Complexity and Correctness of a Super-Pipelined Processor

Total Page:16

File Type:pdf, Size:1020Kb

Complexity and Correctness of a Super-Pipelined Processor Complexity and Correctness of a Super-Pipelined Processor Dissertation zur Erlangung des Grades des Doktors der Ingenieurwissenschaften der Naturwissenschaftlich-Technischen Fakultaten¨ der Universitat¨ des Saarlandes Jochen Preiß [email protected] Saarbrucken,¨ April 2005 ii Tag des Kolloquiums: 29. April 2005 Dekan: Prof. Dr. Jorg¨ Eschmeier Vorsitzender des Prufungsausschusses:¨ Prof. Dr. Gerhard Weikum Erstgutachter: Prof. Dr. Wolfgang J. Paul Zweitgutachter: Priv. Doz. Dr. Silvia M. Muller¨ akademischer Beisitzer: Dr. Sven Beyer iii Out Out!! You demons of stupidity!! – Dogbert Danke Diesen Abschnitt mochte¨ ich all denen widmen, die zum Gelingen dieser Arbeit bei- getragen haben. Zuallererst mochte¨ ich meinen Eltern dafur¨ danken, dass sie mich in allen Phasen mei- ner Ausbildung unterstutzt¨ haben und mir gerade in schwierigeren Zeiten stets ein Ruckhalt¨ waren. Mein ganz besonderer Dank gilt auch Herrn Prof. Paul fur¨ die Vergabe dieses interes- santen und herausfordernden Themas und fur¨ die wissenschaftliche Unterstutzung.¨ Bei Christian Jacobi mochte¨ ich mich fur¨ das Korrekturlesen dieser Arbeit und die vielen Vorschlage,¨ die mir geholfen haben, diese Arbeit immer weiter zu verbessern, bedanken. Meinen Freunden von der Uni Werner Backes, Christoph Berg, Sven Beyer, Mark Hillebrand, Thomas In der Rieden, Michael Klein und Dirk Leinenbach mochte¨ ich danken fur¨ die fruchtbaren Diskussionen und das gute Klima, gefordert¨ durch Tisch- fußball, Skat- und Doppelkopf-Abende und das Verschonen meines Rasens. Meinen Kollegen bei IBM, insbesondere Cedric´ Lichtenau und Thomas Pfluger,¨ gilt mein Dank fur¨ ihr Verstandnis¨ und die Unterstutzung¨ gerade in der letzten Phase mei- ner Dissertation. iv v Abstract This thesis introduces the DLXπ+, a super-pipelined processor with variable cycle time. The cycle time of the DLXπ+ may be as low as 9 gate delays (including 5 gate delays for registers), which is assumed to be a lower bound for the cycle time. For the parts of the DLXπ+ that significantly differ form previous implementations correctness proofs are provided. Formulas are developed which compute restrictions to the parameters of the DLXπ+, e.g., the maximum number of reservation station entries for a given cycle time. The formulas also compute what modifications to the base design have to be made in order to realize a certain cycle time and what the impact is on the number of pipeline stages. This lays the foundation for computing the time per instruction of the DLXπ+ for a given benchmark and different cycle times in future work in order to determine the “optimum” cycle time. Kurzzusammenfassung In dieser Arbeit wird die DLXπ+ eingefuhrt,¨ ein super-gepipelineter Prozessor mit va- riabler Zykluszeit. Die Zykluszeit der DLXπ+ kann bis auf 9 Gatter-Delays (inklusive 5 Gatter-Delays fur¨ Register) reduziert werden, was als untere Schranke fur¨ die Zy- kluszeit angesehen wird. Fur¨ die Teile der DLXπ+, die sich signifikant von bisherigen Implementierungen unterscheiden, werden Korrektheits-Beweise geliefert. Desweite- ren werden Formeln entwickelt, die Beschrankungen¨ fur¨ die Parameter der DLXπ+ wie zum Beispiel die maximale Anzahl von Reservation Station Eintragen¨ fur¨ eine gege- bene Zykluszeit berechnen. Die Formeln errechnen ausserdem welche Modifikationen am Basis-Design notwendig sind, um eine bestimmte Zykluszeit zu erreichen und wel- chen Einfluss dies auf die Anzahl der Pipeline-Stufen hat. Damit wird die Grundlage gelegt, um als zukunftige¨ Arbeit die benotigte¨ Zeit pro Instruktion der DLXπ+ fur¨ einen gegebenen Benchmark bei verschiedenen Zykluszeiten zu berechenen und da- mit die “optimale” Zykluszeit zu bestimmen. vi Extended Abstract In order to increase the performance of a processor regarding a specific benchmark one can either decrease the cycle time of the processor or the CPI (cycles per instruction) that the processor needs for the benchmark. Usual ways to decrease the CPI are, e.g., pipelining, out-of-order execution, branch prediction, or super-scalar designs. This thesis focuses on the cycle time. The cycle time of a processor can be improved by increasing the number of pipeline stages of the processor and therefore decreasing the amount of work to be done in each stage. This is called super-pipelining. Note that super-pipelining may increase the CPI for several reasons. Due to the increased number of pipeline stages, data dependencies may have a larger impact. Also, the fewer amount of logic that fits into one cycle may have a negative impact on the micro-architecture, e.g., reduce the maximum number of possible reservation stations entries. This may increase the frequency of stalls and therefore increase the CPI. Thus, the minimum cycle time may not be the optimal cycle time for a design and a given benchmark. This thesis introduces the DLXπ+, a super-pipelined processor with variable cycle time, i.e., with a variable number of pipeline stages. For computation of cycle time and cost of the DLXπ+ the technology independent gate model from [MP00] is used. The cycle time of the DLXπ+ may be as low as 9 gate delays (including 5 gate delays for the registers). For comparison, a 16 bit addition (which has 12 combinational gate delays in the used model) needs less than half a cycle in the deeply pipelined Pentium + 4 processor [HSU 01], but needs 3 cycles in the DLXπ+ with 9 gate delays cycle time. The variant of the DLXπ+ with 9 gate delays cycle time is more a proof of concept rather than it is assumed to have a good performance. Therefore, the main part of this thesis only handles cycle times of at least 10 in order to simplify the design. A variant of the DLXπ+ with a cycle time smaller than 9 is not assumed to be possible, although no formal proof for this is provided. In this thesis formulas are developed which compute restrictions to the parameters of the DLXπ+, e.g., the maximum number of reservation station entries for a given cycle time. Other formulas compute what modification to the base design have to be made in order to realize a certain cycle time and what the impact is on the number of pipeline stages. This lays the foundation to write a cycle-accurate DLXπ+ simu- lator, that computes the performance of the DLXπ+ for a given benchmark and dif- ferent cycle times in future work. Using this simulator the optimum cycle time of the DLXπ+ for the benchmark could be determined. The DLXπ+is an out-of-order processor that uses the Tomasulo scheduler [Tom67]. The design is based on the work of Kroning¨ [Kro99].¨ The instruction set architecture (ISA) is taken from the MIPS R3000 processor [KH92] with small modifications sim- plifying the adaptation of the design. This allows a simulation of the DLXπ+with MIPS R3000 instruction traces [Hil95] of the SPEC92 benchmark [SPEC]. In order to realize the small cycle times, parts of the DLXπ+differ significantly from the design presented by Kroning.¨ In particular new stalling and forwarding tech- niques are used. If these techniques are used it is for example not longer obvious that a RAM access returns the correct result. Therefore, correctness proofs are provided for the critical parts of the DLXπ+. vii Zusammenfassung Um die Leistung eines Prozessors bezuglich¨ eines spezifischen Benchmarks zu verbes- sern, kann man entweder die Zykluszeit oder die CPI (benotigte¨ Anzahl von Zyklen pro Instruktion) des Prozessors reduzieren. Bekannte Methoden die CPI zu reduzieren sind zum Beispiel Pipelining, Out-of-order Execution, Branch Prediction oder super- skalare Designs. In dieser Arbeit geht es hingegen in erster Linie um die Reduzierung der Zykluszeit. Die Zykluszeit eines Prozessors kann durch Erhohen¨ der Anzahl von Pipeline- Stufen des Prozessors und damit durch Reduzierung der Arbeit, die in jeder dieser Stu- fen verrichtet werden muss, verbessert werden. Dies wird Super-Pipelining genannt. Man beachte, dass Super-Pipelining die CPI aus verschiedenen Grunden¨ erhohen¨ kann. Auf Grund der großeren¨ Anzahl von Pipeline-Stufen konne¨ Daten-Abhangigkeite¨ einen großeren¨ Einfluß haben. Ausserdem kann die geringe Menge von Logik, die in einen Zyklus passt, negative Auswirkungen auf die Mikro-Architektur des Prozessors haben, indem zum Beispiel die maximal mogliche¨ Anzahl von Reservation Stations Eintragen¨ reduziert wird. Dies kann die Haufigkeit¨ von Stalls und damit die CPI erhohen.¨ Daher muss die minimale Zykluszeit nicht notwendigerweise die optimale Zykluszeit fur¨ ein Design und einen gegebenen Benchmark sein. In dieser Arbeit wird die DLXπ+ eingefuhrt,¨ ein super-gepipelineter Prozessor mit variabler Zykluszeit, das heisst mit variabler Anzahl von Pipeline-Stufen. Zur Be- rechnung von Zykluszeit und Kosten der DLXπ+ wird das von der Technologie un- abhangige¨ Gatter Model aus [MP00] verwendet. Die Zykluszeit der DLXπ+ kann bis auf 9 Gatter-Delays (inklusive 5 Gatter-Delays fur¨ die Register) reduziert werden. Zum Vergleich, die Berechnung einer 16 bit Addition (die in dem benutzten Gatter Model 12 Gatter-Delays benotigt)¨ braucht weniger als einen halben Takt im tief gepipelineten + Pentium 4 Prozessor [HSU 01], aber braucht 3 Takte in der DLXπ+ mit 9 Gatter- Delays Zykluszeit. Die Variante der DLXπ+ mit 9 Gatter-Delays Zykluszeit dient nur als Machbarkeits- Beweis. Es wird nicht erwartet, dass sie eine gute Leistung erreicht. Deshalb betrachtet der Hauptteil dieser Arbeit nur Zykluszeiten von mindestens 10 um das Design zu ver- einfachen. Eine Variante der DLXπ+ mit einer Zykluszeit von weniger als 9 wird nicht als moglich¨ erachtet, auch wenn kein formaler Beweis dafur¨ gegeben wird. In dieser Arbeit werden Formeln entwickelt, die Beschrankungen¨ fur¨ die Parameter der DLXπ+wie zum Beispiel die maximale Anzahl von Reservation Station Eintragen¨ in Abhangigkeit¨ von der Zykluszeit berechnen. Andere Formeln errechnen, welche Modifikationen am Basis-Design notwendig sind um eine bestimmte Zykluszeit zu erreichen und welchen Einfluss dies auf die Anzahl der Pipeline-Stufen hat. Damit wird die Grundlage gelegt, um als zukunftige¨ Arbeit einen Zyklus-genauen DLXπ+- Simulator zu schreiben, der die Leistung der DLXπ+ fur¨ einen gegebenen Benchmark und verschiedenen Zykluszeiten berechnet.
Recommended publications
  • Computer Science 246 Computer Architecture Spring 2010 Harvard University
    Computer Science 246 Computer Architecture Spring 2010 Harvard University Instructor: Prof. David Brooks [email protected] Dynamic Branch Prediction, Speculation, and Multiple Issue Computer Science 246 David Brooks Lecture Outline • Tomasulo’s Algorithm Review (3.1-3.3) • Pointer-Based Renaming (MIPS R10000) • Dynamic Branch Prediction (3.4) • Other Front-end Optimizations (3.5) – Branch Target Buffers/Return Address Stack Computer Science 246 David Brooks Tomasulo Review • Reservation Stations – Distribute RAW hazard detection – Renaming eliminates WAW hazards – Buffering values in Reservation Stations removes WARs – Tag match in CDB requires many associative compares • Common Data Bus – Achilles heal of Tomasulo – Multiple writebacks (multiple CDBs) expensive • Load/Store reordering – Load address compared with store address in store buffer Computer Science 246 David Brooks Tomasulo Organization From Mem FP Op FP Registers Queue Load Buffers Load1 Load2 Load3 Load4 Load5 Store Load6 Buffers Add1 Add2 Mult1 Add3 Mult2 Reservation To Mem Stations FP adders FP multipliers Common Data Bus (CDB) Tomasulo Review 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 LD F0, 0(R1) Iss M1 M2 M3 M4 M5 M6 M7 M8 Wb MUL F4, F0, F2 Iss Iss Iss Iss Iss Iss Iss Iss Iss Ex Ex Ex Ex Wb SD 0(R1), F0 Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss M1 M2 M3 Wb SUBI R1, R1, 8 Iss Ex Wb BNEZ R1, Loop Iss Ex Wb LD F0, 0(R1) Iss Iss Iss Iss M Wb MUL F4, F0, F2 Iss Iss Iss Iss Iss Ex Ex Ex Ex Wb SD 0(R1), F0 Iss Iss Iss Iss Iss Iss Iss Iss Iss M1 M2
    [Show full text]
  • Sections 3.2 and 3.3 Dynamic Scheduling – Tomasulo's Algorithm
    EEF011 Computer Architecture 計算機結構 Sections 3.2 and 3.3 Dynamic Scheduling – Tomasulo’s Algorithm 吳俊興 高雄大學資訊工程學系 October 2004 A Dynamic Algorithm: Tomasulo’s Algorithm • For IBM 360/91 (before caches!) – 3 years after CDC • Goal: High Performance without special compilers • Small number of floating point registers (4 in 360) prevented interesting compiler scheduling of operations – This led Tomasulo to try to figure out how to get more effective registers — renaming in hardware! • Why Study 1966 Computer? • The descendants of this have flourished! – Alpha 21264, HP 8000, MIPS 10000, Pentium III, PowerPC 604, … Example to eleminate WAR and WAW by register renaming • Original DIV.D F0, F2, F4 ADD.D F6, F0, F8 S.D F6, 0(R1) SUB.D F8, F10, F14 MUL.D F6, F10, F8 WAR between ADD.D and SUB.D, WAW between ADD.D and MUL.D (Due to that DIV.D needs to take much longer cycles to get F0) • Register renaming DIV.D F0, F2, F4 ADD.D S, F0, F8 S.D S, 0(R1) SUB.D T, F10, F14 MUL.D F6, F10, T Tomasulo Algorithm • Register renaming provided – by reservation stations, which buffer the operands of instructions waiting to issue – by the issue logic • Basic idea: – a reservation station fetches and buffers an operand as soon as it is available, eliminating the need to get the operand from a register (WAR) – pending instructions designate the reservation station that will provide their input (RAW) – when successive writes to a register overlap in execution, only the last one is actually used to update the register (WAW) As instructions are issued, the register specifiers for pending operands are renamed to the names of the reservation station, which provides register renaming • more reservation stations than real registers Properties of Tomasulo Algorithm 1.
    [Show full text]
  • Multiple Instruction Issue and Completion Per Clock Cycle Using Tomasulo’S Algorithm – a Simple Example
    Multiple Instruction Issue and Completion per Clock Cycle Using Tomasulo’s Algorithm – A Simple Example Assumptions: . The processor has in-order issue but execution may be out-of-order as it is done as soon after issue as operands are available. Instructions commit as they finish execu- tion. There is no speculative execution on Branch instructions because out-of-order com- pletion prevents backing out incorrect results. The reason for the out-of-order com- pletion is that there is no buffer between results from the execution and their com- mitment in the register file. This restriction is just to keep the example simple. It is possible for at least two instructions to issue in a cycle. The processor has two integer ALU’s with one Reservation Station each. ALU op- erations complete in one cycle. We are looking at the operation during a sequence of arithmetic instructions so the only Functional Units shown are the ALU’s. NOTES: Customarily the term “issue” is the transition from ID to the window for dy- namically scheduled machines and dispatch is the transition from the window to the FU’s. Since this machine has an in-order window and dispatch with no speculation, I am using the term “issue” for the transition to the reservation stations. It is possible to have multiple reservation stations in front of a single functional unit. If two instructions are ready for execution on that unit at the same clock cycle, the lowest station number executes. There is a problem with exception processing when there is no buffering of results being committed to the register file because some register entries may be from instructions past the point at which the exception occurred.
    [Show full text]
  • Tomasulo's Algorithm
    Out-of-Order Execution Several implementations • out-of-order completion • CDC 6600 with scoreboarding • IBM 360/91 with Tomasulo’s algorithm & reservation stations • out-of-order completion leads to: • imprecise interrupts • WAR hazards • WAW hazards • in-order completion • MIPS R10000/R12000 & Alpha 21264/21364 with large physical register file & register renaming • Intel Pentium Pro/Pentium III with the reorder buffer Autumn 2006 CSE P548 - Tomasulo 1 Out-of-order Hardware In order to compute correct results, need to keep track of: • which instruction is in which stage of the pipeline • which registers are being used for reading/writing & by which instructions • which operands are available • which instructions have completed Each scheme has different hardware structures & different algorithms to do this Autumn 2006 CSE P548 - Tomasulo 2 1 Tomasulo’s Algorithm Tomasulo’s Algorithm (IBM 360/91) • out-of-order execution capability plus register renaming Motivation • long FP delays • only 4 FP registers • wanted common compiler for all implementations Autumn 2006 CSE P548 - Tomasulo 3 Tomasulo’s Algorithm Key features & hardware structures • reservation stations • distributed hazard detection & execution control • forwarding to eliminate RAW hazards • register renaming to eliminate WAR & WAW hazards • deciding which instruction to execute next • common data bus • dynamic memory disambiguation Autumn 2006 CSE P548 - Tomasulo 4 2 Hardware for Tomasulo’s Algorithm Autumn 2006 CSE P548 - Tomasulo 5 Tomasulo’s Algorithm: Key Features Reservation
    [Show full text]
  • Tomasulo's Algorithm
    Lecture-12 (Tomasulo’s Algorithm) CS422-Spring 2018 Biswa@CSE-IITK Another Dynamic One: Tomasulo’s Algorithm • For IBM 360/91 about 3 years after CDC 6600 (1966) • Goal: High Performance without special compilers • Differences between IBM 360 & CDC 6600 ISA – IBM has only 2 register specifiers/instruction vs. 3 in CDC 6600 – IBM has 4 FP registers vs. 8 in CDC 6600 – IBM has memory-register ops • Why Study? lead to Alpha 21264, HP 8000, MIPS 10000, Pentium II, PowerPC 604, … CS422: Spring 2018 Biswabandan Panda, CSE@IITK 2 Tomasulo’s Organization From Mem FP Op FP Registers Queue Load Buffers Load1 Load2 Load3 Load4 Load5 Store Load6 Buffers Add1 Add2 Mult1 Add3 Mult2 Reservation To Mem Stations FP adders FP multipliers CS422: Spring 2018 Biswabandan Panda, CSE@IITK 3 Tomasulo vs Scoreboard • Control & buffers distributed with Function Units (FU) vs. centralized in scoreboard; – FU buffers called “reservation stations”; have pending operands • Registers in instructions replaced by values or pointers to reservation stations(RS); called register renaming ; – avoids WAR, WAW hazards – More reservation stations than registers, so can do optimizations compilers can’t • Results to FU from RS, not through registers, over Common Data Bus that broadcasts results to all FUs • Load and Stores treated as FUs with RSs as wells CS422: Spring 2018 Biswabandan Panda, CSE@IITK 4 Reservation Station Components Op: Operation to perform in the unit (e.g., + or –) Vj, Vk: Value of Source operands – Store buffers has V field, result to be stored Qj, Qk: Reservation stations producing source registers (value to be written) – Note: No ready flags as in Scoreboard; Qj,Qk=0 => ready – Store buffers only have Qi for RS producing result Busy: Indicates reservation station or FU is busy Register result status—Indicates which functional unit will write each register, if one exists.
    [Show full text]
  • Tomasulo Algorithm and Dynamic Branch Prediction
    Lecture 4: Tomasulo Algorithm and Dynamic Branch Prediction Professor David A. Patterson Computer Science 252 Spring 1998 DAP Spr.‘98 ©UCB 1 Review: Summary • Instruction Level Parallelism (ILP) in SW or HW • Loop level parallelism is easiest to see • SW parallelism dependencies defined for program, hazards if HW cannot resolve • SW dependencies/compiler sophistication determine if compiler can unroll loops – Memory dependencies hardest to determine • HW exploiting ILP – Works when can’t know dependence at run time – Code for one machine runs well on another • Key idea of Scoreboard: Allow instructions behind stall to proceed (Decode => Issue instr & read operands) – Enables out-of-order execution => out-of-order completion – ID stage checked both for structural & data dependenciesDAP Spr.‘98 ©UCB 2 Review: Three Parts of the Scoreboard 1.Instruction status—which of 4 steps the instruction is in 2.Functional unit status—Indicates the state of the functional unit (FU). 9 fields for each functional unit Busy—Indicates whether the unit is busy or not Op—Operation to perform in the unit (e.g., + or –) Fi—Destination register Fj, Fk—Source-register numbers Qj, Qk—Functional units producing source registers Fj, Fk Rj, Rk—Flags indicating when Fj, Fk are ready 3.Register result status—Indicates which functional unit will write each register, if one exists. Blank when no pending instructions will write that register DAP Spr.‘98 ©UCB 3 Review: Scoreboard Example Cycle 3 Instruction status Read ExecutionWrite Instruction j k Issue operandscompleteResult LD F6 34+ R2 1 2 3 LD F2 45+ R3 MULTDF0 F2 F4 SUBD F8 F6 F2 DIVD F10 F0 F6 ADDD F6 F8 F2 Functional unit status dest S1 S2 FU for jFU for kFj? Fk? Time Name Busy Op Fi Fj Fk Qj Qk Rj Rk Integer Yes Load F6 R2 Yes Mult1 No Mult2 No Add No Divide No Register result status Clock F0 F2 F4 F6 F8 F10 F12 ..
    [Show full text]
  • WCAE 2003 Workshop on Computer Architecture Education
    WCAE 2003 Proceedings of the Workshop on Computer Architecture Education in conjunction with The 30th International Symposium on Computer Architecture DQG 2003 Federated Computing Research Conference Town and Country Resort and Convention Center b San Diego, California June 8, 2003 Workshop on Computer Architecture Education Sunday, June 8, 2003 Session 1. Welcome and Keynote 8:45–10:00 8:45 Welcome Edward F. Gehringer, workshop organizer 8:50 Keynote address, “Teaching and teaching computer Architecture: Two very different topics (Some opinions about each),” Yale Patt, teacher, University of Texas at Austin 1 Break 10:00–10:30 Session 2. Teaching with New Architectures 10:30–11:20 10:30 “Intel Itanium floating-point architecture,” Marius Cornea, John Harrison, and Ping Tak Peter Tang, Intel Corp. ................................................................................................................................. 5 10:50 “DOP — A CPU core for teaching basics of computer architecture,” Miloš BeþváĜ, Alois Pluháþek and JiĜí DanƟþek, Czech Technical University in Prague ................................................................. 14 11:05 Discussion Break 11:20–11:30 Session 3. Class Projects 11:30–12:30 11:30 “Superscalar out-of-order demystified in four instructions,” James C. Hoe, Carnegie Mellon University ......................................................................................................................................... 22 11:50 “Bridging the gap between undergraduate and graduate experience in
    [Show full text]
  • Verification of an Implementation of Tomasulo's Algorithm by Compositional Model Checking
    Verification of an Implementation of Tomasulo's Algorithm by Compositional Model Checking K. L. McMillan Cadence Berkeley Labs 2001 Addison St., 3rd floor Berkeley, CA 94704-1103 [email protected] Abstract. An implementation of an out-of-order processing unit based on Tomasulo's algorithm is formally verified using compositional model checking techniques. This demonstrates that finite-state methods can be applied to such algorithms, without recourse to higher-order proof sys- tems. The paper introduces a novel compositional system that supports cyclic environment reasoning and multiple environment abstractions per signal. A proof of Tomasulo's algorithm is outlined, based on refinement maps, and relying on the novel features of the compositional system. This proof is fully verified by the SMV verifier, using symmetry to reduce the number of assertions that must be verified. 1 Introduction We present the formal design verification of an "out-of-order" processing unit based on Tomasulo's algorithm [Tom67]. This and related techniques such as "register renaming" are used in modern microprocessors [LR97] to keep multiple or deeply pipelined execution units busy by executing instructions in data-flow order, rather than sequential order. The complex variability of instruction flow in "out-of-order" processors presents a significant opportunity for undetected er- rors, compared to an "in-order" pipelined machine where the flow of instructions is fixed and orderly. Unfortunately, this variability also makes formal verifica- tion of such machines difficult. They are beyond the present capacity of methods based on integrated decision procedures [BD94], and are not amenable to sym- bolic trajectory analysis [JNB96].
    [Show full text]
  • MIPS Architecture with Tomasulo Algorithm [12]
    CALIFORNIA STATE UNIVERSITY NORTHRIDGE TOMASULO ARCHITECTURE BASED MIPS PROCESSOR A graduate project submitted in partial fulfilment for the requirement Of the degree of Master of Science In Electrical Engineering By Sameer S Pandit May 2014 The graduate project of Sameer Pandit is approved by: ______________________________________ ____________ Dr. Ali Amini, Ph.D. Date _______________________________________ ____________ Dr. Shahnam Mirzaei, Ph.D. Date _______________________________________ ____________ Dr. Ramin Roosta, Ph.D., Chair Date California State University Northridge ii ACKNOWLEDGEMENT I would like to express my gratitude towards all the members of the project committee and would like to thank them for their continuous support and mentoring me for every step that I have taken towards the completion of this project. Dr. Roosta, for his guidance, Dr. Shahnam for his ideas, and Dr. Ali Amini for his utmost support. I would also like to thank my family and friends for their love, care and support through all the tough times during my graduation. iii Table of Contents SIGNATURE PAGE .......................................................................................................... ii ACKNOWLEDGEMENT ................................................................................................. iii LIST OF FIGURES .......................................................................................................... vii ABSTRACT .......................................................................................................................
    [Show full text]
  • MP-Tomasulo: a Dependency-Aware Automatic Parallel Execution Engine for Sequential Programs
    i i i i MP-Tomasulo: A Dependency-Aware Automatic Parallel Execution Engine for Sequential Programs CHAO WANG, University of Science and Technology of China XI LI and JUNNENG ZHANG, Suzhou Institute for University of Science and Technology of China XUEHAI ZHOU, University of Science and Technology of China XIAONING NIE,Intel This article presents MP-Tomasulo, a dependency-aware automatic parallel task execution engine for sequential programs. Applying the instruction-level Tomasulo algorithm to MPSoC environments, MP- Tomasulo detects and eliminates Write-After-Write (WAW) and Write-After-Read (WAR) inter-task depen- dencies in the dataflow execution, therefore to operate out-of-order task execution on heterogeneous units. We implemented the prototype system within a single FPGA. Experimental results on EEMBC applications demonstrate that MP-Tomasulo can execute the tasks out-of-order to achieve as high as 93.6% to 97.6% of ideal peak speedup. A comparative study against a state-of-the-art dataflow execution scheme is illustrated with a classic JPEG application. The promising results show MP-Tomasulo enables programmers to uncover more task-level parallelism on heterogeneous systems, as well as to ease the burden of programmers. Categories and Subject Descriptors: C.1.4 [Processor Architecture]: Parallel Architectures; D.1.3 9 [Programming Techniques]: Concurrent Programming—Parallel programming General Terms: Performance, Design Additional Key Words and Phrases: Automatic parallelization, data dependency, out-of-order execution ACM Reference Format: Wang, C., Li, X., Zhang, J., Zhou, X., and Nie, X. 2013. MP-Tomasulo: A dependency-aware automatic parallel execution engine for sequential programs. ACM Trans.
    [Show full text]
  • California State University, Northridge a Tomasulo
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE A TOMASULO BASED MIPS SIMULATOR A graduate project submitted in partial fulfillment of the requirement For the degree of Master of Science In Electrical Engineering By Reza Azimi May 2013 Signature Page The graduate project of Reza Azimi is approved: ____________________________________ _____________ Ali Amini, Ph.D. Date ____________________________________ _____________ Shahnam Mirzaei, Ph.D. Date ____________________________________ _____________ Ramin Roosta, Ph.D., Chair Date California State University, Northridge ii Acknowledgement I would like to thank Dr. Shahnam Mirzaei for providing nice ideas to work upon and Dr. Ramin Roosta for his guidance. I sincerely want to thank my other committee member Dr. Ali Amini for his support as a member of project committee. I would like to show gratitude to all of my project committee members for being great mentors and their continuous guidance. Most importantly, I like to thank my family for their endless support, unconditional love and great care throughout my life. iii Table of Contents Signature Page .................................................................................................................... ii Acknowledgement ............................................................................................................. iii List of Figures ..................................................................................................................... v List of Tables ....................................................................................................................
    [Show full text]
  • Superscalar Techniques – Register Data Flow Inside the Processor
    Advanced Computer Architectures 03 Superscalar Techniques – Data flow inside processor as result of instructions execution (Register Data Flow) Czech Technical University in Prague, Faculty of Electrical Engineering Slides authors: Michal Štepanovský, update Pavel Píša B4M35PAP Advanced Computer Architectures 1 Superscalar Technique – see previous lesson • The goal is to achieve maximum throughput of instruction processing • Instruction processing can be analyzed as instructions flow or data flow, more precisely: • register data flow – data flow between processor registers • instruction flow through pipeline Today’s lecture • memory data flow – to/from memory topic • It roughly matches to: • Arithmetic-logic (ALU) and other computational instructions (FP, bit- field, vector) processing • Branch instruction processing • Load/store instruction processing • maximizing the throughput of these three flows (or complete flow) correspond to the minimizing penalties and latencies of above three instructions types B4M35PAP Advanced Computer Architectures 2 Superscalar pipeline – see previous lesson Fetch Instruction / decode buffer Decode Dispatch buffer Dispatch Reservation stations Issue Execute Finish Reorder / Completion buffer Complete Store buffer Retire B4M35PAP Advanced Computer Architectures 3 Register data flow • load/store architecture – lw,sw,... instructions without other data processing (ALU, FP, …) or modifications • We start with register-register instruction type processing (all instructions performing some operation on source registers and using a destination register to store result of that operation) • Register recycling – The reuse of registers. It has two forms: • static – due to optimization performed by the compiler during register allocation. In first step, compiler generates single-assignment code, supposing infinity number of registers. In the second step, due to limited number of registers in ISA, it attempts to keep as many of the temporary values in registers as possible.
    [Show full text]