AMS 550.472/672: Graph Theory Homework Problems - Week X

Total Page:16

File Type:pdf, Size:1020Kb

AMS 550.472/672: Graph Theory Homework Problems - Week X AMS 550.472/672: Graph Theory Homework Problems - Week X Problems to be handed in on Wednesday, April 5: 3,6,11. You may use results from class or previous HWs without proof. 1. Show that the block-cutvertex graph of any graph is a forest. 2. Suppose G be a graph with no isolated vertices. Show that if G has no even cycles, then every block of G is an edge or an odd cycle. Solution: Since G has no isolated vertices, every block B is either an edge, or is 2-connected. In the latter case, let P0 [ P1 [ ::: [ Pk be an ear decomposition of B. Since G has no even cycles, P0 must be odd. Now, if the ear P1 is not empty, then we have a path between two vertices in P0 that shares only the endpoints, say x; y, with P0. Consider the two paths in P0 between x and y. Since P0 has odd length, one of these paths must have odd length and one of them must have even length. Depending on the parity of the length of the path P1, this would create an even cycle in B. This is a contradiction. Thus, B cannot have any ears - it only consists of the odd cycle P0. 3. Let k ≥ 2. Show in a k-connected graph any k vertices lie on a common cycle. [Hint: Induction] Solution: By induction on k. If k = 2, then the result follow from the characterization of 2- connected graphs. For the induction step, consider any k vertices x1; : : : ; xk. By the induction hypothesis, since G is also k − 1-connected, there is a cycle C that contains x1; : : : ; xk−1. If these are the only vertices in C, i.e., C has length k − 1, then by the Fan Lemma (Theorem 4.2.23 in the textbook), we have k − 1 vertex disjoint paths from xk to C and appending the paths from xk to x1 and x2, we get a cycle containing all x1; : : : ; xk. Otherwise, there are at least k vertices in C, and thus again by the Fan Lemma, one can construct k vertex disjoint paths to C. By the pigeonhole principle, two of these paths have endpoints in C that are contained on the path from xi and xi+1 (inclusive) for some i = 1; : : : ; k − 2, or are contained on the path from xk−1 to x1. In either case, we can traverse the cycle C and make a detour to xk through these two vertices. 4. Recall that a graph is said to be even if every vertex has even degree. Show that a graph is even if and only if each block is even. Solution: (() If every block is even, then since the degree of any vertex is the sum of its degrees in each block (which is counted as 0 if it does not belong to a block), every vertex in the graph has even degree. Thus, the graph is even. ()) We prove this by induction on the number of blocks. Since the block-cutvertex graph of any graph is a forest, these exists a block B which shares at most one vertex with any other block (this would correspond to a degree 1 vertex in the block-cutvertex graph). Remove all the vertices in this block that is not shared with any other block and call this graph G0. We now have two cases: Case 1: There is no vertex in B that is shared by any other block. This means B is a connected component of the graph. Since the graph is even, this component must be even and hence B is even. By the induction hypothesis applied to G0, the remaining blocks also are even. Case 2: There is a vertex v that is shared by B and at least one other block. Since the graph is even, all vertices in B except v have even degree, since their degree in B is the same as their degree in the graph. Therefore, since any graph has an even number of odd degree vertices, 1 v must have even degree in B (otherwise B would have only 1 odd degree vertex). By the induction hypothesis applied to G0, all other blocks are also even. Thus, we are done. 5. Show that a graph is bipartite if and only if each block is bipartite. Solution: ()) If the graph is bipartite, then the same bipartition restricted to the blocks show that the blocks are bipartite. (( We show that there are no odd cycles. Consider any cycle C in the graph. Since C is two-connected, it must be contained in a block. Since this block is bipartite by hypothesis, the cycles must be even. Therefore, the graph has no odd cycles and is therefore bipartite. 6. Let G1;:::;Gk be the blocks of a simple graph G. Show that χ(G) = maxi=1;:::;k χ(Gi). Solution: By induction on the number k of blocks. The base case with k = 1 is trivial. For the induction step, consider the block-cutpoint graph of G. Since this is a tree, there is a leaf which corresponds to a block; without loss of generality let this be block Gk. Color the 0 graph G formed by G1 [ ::: [ Gk−1 using maxi=1;:::;k−1 χ(Gi) (by the induction hypothesis), 0 and color Gk using χ(Gk) colors. Then, if the colors of the common vertex of G and Gk in the two colorings are different, then just switch two of the colors in the coloring in Gk so that the common vertex gets the same color as in G0. Then we are done. 7. Suppose that G has no even cycles. Show that χ(G) ≤ 3. [Hint: Use Problem 2] Solution: By Problem 2 above, each block is an edge or an odd cycle. Thus, the chromatic number of each block is at most 3. We then have the result, from Problem 6. 8. Suppose every edge in a graph G appears in at most one cycle. Show that χ(G) ≤ 3. Solution: Each block is either an edge or a cycle; otherwise, if there is block which contains a cycle C and an edge e not on this cycle, we can take any edge f from the cycle and by the characterization of 2-connected graphs obtain a cycle C0 through e and f. C0 has to be different from C because e 62 C. Thus, f is on two different cycles C and C0 contradicting the hypothesis. The result then follows from Problem 6, because the chromatic number of any cycle is at most 3. 9. Construct a graph G that is not a complete graph, nor an odd cycle, but has a vertex ordering according to which the greedy coloring algorithm uses ∆(G) + 1 colors. [Note that Brook's theorem tells us that χ(G) ≤ ∆(G).] Solution: Consider the path on 4 vertices: x1; x2; x3; x4. Greedy coloring with the vertex ordering x1; x4; x2; x3 uses 3 colors and the maximum degree is 2. 10. For each k ≥ 2, construct a tree Tk with maximum degree k such that Tk has a vertex ordering with respect to which the greedy coloring gives k + 1 colors. Solution: We give a recursive construction. For k = 2, use the path from Problem 5 above along with its vertex ordering. For k ≥ 3, create Tk by taking k copies of Tk−1. For each copy, there is a vertex ordering which uses k colors. Let vi be the vertex in copy i which receives color i. Add a new vertex v and connect it to each vi. The vertex ordering for Tk is obtained by concatenating the vertex orderings for the k copies of Tk−1 and then v as the final vertex. This forces greedy to use color k + 1 on vertex v. 11. For every n ≥ 2, find a bipartite graph with 2n vertices such that there exists a vertex ordering relative to which the greedy coloring algorithm uses n colors rather than 2 colors. Solution: The bipartite graph be with V1 = fv1; v2; : : : ; vng and V2 = fu1; u2; : : : ; ung. vi is connected to uj if and only if i 6= j. Then the ordering v1; u1; v2; u2; : : : ; vi; ui; : : : ; vn; un uses n colors. 2 12. Show that every graph G has a vertex ordering according to which the greedy coloring algo- rithm uses χ(G) colors. Solution: Consider any coloring with χ(G) colors. Order the vertices, so that all vertices of color 1 appear first, followed by vertices of color 2, then color 3 and so forth. The greedy coloring then produces an optimal coloring. 13. A graph with χ(G) = k is called k-chromatic. A k-chromatic graph is called critically k- chromatic if for every vertex v, G n fvg is k − 1-colorable. (i) Show that every k-chromatic graph has an induced subgraph that is critically k-chromatic. Solution: Iteratively remove vertices that doesn't decrease the chromatic number. (ii) Show that every critically k-chromatic graph has minimum degree at least k−1. Solution: Suppose to the contrary that there is a vertex v with deg(v) ≤ k −2. Since G is critically k-chromatic, then G n fvg is k − 1 colorable. But since v has at most k − 2 neighbors, we can color it with one of the remaining colors, and get a k − 1 coloring of G which contradicts the fact that G is k-chromatic.
Recommended publications
  • A Fast and Scalable Graph Coloring Algorithm for Multi-Core and Many-Core Architectures
    A Fast and Scalable Graph Coloring Algorithm for Multi-core and Many-core Architectures Georgios Rokos1, Gerard Gorman2, and Paul H J Kelly1 1 Software Peroformance Optimisation Group, Department of Computing 2 Applied Modelling and Computation Group, Department of Earth Science and Engineering Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom, fgeorgios.rokos09,g.gorman,[email protected] Abstract. Irregular computations on unstructured data are an impor- tant class of problems for parallel programming. Graph coloring is often an important preprocessing step, e.g. as a way to perform dependency analysis for safe parallel execution. The total run time of a coloring algo- rithm adds to the overall parallel overhead of the application whereas the number of colors used determines the amount of exposed parallelism. A fast and scalable coloring algorithm using as few colors as possible is vi- tal for the overall parallel performance and scalability of many irregular applications that depend upon runtime dependency analysis. C¸ataly¨ureket al. have proposed a graph coloring algorithm which relies on speculative, local assignment of colors. In this paper we present an improved version which runs even more optimistically with less thread synchronization and reduced number of conflicts compared to C¸ataly¨urek et al.'s algorithm. We show that the new technique scales better on multi- core and many-core systems and performs up to 1.5x faster than its pre- decessor on graphs with high-degree vertices, while keeping the number of colors at the same near-optimal levels. Keywords: Graph Coloring; Greedy Coloring; First-Fit Coloring; Ir- regular Data; Parallel Graph Algorithms; Shared-Memory Parallelism; Optimistic Execution; Many-core Architectures; Intel®Xeon Phi™ 1 Introduction Many modern applications are built around algorithms which operate on irreg- ular data structures, usually in form of graphs.
    [Show full text]
  • I?'!'-Comparability Graphs
    Discrete Mathematics 74 (1989) 173-200 173 North-Holland I?‘!‘-COMPARABILITYGRAPHS C.T. HOANG Department of Computer Science, Rutgers University, New Brunswick, NJ 08903, U.S.A. and B.A. REED Discrete Mathematics Group, Bell Communications Research, Morristown, NJ 07950, U.S.A. In 1981, Chv&tal defined the class of perfectly orderable graphs. This class of perfect graphs contains the comparability graphs. In this paper, we introduce a new class of perfectly orderable graphs, the &comparability graphs. This class generalizes comparability graphs in a natural way. We also prove a decomposition theorem which leads to a structural characteriza- tion of &comparability graphs. Using this characterization, we develop a polynomial-time recognition algorithm and polynomial-time algorithms for the clique and colouring problems for &comparability graphs. 1. Introduction A natural way to color the vertices of a graph is to put them in some order v*cv~<” l < v, and then assign colors in the following manner: (1) Consider the vertxes sequentially (in the sequence given by the order) (2) Assign to each Vi the smallest color (positive integer) not used on any neighbor vi of Vi with j c i. We shall call this the greedy coloring algorithm. An order < of a graph G is perfect if for each subgraph H of G, the greedy algorithm applied to H, gives an optimal coloring of H. An obstruction in a ordered graph (G, <) is a set of four vertices {a, b, c, d} with edges ab, bc, cd (and no other edge) and a c b, d CC. Clearly, if < is a perfect order on G, then (G, C) contains no obstruction (because the chromatic number of an obstruction is twu, but the greedy coloring algorithm uses three colors).
    [Show full text]
  • COLORING and DEGENERACY for DETERMINING VERY LARGE and SPARSE DERIVATIVE MATRICES ASHRAFUL HUQ SUNY Bachelor of Science, Chittag
    COLORING AND DEGENERACY FOR DETERMINING VERY LARGE AND SPARSE DERIVATIVE MATRICES ASHRAFUL HUQ SUNY Bachelor of Science, Chittagong University of Engineering & Technology, 2013 A Thesis Submitted to the School of Graduate Studies of the University of Lethbridge in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE Department of Mathematics and Computer Science University of Lethbridge LETHBRIDGE, ALBERTA, CANADA c Ashraful Huq Suny, 2016 COLORING AND DEGENERACY FOR DETERMINING VERY LARGE AND SPARSE DERIVATIVE MATRICES ASHRAFUL HUQ SUNY Date of Defence: December 19, 2016 Dr. Shahadat Hossain Supervisor Professor Ph.D. Dr. Daya Gaur Committee Member Professor Ph.D. Dr. Robert Benkoczi Committee Member Associate Professor Ph.D. Dr. Howard Cheng Chair, Thesis Examination Com- Associate Professor Ph.D. mittee Dedication To My Parents. iii Abstract Estimation of large sparse Jacobian matrix is a prerequisite for many scientific and engi- neering problems. It is known that determining the nonzero entries of a sparse matrix can be modeled as a graph coloring problem. To find out the optimal partitioning, we have proposed a new algorithm that combines existing exact and heuristic algorithms. We have introduced degeneracy and maximum k-core for sparse matrices to solve the problem in stages. Our combined approach produce better results in terms of partitioning than DSJM and for some test instances, we report optimal partitioning for the first time. iv Acknowledgments I would like to express my deep acknowledgment and profound sense of gratitude to my supervisor Dr. Shahadat Hossain, for his continuous guidance, support, cooperation, and persistent encouragement throughout the journey of my MSc program.
    [Show full text]
  • Graph Coloring Major Themes Vertex Colorings Χ(G) =
    CSC 1300 – Discrete Structures 17: Graph Coloring Major Themes • Vertex coloring • Chromac number χ(G) Graph Coloring • Map coloring • Greedy coloring algorithm • CSC 1300 – Discrete Structures Applicaons Villanova University Villanova CSC 1300 - Dr Papalaskari 1 Villanova CSC 1300 - Dr Papalaskari 2 What is the least number of colors needed for the verFces of Vertex Colorings this graph so that no two adjacent verFces have the same color? Adjacent ver,ces cannot have the same color χ(G) = Chromac number χ(G) = least number of colors needed to color the verFces of a graph so that no two adjacent verFces are assigned the same color? Source: “Discrete Mathemacs” by Chartrand & Zhang, 2011, Waveland Press. Source: “Discrete Mathemacs with Ducks” by Sara-Marie Belcastro, 2012, CRC Press, Fig 13.1. 4 5 Dr Papalaskari 1 CSC 1300 – Discrete Structures 17: Graph Coloring Map Coloring Map Coloring What is the least number of colors needed to color a map? Region è vertex Common border è edge G A D C E B F G H I Villanova CSC 1300 - Dr Papalaskari 8 Villanova CSC 1300 - Dr Papalaskari 9 Coloring the USA Four color theorem Every planar graph is 4-colorable The proof of this theorem is one of the most famous and controversial proofs in mathemacs, because it relies on a computer program. It was first presented in 1976. A more recent reformulaon can be found in this arFcle: Formal Proof – The Four Color Theorem, Georges Gonthier, NoFces of the American Mathemacal Society, December 2008. hp://www.printco.com/pages/State%20Map%20Requirements/USA-colored-12-x-8.gif
    [Show full text]
  • Results on the Grundy Chromatic Number of Graphs Manouchehr Zaker
    Discrete Mathematics 306 (2006) 3166–3173 www.elsevier.com/locate/disc Results on the Grundy chromatic number of graphs Manouchehr Zaker Institute for Advanced Studies in Basic Sciences, 45195-1159 Zanjan, Iran Received 7 November 2003; received in revised form 22 June 2005; accepted 22 June 2005 Available online 7 August 2006 Abstract Given a graph G,byaGrundy k-coloring of G we mean any proper k-vertex coloring of G such that for each two colors i and j, i<j, every vertex of G colored by j has a neighbor with color i. The maximum k for which there exists a Grundy k-coloring is denoted by (G) and called Grundy (chromatic) number of G. We first discuss the fixed-parameter complexity of determining (G)k, for any fixed integer k and show that it is a polynomial time problem. But in general, Grundy number is an NP-complete problem. We show that it is NP-complete even for the complement of bipartite graphs and describe the Grundy number of these graphs in terms of the minimum edge dominating number of their complements. Next we obtain some additive Nordhaus–Gaddum-type inequalities concerning (G) and (Gc), for a few family of graphs. We introduce well-colored graphs, which are graphs G for which applying every greedy coloring results in a coloring of G with (G) colors. Equivalently G is well colored if (G) = (G). We prove that the recognition problem of well-colored graphs is a coNP-complete problem. © 2006 Elsevier B.V. All rights reserved. Keywords: Colorings; Chromatic number; Grundy number; First-fit colorings; NP-complete; Edge dominating sets 1.
    [Show full text]
  • Algorithmic Graph Theory Part III Perfect Graphs and Their Subclasses
    Algorithmic Graph Theory Part III Perfect Graphs and Their Subclasses Martin Milanicˇ [email protected] University of Primorska, Koper, Slovenia Dipartimento di Informatica Universita` degli Studi di Verona, March 2013 1/55 What we’ll do 1 THE BASICS. 2 PERFECT GRAPHS. 3 COGRAPHS. 4 CHORDAL GRAPHS. 5 SPLIT GRAPHS. 6 THRESHOLD GRAPHS. 7 INTERVAL GRAPHS. 2/55 THE BASICS. 2/55 Induced Subgraphs Recall: Definition Given two graphs G = (V , E) and G′ = (V ′, E ′), we say that G is an induced subgraph of G′ if V ⊆ V ′ and E = {uv ∈ E ′ : u, v ∈ V }. Equivalently: G can be obtained from G′ by deleting vertices. Notation: G < G′ 3/55 Hereditary Graph Properties Hereditary graph property (hereditary graph class) = a class of graphs closed under deletion of vertices = a class of graphs closed under taking induced subgraphs Formally: a set of graphs X such that G ∈ X and H < G ⇒ H ∈ X . 4/55 Hereditary Graph Properties Hereditary graph property (Hereditary graph class) = a class of graphs closed under deletion of vertices = a class of graphs closed under taking induced subgraphs Examples: forests complete graphs line graphs bipartite graphs planar graphs graphs of degree at most ∆ triangle-free graphs perfect graphs 5/55 Hereditary Graph Properties Why hereditary graph classes? Vertex deletions are very useful for developing algorithms for various graph optimization problems. Every hereditary graph property can be described in terms of forbidden induced subgraphs. 6/55 Hereditary Graph Properties H-free graph = a graph that does not contain H as an induced subgraph Free(H) = the class of H-free graphs Free(M) := H∈M Free(H) M-free graphT = a graph in Free(M) Proposition X hereditary ⇐⇒ X = Free(M) for some M M = {all (minimal) graphs not in X} The set M is the set of forbidden induced subgraphs for X.
    [Show full text]
  • Greedy Defining Sets of Graphs
    Greedy defining sets of graphs Manouchehr Zaker Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11365-9415, Tehran, IRAN [email protected] Abstract For a graph G and an order a on V(G), we define a greedy defining set as a subset S of V(G) with an assignment of colors to vertices in S, such that the pre-coloring can be extended to a x( G)-coloring of G by the greedy coloring of (G, a). A greedy defining set ofaX( G)-coloring C of G is a greedy defining set, which results in the coloring C (by the greedy procedure). We denote the size of a greedy defining set of C with minimum cardinality by G D N (G, a, C). In this paper we show that the problem of determining GDN(G,a,C), for an instance (G,a,C) is an NP-complete problem. 1 Introduction and preliminaries We begin with some terminology and notation which are used throughout the paper. For the other necessary definitions and notation, we refer the reader to texts such as [4]. A harmonious coloring of a graph G is a proper vertex coloring of G, such that the subgraph induced on any two different colors has at most one edge. By a hypergraph we mean an ordinary hypergraph which consists of a vertex set V and a collection of subsets of V, called (hyper)edges. In a hypergraph 1£ a block­ ing set is a subset of the vertex set which intersects every edge of 1£.
    [Show full text]
  • The Edge Grundy Numbers of Some Graphs
    b b International Journal of Mathematics and M Computer Science, 12(2017), no. 1, 13–26 CS The Edge Grundy Numbers of Some Graphs Loren Anderson1, Matthew DeVilbiss2, Sarah Holliday3, Peter Johnson4, Anna Kite5, Ryan Matzke6, Jessica McDonald4 1School of Mathematics University of Minnesota Twin Cities Minneapolis, MN 55455, USA 2Department of Mathematics, Statistics, and Computer Science University of Illinois at Chicago Chicago, IL 60607-7045, USA 3Department of Mathematics Kennesaw State University Kennesaw, GA 30144, USA 4Department of Mathematics and Statistics Auburn University Auburn, AL 36849, USA 5Department of Mathematics Wayland Baptist University Plainview, TX 79072, USA 6Department of Mathematics Gettysburg College Gettysburg, PA 17325, USA email: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] (Received October 27, 2016, Accepted November 19, 2016) Key words and phrases: Grundy coloring, edge Grundy coloring, line graph, grid. AMS (MOS) Subject Classifications: 05C15. This research was supported by NSF grant no. 1262930. ISSN 1814-0432, 2017 http://ijmcs.future-in-tech.net 14 Anderson, DeVilbiss, Holliday, Johnson, Kite, Matzke, McDonald Abstract The edge Grundy numbers of graphs in a number of different classes are determined, notably for the complete and the complete bipartite graphs, as well as for the Petersen graph, the grids, and the cubes. Except for small-graph exceptions, these edge Grundy numbers turn out to equal a natural upper bound of the edge Grundy number, or to be one less than that bound. 1 Grundy colorings and Grundy numbers A Grundy coloring of a (finite simple) graph G is a proper coloring of the vertices of G with positive integers with the property that if v ∈ V (G) is colored with c > 1, then all the colors 1,...,c − 1 appear on neighbors of v.
    [Show full text]
  • Chordal Graphs MPRI 2017–2018
    Chordal graphs MPRI 2017{2018 Chordal graphs MPRI 2017{2018 Michel Habib [email protected] http://www.irif.fr/~habib Sophie Germain, septembre 2017 Chordal graphs MPRI 2017{2018 Schedule Chordal graphs Representation of chordal graphs LBFS and chordal graphs More structural insights of chordal graphs Other classical graph searches and chordal graphs Greedy colorings Chordal graphs MPRI 2017{2018 Chordal graphs Definition A graph is chordal iff it has no chordless cycle of length ≥ 4 or equivalently it has no induced cycle of length ≥ 4. I Chordal graphs are hereditary I Interval graphs are chordal Chordal graphs MPRI 2017{2018 Chordal graphs Applications I Many NP-complete problems for general graphs are polynomial for chordal graphs. I Graph theory : Treewidth (resp. pathwidth) are very important graph parameters that measure distance from a chordal graph (resp. interval graph). 1 I Perfect phylogeny 1. In fact chordal graphs were first defined in a biological modelisation pers- pective ! Chordal graphs MPRI 2017{2018 Chordal graphs G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg, 38 (1961), pp. 71{76 Chordal graphs MPRI 2017{2018 Representation of chordal graphs About Representations I Interval graphs are chordal graphs I How can we represent chordal graphs ? I As an intersection of some family ? I This family must generalize intervals on a line Chordal graphs MPRI 2017{2018 Representation of chordal graphs Fundamental objects to play with I Maximal Cliques under inclusion I We can have exponentially many maximal cliques : A complete graph Kn in which each vertex is replaced by a pair of false twins has exactly 2n maximal cliques.
    [Show full text]
  • Graph Theory, Part 2
    Graph Theory, Part 2 7 Coloring Suppose that you are responsible for scheduling times for lectures in a university. You want to make sure that any two lectures with a common student occur at different times to avoid a conflict. We could put the various lectures on a chart and mark with an \X" any pair that has students in common: Lecture A C G H I L M P S Astronomy X X X X Chemistry X X Greek X X X X X History X X X X Italian X X X Latin X X X X X X Music X X X X Philosophy X X Spanish X X X X A more convenient representation of this information is a graph with one vertex for each lecture and in which two vertices are joined if there is a conflict between them: S H P C I L G A M Now, we cannot schedule two lectures at the same time if there is a conflict, but we would like to use as few separate times as possible, subject to this constraint. How many different times are necessary? We can code each time with a color, for example 11:00-12:00 might be given the color green, and those lectures that meet at this time will be colored green. The no-conflict rule then means that we need to color the vertices of our graph in such a way that no two adjacent vertices (representing courses which conflict with each other) have the same color. This motivates us to make a definition: Definition 15 (Proper Coloring, k-Coloring, k-Colorable).
    [Show full text]
  • 13.1 Vertex Coloring 13.2 Greedy Coloring
    13.1 Vertex Coloring Assume all graphs are connected and without self loops. A k-coloring of a graph is a labeling f : V (G) ! S, with k = jSj. Essentially, each vertex is assigned a color of 1 : : : k. A coloring is proper if no adjacent vertices share the same color. A graph is k-colorable if it has a proper k-coloring. The chromatic number of a graph χ(G) is the least k for which G is k-colorable. A graph is k-chromatic if χ(G) = k. A proper k-coloring of a k-chromatic graph is an optimal coloring. Note that an optimal coloring is not necessarily unique. If χ(H) < χ(G) = k for every subgraph H of G, then G is color-critical. Remember back to when we discussed independent sets. We can observe that sets com- prised of vertices of the same color in a proper coloring are all independent. 13.2 Greedy Coloring A simple greedy algorithm for creating a proper coloring is shown below. The basic idea is do a single pass through all vertices of the graph in some order and label each one with a numeric identifier. A vertex will labeled/colored with the lowest value that doesn't appear among previously colored neighbors. procedure GreedyColoring(Graph G(V; E)) for all v 2 V (G) do color(v) −1 for all v 2 V (G) in order do isCol(1 ::: ∆(G) + 1) false for all u 2 N(v) where color(u) 6= −1 do isCol(color(u)) true for k = 1 ::: ∆(G) + 1 do if isCol(k) = false then color(v) k break k max(color(1 : : : n)) return k 36 13.3 Coloring Bounds Obviously, 1 ≤ χ(G) ≤ n.
    [Show full text]
  • Arxiv:1807.09034V1 [Math.CO]
    Connected greedy coloring H-free graphs Esdras Mota1, Ana Silva2⋆, and Leonardo Rocha3⋆ 1 Instituto Federal de Educac¸˜ao, Ciˆencia e Tecnologia do Cear´a(UFC) - Quixad´a, CE, Brazil [email protected] 2 Departamento de Matem´atica, Universidade Federal do Cear´a(UFC) - Fortaleza, CE, Brazil [email protected] 3 Universidade Estadual do Cear´a(UECE) - Fortaleza, CE, Brazil [email protected] Abstract. A connected ordering (v1, v2,...,vn) of V (G) is an ordering of the vertices such that vi has at least one neighbour in {v1,...,vi−1} for every i ∈ {2,...,n}.A connected greedy coloring (CGC for short) is a coloring obtained by applying the greedy algorithm to a connected ordering. This has been first introduced in 1989 by Hertz and de Werra, but still very little is known about this problem. An interesting aspect is that, contrary to the traditional greedy coloring, it is not always true that a graph has a connected ordering that produces an optimal coloring; this motivates the definition of the connected chromatic number of G, which is the smallest value χc(G) such that there exists a CGC of G with χc(G) colors. An even more interesting fact is that χc(G) ≤ χ(G) + 1 for every graph G (Benevides et. al. 2014). In this paper, in the light of the dichotomy for the coloring problem restricted to H-free graphs given by Kr´al et.al. in 2001, we are interested in investigating the problems of, given an H-free graph G: (1).
    [Show full text]