Birmingham. but the nature of the immune lesion has not been defined. Infection of 16-hour-old chicken embryos with mumps virus Biochemistry, physiology, freeze-etching and electron micro- produced an initial decrease of both plasmalIgM and IgG in scopy were used to detect antibody induced injury. Antiserum poults with delayed maturation of normal IgG synthesis. De- (AS) was raised in a horse by repeated I.M. injections of spite hypogammaglobulinemia, specific antiviral neutralizing glutaraldehyde fixed human platelets. Absorbtion with PPP re- antibody first appeared one week after disappearance of virus moved non-specific activity of AS. The AS caused release of from 7-day-old hatchling chicks. serotonin to a dilution of 1:10,000 without producing ultra- Intramuscular inoculation of 13-day-old chicks with heter- structural damage. AS stimulated aggregation in stirred C-PRP ologous erythrocytes elicited significantly (P<.01) lower to a dilution of 1:1000. Aggregates resembled those produced titers of agglutinins in embryonically-infected birds with a by collagen. Lactic dehydrogenase was not discharged by dilu- delay in transition of 19s to 7S antibody. Secondary anti- tions greater than 1:10 . Dilutions to 1:100 caused platelet body surge in experimental birds was also significantly (P<.02) lysis and produced characteristic membrane lesions visible in less than controls with continued predominance of 19s antibody. -
Complement System: Immune Effector Mechanism Subhadipa 2020 What Is Complement System??? • Humoral Branch of the Immune System
Subhadipa 2020 Complement system: Immune effector mechanism Subhadipa 2020 What is complement system??? • Humoral branch of the immune system. • Complement includes more than 30 soluble and cell-bound proteins. • After initial activation, the various complement components interact, in a highly regulated cascade, to carry out a number of basic functions including: Lysis of cells, bacteria, and viruses Opsonization, which promotes phagocytosis of particulate antigens Binding to specific complement receptors on cells of the immune system, triggering specific cell functions, inflammation, and secretion of immunoregulatory molecules. Immune clearance, which removes immune complexes from the circulation and deposits them in the spleen and liver Subhadipa 2020 Basic Functions The complement components Subhadipa 2020 • The proteins and glycoproteins that compose the complement system are synthesized mainly by liver hepatocytes, although significant amounts are also produced by blood monocytes, tissue macrophages, and epithelial cells of the gastrointestinal and genitourinary tracts. • These components constitute 5% (by weight) of the serum globulin fraction. Most circulate in the serum in functionally inactive forms as proenzymes, or zymogens, which are inactive until proteolytic cleavage, which removes an inhibitory fragment and exposes the active site. The complement-reaction sequence starts with an enzyme cascade. • Complement components are designated by numerals (C1–C9), by letter symbols (e.g., factor D), or by trivial names (e.g., homologous restriction factor). • Peptide fragments formed by activation of a component are denoted by small letters . In most cases, the smaller fragment resulting from cleavage of a component is designated “a” and the larger fragment designated “b” (e.g., C3a, C3b; note that C2 is an exception: C2a is the larger cleavage fragment). -
Mast Cells in Infection and Immunity†
INFECTION AND IMMUNITY, Sept. 1997, p. 3501–3508 Vol. 65, No. 9 0019-9567/97/$04.0010 Copyright © 1997, American Society for Microbiology MINIREVIEW Mast Cells in Infection and Immunity† 1,2 2 SOMAN N. ABRAHAM * AND RAVI MALAVIYA Departments of Pathology and Molecular Microbiology, Washington University School of Medicine,1 and Department of Pathology, Barnes-Jewish Hospital of St. Louis,2 St. Louis, Missouri 63110 Mast cells remain one of the most enigmatic cells in the mediates binding of mast cells to parasitic helminths (46). body. These cells secrete significant amounts of numerous Parasitic helminths evoke a specific humoral immune response proinflammatory mediators which contribute to a number of in the host which involves, at least in part, the secretion of a chronic inflammatory conditions, including stress-induced in- large number of IgE antibodies (46). These antibodies become testinal ulceration, rheumatoid arthritis, interstitial cystitis, attached to mast cell surfaces because of the numerous IgE scleroderma, and Crohn’s disease (6, 14, 24, 76). Mast cells are receptors (FcεR) present on mast cell plasma membranes. also prominent in the development of anaphylaxis (14, 24, 76). Those IgE molecules that are specific for helminths then pro- Yet despite the negative effects of their secretions, mast cells mote mast cell binding to the parasite (56). Although IgE is not or mast cell-like cells have been described even among the commonly generated against bacteria, IgE specific to Helico- lowest order of animals (31). The phylogenic persistence of bacter pylori and Staphylococcus aureus has been reported in these cells through evolution strongly suggests that they are patients with peptic ulcers and atopic dermatitis, respectively beneficial in some fashion to the host. -
I M M U N O L O G Y Core Notes
II MM MM UU NN OO LL OO GG YY CCOORREE NNOOTTEESS MEDICAL IMMUNOLOGY 544 FALL 2011 Dr. George A. Gutman SCHOOL OF MEDICINE UNIVERSITY OF CALIFORNIA, IRVINE (Copyright) 2011 Regents of the University of California TABLE OF CONTENTS CHAPTER 1 INTRODUCTION...................................................................................... 3 CHAPTER 2 ANTIGEN/ANTIBODY INTERACTIONS ..............................................9 CHAPTER 3 ANTIBODY STRUCTURE I..................................................................17 CHAPTER 4 ANTIBODY STRUCTURE II.................................................................23 CHAPTER 5 COMPLEMENT...................................................................................... 33 CHAPTER 6 ANTIBODY GENETICS, ISOTYPES, ALLOTYPES, IDIOTYPES.....45 CHAPTER 7 CELLULAR BASIS OF ANTIBODY DIVERSITY: CLONAL SELECTION..................................................................53 CHAPTER 8 GENETIC BASIS OF ANTIBODY DIVERSITY...................................61 CHAPTER 9 IMMUNOGLOBULIN BIOSYNTHESIS ...............................................69 CHAPTER 10 BLOOD GROUPS: ABO AND Rh .........................................................77 CHAPTER 11 CELL-MEDIATED IMMUNITY AND MHC ........................................83 CHAPTER 12 CELL INTERACTIONS IN CELL MEDIATED IMMUNITY ..............91 CHAPTER 13 T-CELL/B-CELL COOPERATION IN HUMORAL IMMUNITY......105 CHAPTER 14 CELL SURFACE MARKERS OF T-CELLS, B-CELLS AND MACROPHAGES...............................................................111 -
Innate Immunity
INNATE IMMUNITY RAKESH SHARDA Department of Veterinary Microbiology NDVSU College of Veterinary Science & A.H., Mhow Innate Immunity - characteristics • Most primitive type of immune system found in virtually all multicellular animals • high discrimination of host and pathogen • First line of defense against infection • no need for prolonged induction • act quickly immediate direct response 0-4 hrs rapid induced 4-96 hrs • antigen-independent Innate Immunity – characteristics (contd.) • dependence on germ line encoded receptors • always present and active, constitutively expressed (some components can be up-regulated) • Nonspecific; not specifically directed against any particular infectious agent or tumor • no clonal expansion of Ag specificity • Same every time; no ‘memory’ as found in the adaptive immune system • failure ==> adaptive immune response Components of Innate Immunity First line Second line 1 Physical barriers A- cells 2 Chemical & biochemical barriers 1- Natural killer 3 Biological barriers (Normal flora) 2- Phagocytes 3- inflammatory cells B- Soluble factors C- Inflammatory barriers Anatomical /Physical/Mechanical Barriers System or Organ Cell type Mechanism Skin Squamous epithelium Physical barrier (intact skin) Desquamation Mucous Membranes Non-ciliated epithelium (e.g. Peristalsis GI tract) Ciliated epithelium, hairs Mucociliary elevator, (e.g. respiratory tract) Coughing, sneezing Epithelium (e.g. Flushing action of nasopharynx) tears, saliva, mucus, urine; blinking of eye lids Biological Factors System or Organ Component -
Superoxide Anion Generation in Human Milk Macrophages: Opsonin-Dependent Versus Opsonin-Independent Stimulation Compared with Blood Monocytes
0031-3998/01/4903-0435 PEDIATRIC RESEARCH Vol. 49, No. 3, 2001 Copyright © 2001 International Pediatric Research Foundation, Inc. Printed in U.S.A. Superoxide Anion Generation in Human Milk Macrophages: Opsonin-Dependent Versus Opsonin-Independent Stimulation Compared with Blood Monocytes RÜDIGER ADAM, FRANK KUCZERA, HENRIK KÖHLER, AND HORST SCHROTEN Zentrum für Kinderheilkunde, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany ABSTRACT Macrophages are believed to play an important role within the found when unopsonized zymosan was used. After addition of - immunoprotective effects of human breast milk. It was the cytochalasin B, equal inhibition of O2 generation was observed purpose of this study to evaluate the capability of human milk regardless of the cell type or stimulus used. Thus, MM⌽ are ⌽ - macrophages (MM ) to generate superoxide anions (O2 )in stimulated to a greater extent by serum-independent mechanisms comparison with peripheral blood monocytes (BMo) after stim- than BMo. As opsonins like complement or IgG are rare in the ulation with opsonized and unopsonized zymosan. Potential in- colostrum and the neonatal intestinal environment, such a differ- hibitors of attachment and phagocytosis such as mannose and entiation toward serum-independent phagocytic abilities could cytochalasin B were used. Expression of the mannose receptor on play an important role for protective functions of human MM⌽. MM⌽ was demonstrated by staining with MAb. BMo generated Possible involvement of the mannose receptor and the -glucan - ⌽ Ϯ Ϯ - more O2 than MM (417 79 versus 216 15 nmol O2 /mg receptor in this specialization are discussed. (Pediatr Res 49: protein, p Ͻ 0.05) after stimulation with opsonized zymosan.