Carbon and Oxygen Isotopic Ratios. II. Semiregular Variable M Giants
Draft version December 11, 2019 Typeset using LATEX default style in AASTeX63 CARBON AND OXYGEN ISOTOPIC RATIOS. II. SEMI-REGULAR VARIABLE M GIANTS THOMAS LEBZELTER,1 KENNETH H. HINKLE,2 OSCAR STRANIERO,3 DAVID L. LAMBERT,4 CATHERINE A. PILACHOWSKI,5 and KRISTIE A. NAULT6 1Department of Astrophysics, University of Vienna T¨urkenschanzstrasse 17, 1180 Vienna, Austria 2NSF's National Optical-Infrared Astronomy Research Laboratory P.O. Box 26732, Tucson, AZ 85726, USA 3INAF, Osservatorio Astronomico d'Abruzzo. I-64100 Teramo, Italy, and INFN-LNGS, Assergi (AQ), Italy 4W.J. McDonald Observatory and Department of Astronomy The University of Texas at Austin, Austin, TX 78712-1205, USA 5Astronomy Department, Indiana University Bloomington Swain West 319, 727 East Third Street, Bloomington, IN 47405-7105, USA 6Department of Physics & Astrononomy, Univeristy of Iowa 203 Van Allen Hall, Iowa City, IA 52242-1479, USA ABSTRACT Carbon and oxygen isotopic ratios are reported for a sample of 51 SRb- and Lb-type variable asymp- totic giant branch stars. Vibration-rotation first- and second-overtone CO lines in 1.5 to 2.5 µm spectra were measured to derive isotopic ratios for 12C/13C, 16O/17O, and 16O/18O. Comparisons with pre- vious measurements for individual stars and with various samples of evolved stars, as available in the extant literature, are discussed. Using the oxygen isotopic ratios, the masses of the SRb stars can be derived. Combining the masses with Gaia luminosities, the SRb stars are shown to be antecedents of the Mira variables. The limiting parameters where plane-parallel, hydrostatic equilibrium model atmospheres can be used for abundance analysis of M giants are explored.
[Show full text]