Chapter 2 - Influence of Riparian Vegetation on Nocturnal Flying Insects

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 2 - Influence of Riparian Vegetation on Nocturnal Flying Insects AN ABSTRACT OF THE DISSERTATION OF Holly K. Ober for the degree of Doctor of Philosophy in Forest Science and Wildlife Science presented on November 7, 2006. Title: Functional Relationships Among Vegetation, Nocturnal Insects, and Bats in Riparian Areas of the Oregon Coast Range. Abstract approved:______________________________________________________ John P. Hayes Vegetation provides food for many insects, and many insects serve as food for bats. We investigated the linkages among these three trophic levels in riparian areas throughout the Oregon Coast Range by examining the influence of vegetation cover, composition, and structure on the activity of nocturnal insects and bats, the influence of insect abundance on activity of bats, and the diets of bats. Vegetation characteristics at the stream reach spatial scale explained more variation in bat activity than did vegetation characteristics measured at larger spatial scales. Vegetation characteristics most closely associated with bat activity varied among species of bat, included both canopy and shrub attributes, and apparently operated through constraints imposed by vegetation structure on bat flight capabilities rather than through regulation of the distribution of insect prey abundance. The two orders of insects most frequently consumed by bats were Lepidoptera and Diptera. Three species of bat fed predominantly on small insects likely of aquatic origin, and activity of these species was correlated with local abundance of small insects. The seven remaining species of bat fed predominantly on larger, terrestrial insects, and their activity was not correlated with local abundance of insects. Variation among stream reaches in the number of captures and biomass of the six most commonly captured orders of insects (Diptera, Lepidoptera, Trichoptera, Ephemeroptera, Coleoptera, and Hymenoptera) was better explained by cover of deciduous canopy than by any other vegetation characteristic investigated. The number of captures and biomass of these insects increased as deciduous canopy cover increased. Canopy composition explained variation in macro-moth community composition as well: species richness and cover of canopy trees and of shrubs were associated with variation in moth species composition. Number of moths captured, biomass, and Shannon’s species diversity were greater in deciduous- than conifer-dominated stream reaches. Deciduous shrub and canopy trees play an important role in the determination of nocturnal flying insect abundance and community composition. Management activities that promote deciduous vegetation in riparian areas in this region are likely to help maintain biodiversity and abundance of nocturnal insects, which in turn serve as food resources for bats. © Copyright by Holly K. Ober November 7, 2006 All Rights Reserved Functional Relationships Among Vegetation, Nocturnal Insects, and Bats in Riparian Areas of the Oregon Coast Range by Holly K. Ober A DISSERTATION submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented November 7, 2006 Commencement June 2007 Doctor of Philosophy dissertation of Holly K. Ober presented on November 7, 2006. APPROVED: _____________________________________________________________________ Major Professor, representing Forest Science and Wildlife Science _____________________________________________________________________ Head of the Department of Forest Science _____________________________________________________________________ Head of the Department of Fisheries and Wildlife _____________________________________________________________________ Dean of the Graduate School I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request. _____________________________________________________________________ Holly K. Ober, Author ACKNOWLEDGEMENTS I am indebted to family, friends, and colleagues for the support and encouragement they provided me the past five years. I want to express sincere appreciation to those close friends and fellow students who helped me make it through this endeavor: Rajat Panwar, Fred Frick, Peter Giampaoli, Ed Arnett, Dave Waldien, and Julie Boland. I also owe gratitude to my parents for their limitless moral and psychological support. My major advisor, Dr. John Hayes, has been an outstanding role model, and I thank him for his guidance, optimism, and enthusiasm. This project, as well as a multitude of other academic (and athletic) endeavors I have undertaken while at OSU, would not have been possible without his encouragement. I also thank my committee members for their contributions: Dr. Dave Hibbs provided thoughtful and creative insight during the planning stages of the project, Dr. Jeff Miller furnished guidance on moth collection and identification, and Dr. Gail Olson provided expertise in model selection. I am grateful to Manuela Huso and NaDene Sorensen for providing statistical counsel. This project benefited from the contributions of many technicians and teachers. I want to thank the large crew of field assistants who helped collect the data: Angela Baker, Julie Boland, Nicole Duncum, AJ Fedoruk, Tim Fox, Anne Hendrickson, Josh Jones, Francine Nogash, and Angella Sjollema. They each managed to maintain a cheerful outlook despite my requests that they work long hours amidst hostile plants, slippery streambeds, and steep slopes in remote areas throughout the night. I am especially indebted to Tim Fox for teaching me how to identify Oregon plants and for challenging me to think outside the box. I also want to thank those who helped with data processing. Angela Baker, Julie Boland, Nicole Duncum, and Peter Giampaoli assisted with insect sorting. Dana Ross provided all moth identifications. Finally I thank Dr. John Whitaker, Jr. for teaching me the skills required to identify insect remains in bat guano, Fred Frick for teaching me how to identify bat echolocation calls, and Ed Arnett and Dave Waldien for teaching me how to be a critical thinker. Funding for this project was provided by the Cooperative Forest Ecosystem Research program (a consortium of the USGS Forest and Rangeland Ecosystem Science Center, Bureau of Land Management, Oregon Department of Forestry, and Oregon State University), the US Forest Service, Simpson Timber Company, and Weyerhaeuser Timber Company. TABLE OF CONTENTS Page CHAPTER 1 - INTRODUCTION ................................................................................... 1 Influence of Vegetation on Animals....................................................................... 1 Linkages Among Bats, Insects, and Vegetation in Riparian Areas ........................ 2 Contributions of Coniferous and Deciduous Vegetation........................................ 5 Literature Cited ....................................................................................................... 7 CHAPTER 2 - INFLUENCE OF RIPARIAN VEGETATION ON NOCTURNAL FLYING INSECTS ........................................................................................................ 13 Abstract................................................................................................................. 13 Introduction........................................................................................................... 13 Research Approach .......................................................................................... 15 Methods................................................................................................................. 18 Study Area........................................................................................................ 18 Insect Sampling................................................................................................ 20 Vegetation Sampling........................................................................................ 21 Statistical Analyses .......................................................................................... 23 Results................................................................................................................... 25 Discussion............................................................................................................. 28 Conclusions and Management Implications .................................................... 31 CHAPTER 3 – MACRO-MOTH BIODIVERSITY IN RIPARIAN AREAS OF THE OREGON COAST RANGE........................................................................................... 47 Abstract................................................................................................................. 47 Introduction........................................................................................................... 48 Methods................................................................................................................. 50 Study Area........................................................................................................ 50 Lepidoptera Sampling ...................................................................................... 52 Vegetation Sampling........................................................................................ 53 Statistical Analyses .......................................................................................... 54 Results..................................................................................................................
Recommended publications
  • Managing for Biodiversity in Young Douglas-Fir Forests of Western Oregon
    Managing for Biodiversity in Young Douglas-Fir Forests of Western Oregon Biological Science Report USGS/BRD/BSR 2002-0006 Technical Report Series The Biological Resources Division publishes scientific and technical articles and reports resulting from the research performed by our scientists and partners. These articles appear in professional journals around the world. Reports are published in two report series: Biological Science Reports and Information and Technology Reports. Series Descriptions Biological Science Reports ISSN 1081-292X Information and Technology Reports ISSN 1081-2911 This series records the significant findings resulting from These reports are intended for publication of book-length sponsored and co-sponsored research programs. They may monographs; synthesis documents; compilations of include extensive data or theoretical analyses. Papers in this conference and workshop papers; important planning and series are held to the same peer-review and high-quality reference materials such as strategic plans, standard standards as their journal counterparts. operating procedures, protocols, handbooks, and manuals; and data compilations such as tables and bibliographies. Papers in this series are held to the same peer-review and high-quality standards as their journal counterparts. Photo credits Front and back cover forest background: Ed Jensen Banner photos on front cover, left to right caterpillar (Aseptis binotata): Jeff Miller; John Tappeiner, Pat Muir, and Joe Lint discuss forest management: Mark Reed; lichen (Pseudocyphellaria rainierensis): Jim Riley; thinned forest stand: Jim Riley; Wilson’s warbler (Wilsonia pusilla): Joan Hagar Banner photos on back cover, left to right Pacific dogwood (Cornus nuttallii): Ruth Jacobs; Swainson’s thrush (Catharus ustulatus): Cornell Laboratory of Ornithology, Bill Dyer; bracken fern (Pteridium aquilinum): Joan Hagar Copies of this publication are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161 (800-553-6847 or 703-487-4650).
    [Show full text]
  • Insect Survey of Four Longleaf Pine Preserves
    A SURVEY OF THE MOTHS, BUTTERFLIES, AND GRASSHOPPERS OF FOUR NATURE CONSERVANCY PRESERVES IN SOUTHEASTERN NORTH CAROLINA Stephen P. Hall and Dale F. Schweitzer November 15, 1993 ABSTRACT Moths, butterflies, and grasshoppers were surveyed within four longleaf pine preserves owned by the North Carolina Nature Conservancy during the growing season of 1991 and 1992. Over 7,000 specimens (either collected or seen in the field) were identified, representing 512 different species and 28 families. Forty-one of these we consider to be distinctive of the two fire- maintained communities principally under investigation, the longleaf pine savannas and flatwoods. An additional 14 species we consider distinctive of the pocosins that occur in close association with the savannas and flatwoods. Twenty nine species appear to be rare enough to be included on the list of elements monitored by the North Carolina Natural Heritage Program (eight others in this category have been reported from one of these sites, the Green Swamp, but were not observed in this study). Two of the moths collected, Spartiniphaga carterae and Agrotis buchholzi, are currently candidates for federal listing as Threatened or Endangered species. Another species, Hemipachnobia s. subporphyrea, appears to be endemic to North Carolina and should also be considered for federal candidate status. With few exceptions, even the species that seem to be most closely associated with savannas and flatwoods show few direct defenses against fire, the primary force responsible for maintaining these communities. Instead, the majority of these insects probably survive within this region due to their ability to rapidly re-colonize recently burned areas from small, well-dispersed refugia.
    [Show full text]
  • Coleoptera and Lepidoptera (Insecta) Diversity in the Central Part of Sredna Gora Mountains (Bulgaria)
    BULLETIN OF THE ENTOMOLOGICALENTOMOLOGICAL SOCIETY OF MALTAMALTA (2019) Vol. 10 : 75–95 DOI: 10.17387/BULLENTSOCMALTA.2019.09 Coleoptera and Lepidoptera (Insecta) diversity in the central part of Sredna Gora Mountains (Bulgaria) Rumyana KOSTOVA1*, Rostislav BEKCHIEV2 & Stoyan BESHKOV2 ABSTRACT.ABSTRACT. Despite the proximity of Sredna Gora Mountains to Sofia, the insect assemblages of this region are poorly studied. As a result of two studies carried out as a part of an Environmental Impact Assessment in the Natura 2000 Protected Areas: Sredna Gora and Popintsi, a rich diversity of insects was discovered, with 107 saproxylic and epigeobiont Coleoptera species and 355 Lepidoptera species recorded. This research was conducted during a short one-season field study in the surrounding areas of the town of Panagyurishte and Oborishte Village. Special attention was paid to protected species and their conservation status. Of the Coleoptera recorded, 22 species were of conservation significance. Forty-five Lepidoptera species of conservation importance were also recorded. KEY WORDS.WORDS. Saproxylic beetles, epigeobiont beetles, Macrolepidoptera, Natura 2000 INTRODUCTION INTRODUCTION The Sredna Gora Mountains are situated in the central part of Bulgaria, parallel to the Stara Planina Mountains The Sredna chain. Gora TheyMountains are insufficiently are situated instudied the central with partregard of toBulgaria, their invertebrate parallel to theassemblages. Stara Planina Mountains chain. They are insufficiently studied with regard to their invertebrate assemblages. There is lack of information about the beetles from Sredna Gora Mountains in the region of the Panagyurishte There is lack townof information and Oborishte about village. the beetles Most offrom the Srednaprevious Gora data Mountains is old and foundin the inregion catalogues, of the mentioningPanagyurishte the town mountain and Oborishte without distinct village.
    [Show full text]
  • Butterflies and Moths of Gwinnett County, Georgia, United States
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • Autographa Gamma
    1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ......................................................................................................
    [Show full text]
  • Macrolepidoptera Inventory of the Chilcotin District
    Macrolepidoptera Inventory of the Chilcotin District Aud I. Fischer – Biologist Jon H. Shepard - Research Scientist and Crispin S. Guppy – Research Scientist January 31, 2000 2 Abstract This study was undertaken to learn more of the distribution, status and habitat requirements of B.C. macrolepidoptera (butterflies and the larger moths), the group of insects given the highest priority by the BC Environment Conservation Center. The study was conducted in the Chilcotin District near Williams Lake and Riske Creek in central B.C. The study area contains a wide variety of habitats, including rare habitat types that elsewhere occur only in the Lillooet-Lytton area of the Fraser Canyon and, in some cases, the Southern Interior. Specimens were collected with light traps and by aerial net. A total of 538 species of macrolepidoptera were identified during the two years of the project, which is 96% of the estimated total number of species in the study area. There were 29,689 specimens collected, and 9,988 records of the number of specimens of each species captured on each date at each sample site. A list of the species recorded from the Chilcotin is provided, with a summary of provincial and global distributions. The habitats, at site series level as TEM mapped, are provided for each sample. A subset of the data was provided to the Ministry of Forests (Research Section, Williams Lake) for use in a Flamulated Owl study. A voucher collection of 2,526 moth and butterfly specimens was deposited in the Royal BC Museum. There were 25 species that are rare in BC, with most known only from the Riske Creek area.
    [Show full text]
  • Cladistic Analysis of the Sub- Family Noctuinae (Lepidoptera: Noctuidae)From Pakistan
    KAMALUDDIN ET AL (2013), FUUAST J. BIOL., 3(1): 121-132 CLADISTIC ANALYSIS OF THE SUB- FAMILY NOCTUINAE (LEPIDOPTERA: NOCTUIDAE)FROM PAKISTAN SYED KAMALUDDIN1, SHAHEEN NAZ2 AND SHAKIRA3 1Fedral Urdu University of Arts Sciences and Technology, Gulshan-e- Iqbal, Karachi-Pakistan. 2,3APWA Govt Girls Higher Secondary School, Liaquat abad, Karachi-Pakistan. Corresponding author e-mail: [email protected] Abstract The cladistic analysis of 24- species of the representatives of five genera of the sub-family Noctuinae attempted from Pakistan. A cladogram is constructed using the apomorphies and are discussed of the included texa with their sistergoup and outgroup relationship. Introduction The cladistic analysis on different families of the Lepidoptera were attemted by various authers Viz. Peigler (1993), Choi(2006), Ylla et al.(2005), Emerson et al. (1997), Kamaluddin et al. (1997, 1999 and 2000) Willmott (2003), Brower (2000) and De Camargo et al. (2009). Kamaluddin et al. (1997) attempted a review and Lym cladistic analysis af ntriidgenera from Pakistan and adjoining areas. They also formulated a key of 23- genera of the family Peigler (1993) attempted hypothetical phylogenies of the ten genera of Neotropical saturmid sub-family Arsenurinae using cladistic methodology to analyze morphological characters of adult and Lymandridae and discussed their apomorphies on venations of both wings and external morphological charactersied the cladistic analysis Sphingidae from Pakistan. They also formulate of 28- genera of five sub- families of Hawk . larvae. Kamaluddin et al. (1999) stud moths family d a key of above genera and discussed sister and out-group relationship on the basis of apomorphies. In (2000) Kamaluddin et al.
    [Show full text]
  • Survey of Lepidoptera of the Wainwright Dunes Ecological Reserve
    SURVEY OF LEPIDOPTERA OF THE WAINWRIGHT DUNES ECOLOGICAL RESERVE Alberta Species at Risk Report No. 159 SURVEY OF LEPIDOPTERA OF THE WAINWRIGHT DUNES ECOLOGICAL RESERVE Doug Macaulay Alberta Species at Risk Report No.159 Project Partners: i ISBN 978-1-4601-3449-8 ISSN 1496-7146 Photo: Doug Macaulay of Pale Yellow Dune Moth ( Copablepharon grandis ) For copies of this report, visit our website at: http://www.aep.gov.ab.ca/fw/speciesatrisk/index.html This publication may be cited as: Macaulay, A. D. 2016. Survey of Lepidoptera of the Wainwright Dunes Ecological Reserve. Alberta Species at Risk Report No.159. Alberta Environment and Parks, Edmonton, AB. 31 pp. ii DISCLAIMER The views and opinions expressed are those of the authors and do not necessarily represent the policies of the Department or the Alberta Government. iii Table of Contents ACKNOWLEDGEMENTS ............................................................................................... vi EXECUTIVE SUMMARY ............................................................................................... vi 1.0 Introduction ................................................................................................................... 1 2.0 STUDY AREA ............................................................................................................. 2 3.0 METHODS ................................................................................................................... 6 4.0 RESULTS ....................................................................................................................
    [Show full text]
  • Zoogeography of the Holarctic Species of the Noctuidae (Lepidoptera): Importance of the Bering Ian Refuge
    © Entomologica Fennica. 8.XI.l991 Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Bering ian refuge Kauri Mikkola, J, D. Lafontaine & V. S. Kononenko Mikkola, K., Lafontaine, J.D. & Kononenko, V. S. 1991 : Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Beringian refuge. - En to mol. Fennica 2: 157- 173. As a result of published and unpublished revisionary work, literature compi­ lation and expeditions to the Beringian area, 98 species of the Noctuidae are listed as Holarctic and grouped according to their taxonomic and distributional history. Of the 44 species considered to be "naturall y" Holarctic before this study, 27 (61 %) are confirmed as Holarctic; 16 species are added on account of range extensions and 29 because of changes in their taxonomic status; 17 taxa are deleted from the Holarctic list. This brings the total of the group to 72 species. Thirteen species are considered to be introduced by man from Europe, a further eight to have been transported by man in the subtropical areas, and five migrant species, three of them of Neotropical origin, may have been assisted by man. The m~jority of the "naturally" Holarctic species are associated with tundra habitats. The species of dry tundra are frequently endemic to Beringia. In the taiga zone, most Holarctic connections consist of Palaearctic/ Nearctic species pairs. The proportion ofHolarctic species decreases from 100 % in the High Arctic to between 40 and 75 % in Beringia and the northern taiga zone, and from between 10 and 20 % in Newfoundland and Finland to between 2 and 4 % in southern Ontario, Central Europe, Spain and Primorye.
    [Show full text]
  • Complex Vibratory Signalling and Putative Receptor Mechanisms in the Masked
    Complex Vibratory Signalling and Putative Receptor Mechanisms in the Masked Birch Caterpillar, Drepana arcuata (Lepidoptera, Drepanidae) By Christian Nathan A thesis submitted to the Faculty of Graduate and Post Doctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science Biology Carleton University Ottawa, Ontario © 2014 Christian Nathan ii Abstract The masked birch caterpillar, Drepana arcuata, uses 3 distinct signals when defending its territory from conspecific intruders. The 3 signals are anal scrape, mandible drum and mandible scrape. This study's goals were twofold: first, to test hypotheses on the functional significance of these complex signals, and second, to identify putative vibration receptors in the proleg. Based on experimental trials of size asymmetry certain signal characteristics of the mandible drum and anal scrape were observed to vary between individuals of different mass suggesting the 3 signals could be a result of content based selection and that size information is conferred during an interaction. Trials where the measuring distance was varied, only 2 characteristics of the anal scrape differed significantly between the four recording distances. A dissection study of the proleg discovered that both internal and external structures were innervated. Innervated setae and putative chordotonal organs may function as a multi-component receptor. iii Acknowledgements I would first like to thank Dr. Jayne Yack for taking me on as a Honour's student in September of 2011 and then as a Master's student the following Spring. Thank you for providing amazing guidance and helpful comments all throughout my studies here at Carleton University. Thank you for introducing me to the importance of research and publishing as well as sharing this information with a vibrant scientific community.
    [Show full text]
  • Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometro
    Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, & Noctuoidea) Biodiversity Inventory of the University of Florida Natural Area Teaching Lab Hugo L. Kons Jr. Last Update: June 2001 Abstract A systematic check list of 489 species of Lepidoptera collected in the University of Florida Natural Area Teaching Lab is presented, including 464 species in the superfamilies Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, and Noctuoidea. Taxa recorded in Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, and Thyrididae are also included. Moth taxa were collected at ultraviolet lights, bait, introduced Bahiagrass (Paspalum notatum), and by netting specimens. A list of taxa recorded feeding on P. notatum is presented. Introduction The University of Florida Natural Area Teaching Laboratory (NATL) contains 40 acres of natural habitats maintained for scientific research, conservation, and teaching purposes. Habitat types present include hammock, upland pine, disturbed open field, cat tail marsh, and shallow pond. An active management plan has been developed for this area, including prescribed burning to restore the upland pine community and establishment of plots to study succession (http://csssrvr.entnem.ufl.edu/~walker/natl.htm). The site is a popular collecting locality for student and scientific collections. The author has done extensive collecting and field work at NATL, and two previous reports have resulted from this work, including: a biodiversity inventory of the butterflies (Lepidoptera: Hesperioidea & Papilionoidea) of NATL (Kons 1999), and an ecological study of Hermeuptychia hermes (F.) and Megisto cymela (Cram.) in NATL habitats (Kons 1998). Other workers have posted NATL check lists for Ichneumonidae, Sphecidae, Tettigoniidae, and Gryllidae (http://csssrvr.entnem.ufl.edu/~walker/insect.htm).
    [Show full text]
  • Lepidoptera of the Tolman Bridge Area (2000-2011)
    LEPIDOPTERA OF THE TOLMAN BRIDGE AREA, ALBERTA, 2000-2011 Charles Bird, 8 March 2012 Box 22, Erskine, AB T0C 1G0 [email protected] The present paper includes a number of redeterminations and additions to the information in earlier reports. It also follows the up-to-date order and taxonomy of Pohl et al. (2010), rather than that of Hodges et al. (1983). Brian Scholtens, Greg Pohl and Jean-François Landry collecting moths at a sheet illuminated by a mercury vapor (MV) light, Tolman Bridge, 24 July 2003, during the 2003 Olds meetings of the Lepidopterist’s Society (C.D. Bird image). Tolman Bridge, is located in the valley of the Red Deer River, 18 km (10 miles) east of the town of Trochu. The bridge and adjoining Park land are in the north half of section 14, range 22, township 34, west of the Fourth Meridian. The coordinates at the bridge are 51.503N and 113.009W. The elevation ranges from around 600 m at the river to 800 m or so near the top of the river breaks. In a Natural Area Inspection Report dated 25 June 1982 and in the 1989 Trochu 82 P/14, 1:50,000 topographic map, the land southwest of the bridge was designated as the “Tolman Bridge Municipal Park” while that southeast of the bridge was referred to as the “Tolman Bridge Recreation Area”. In an Alberta, Department of the Environment, Parks and Protected Areas Division paper dated 9 May 2000, the areas on both sides of the river are included in “Dry Island Buffalo Jump Provincial Park”.
    [Show full text]