8.2. Plutonio-238

Total Page:16

File Type:pdf, Size:1020Kb

8.2. Plutonio-238 Estudio y dimensionado de una RTG para satélites de exploración de objetos transneptunianos Pág. 1 Resumen Este proyecto es un State of the Art de la exploración espacial a través de la tecnología nuclear. Esto se realiza mediante el estudio de la historia de la exploración espacial y su tecnología, realizando un paso por sus inicios, las primeras misiones, las últimas misiones e incluso un planteamiento inicial de misión espacial interesante. Una vez conocidos los orígenes de la misma, se continuará explicando la influencia que ha poseído la tecnología nuclear, destacando y comentando los diseños tecnológicos basados en el uso de fuentes de radioisótopos. Se ofrecerán datos generales sobre estos, destacando aquellos aspectos más interesantes de cada diseño. Después de adquirir un conocimiento general sobre esta tecnología, la tecnología nuclear basada en fuentes radioisotópicas, se pretende explicar el por qué un isotopo determinado (el Pu-238) es el más utilizado como fuente energía. Esto se realizará mediante el aporte de conocimientos sobre el mismo (características principales y nucleares, producción, etc.) Se considera necesario, un estudio en profundidad sobre la tecnología radioistopica más exitosa a día de hoy, el GPHS-RTG. Ofreciendo detalladas explicaciones y especificaciones sobre este diseño en concreto. Tras tener conciencia y conocimientos sobre la forma de alimentar las misiones de exploración espacial, se procede al diseño de una misión basada en casos de exploración anteriores (principalmente la New Horizons) así como el estudio de los componentes que forman parte de una nave de exploración que deba satisfacer unas condiciones como las deseadas. Por ello en forma de pre-diseño de misión se continúan ofreciendo conocimientos prácticos. El estudio de la seguridad en una misión que incluya medios nucleares es muy importante. De esta manera se continúa, mediante el análisis de las diferentes etapas y condiciones de seguridad en el proceso de calificación de una fuente GPHS-RTG para exploración espacial. Pasando desde las pruebas al combustible, hasta el transporte de una GPHS-RTG completamente montada. Y para finalizar todo el proceso desde los orígenes de la exploración espacial, hasta el diseño de una misión. Se muestran los apartados y pasos principales de la evaluación de impacto ambiental de una misión como las lanzadas desde Cabo Cañaveral (Florida, Estados Unidos) por la NASA (National Aeronautics and Space Administration). Pág. 2 Estudio y dimensionado de una RTG para satélites de exploración de objetos transneptunianos Estudio y dimensionado de una RTG para satélites de exploración de objetos transneptunianos Pág. 3 Sumario RESUMEN ___________________________________________________ 1 SUMARIO ____________________________________________________ 3 1. GLOSARIO _______________________________________________ 7 2. PREFACIO ______________________________________________ 11 2.1. Origen del proyecto ........................................................................................ 11 2.2. Motivación ...................................................................................................... 12 3. INTRODUCCIÓN _________________________________________ 15 3.1. Objetivos del proyecto .................................................................................... 15 3.2. Alcance del proyecto ...................................................................................... 16 4. HISTORIA DE LA ENERGÍA ATÓMICA EN EL ESPACIO _________ 17 4.1. Inicios históricos de la exploración espacial. ................................................. 17 4.2. Átomos para la paz (1953) ............................................................................. 18 4.3. Programa Espacial Americano y las RTGs ................................................... 20 5. USOS DE LA ENERGÍA NUCLEAR EN EL ESPACIO. ____________ 23 6. DISPOSITIVOS RADIOISOTOPICOS DE ENERGÍA. _____________ 28 6.1. Generadores Termoeléctricos (TEGs) .......................................................... 28 6.1.1. Los TEG y los radionucléidos ............................................................................. 30 6.2. CONVERTIDORES TERMOIÓNICOS. ......................................................... 35 6.2.1. Eficiencia de un generador termoiónico. ............................................................. 36 6.2.2. Radionucléidos en Generadores Termoiónicos. ................................................ 37 6.2.3. Baterías de Generadores Termoiónicos. ............................................................ 38 6.3. CONVERTIDORES AMTEC .......................................................................... 40 6.4. CONVERTIDORES STIRLING ...................................................................... 43 6.5. CONVERSIÓN DIRECTA DE RADIACIÓN NUCLEAR ................................ 45 6.5.1. Baterías Betavoltaicas. ........................................................................................ 47 7. SELECCIÓN DE RADIONUCLEIDOS PARA SU USO COMO FUENTES DE POTENCIA TÉRMICA. _________________________ 49 8. EL PLUTONIO (PU-238) ____________________________________ 51 8.1. Propiedades Nucleares del Plutonio .............................................................. 51 8.2. Plutonio-238 ................................................................................................... 52 Pág. 4 Estudio y dimensionado de una RTG para satélites de exploración de objetos transneptunianos 8.2.1. Por qué Plutonio-238 .......................................................................................... 53 8.3. Suministro de Pu-238 .................................................................................... 53 8.3.1. La situación actual del Plutonio-238. .................................................................. 53 8.3.2. Producción detallada del Pu-238 ........................................................................ 56 8.3.3. Producción futura del Plutonio-238 (y su problemática actual). ........................ 63 8.3.4. Opciones actuales para la producción de 238Pu en los Estados Unidos. ......... 65 9. ESTUDIO DETALLADO DE UNA RTG ________________________ 68 9.1. Descripción del GPHS-RTG .......................................................................... 70 9.2. Módulos generadores de radioisótopos (GPHS)........................................... 72 9.2.1. Especificaciones técnicas de las pastillas de combustible (Pu-238) ............... 75 9.2.2. Revestimiento de las pastillas de combustible (FC) .......................................... 76 9.2.3. Escudo de grafito del combustible, contra impactos (GIS) ................................ 78 9.2.4. Aerocubierta ........................................................................................................ 79 9.2.5. Materiales y Pesos del GPHS. ............................................................................ 80 9.3. El convertidor de la GPHS-RTG: Ensamblaje de la termopila y Escudo Externo. .......................................................................................................... 81 9.4. Configuración inicial como generador termoeléctrico calentado eléctricamente (ETG). .................................................................................... 84 9.5. Masa Global. .................................................................................................. 86 9.6. SOPORTES DE LA FUENTE DE CALOR .................................................... 90 9.6.1. Ensamblaje del Soporte Interior de la Fuente de Calor (IBSA, Inboard Heat Source Support Assembly) ................................................................................. 90 9.6.2. Ensamblaje del Soporte Exterior de la Fuente de Calor (OBSA, Outboard Heat Source Support Assembly) ................................................................................. 91 9.6.3. Ensamblaje del Soporte Intermedio (MSA, Midspan Support Assembly) ......... 92 10. ESPECIFICACIONES DE LA TERMOPILA _____________________ 94 10.1. Termopar de Silicio-Germanio ....................................................................... 94 10.2. Sistema de Aislamiento. ................................................................................ 95 10.3. Ensamblaje de la Termopila. ......................................................................... 98 10.3.1. Circuito eléctrico. ................................................................................................. 98 10.3.2. Interconexión eléctrica. ..................................................................................... 100 11. ESPECIFICACIONES DEL ESCUDO EXTERNO _______________ 101 11.1. Características de Diseño ............................................................................ 101 11.2. Aletas de radiación ....................................................................................... 102 12. ÚLTIMAS MEJORAS DE DISEÑO ADOPTADAS EN LOS GPHS-RTG.104 Estudio y dimensionado de una RTG para satélites de exploración de objetos transneptunianos Pág. 5 12.1. Dispositivo de alivio de presión (PRD) ......................................................... 104 12.1.1. Características del nuevo diseño del PRD ....................................................... 104 12.1.2. Pruebas de fiabilidad del PRD .......................................................................... 106 12.2. Dispositivos dmedidores de temperatura (RTD) ......................................... 106 13. LA MISIÓN DE EXPLORACIÓN, KAYAK. _____________________
Recommended publications
  • New Horizons: Reconnaissance of the Pluto-Charon System and The
    C.T. Russell Editor New Horizons Reconnaissance of the Pluto-Charon System and the Kuiper Belt Previously published in Space Science Reviews Volume 140, Issues 1–4, 2008 C.T. Russell Institute of Geophysics & Planetary Physics University of California Los Angeles, CA, USA Cover illustration: NASA’s New Horizons spacecraft was launched on 2006 January 19, received a grav- ity assist during a close approach to Jupiter on 2007 February 28, and is now headed for a flyby with closest approach 12,500 km from the center of Pluto on 2015 July 14. This artist’s depiction shows the spacecraft shortly after passing above Pluto’s highly variegated surface, which may have black-streaked surface deposits produced from cryogenic geyser activity, and just before passing into Pluto’s shadow when solar and earth occultation experiments will probe Pluto’s tenuous, and possibly hazy, atmosphere. Sunlit crescents of Pluto’s moons Charon, Nix, and Hydra are visible in the background. After flying through the Pluto system, the New Horizons spacecraft could be re-targeted towards other Kuiper Belt Objects in an extended mission phase. This image is based on an original painting by Dan Durda. © Dan Durda 2001 All rights reserved. Back cover illustration: The New Horizons spacecraft was launched aboard an Atlas 551 rocket from the NASA Kennedy Space Center on 2008 January 19 at 19:00 UT. Library of Congress Control Number: 2008944238 DOI: 10.1007/978-0-387-89518-5 ISBN-978-0-387-89517-8 e-ISBN-978-0-387-89518-5 Printed on acid-free paper.
    [Show full text]
  • Measurements of the Interplanetary Dust Population by the Venetia Burney Student Dust Counter on the New Horizons Mission Andrew R
    41st Lunar and Planetary Science Conference (2010) 1219.pdf Measurements of the Interplanetary Dust Population by the Venetia Burney Student Dust Counter on the New Horizons Mission Andrew R. Poppe1,2, David James1, Brian Jacobsmeyer1,2, and Mihaly Hor´anyi1,2, 1Laboratory for Atmospheric and Space Physics, Boulder, CO, and 2Department of Physics, University of Colorado, Boulder, CO, ([email protected]) Introduction: The Venetia Burney Student Dust Counter (SDC) on the New Horizons mission is an in- strument designed to measure the spatial density of in- terplanetary dust particles with mass, m > 10−12 g, on a radial profile throughout the solar system [1]. The instrument consists of fourteen permanently-polarized polyvinylidene fluoride (PVDF) detectors that register a charge when impacted by a hypervelocity(v> 1 km/sec) dust particle. PVDF-style dust detectors have previously flown on the Vega 1 and 2 [2] and Cassini spacecraft [3]. The instrument has a total surface area of 0.11 m2, a one- second time resolution and a factor of two in mass reso- lution. When impacted by a hypervelocity dust particle, the instrument records the time, charge, threshold and detector number. SDC is part of the Education and Pub- lic Outreach program of New Horizons, and as such, was designed, tested, integrated and is now operated solely by students. New Horizons was launched on January 19, 2006 and encountered Jupiter on February 28, 2007. Prior to the Jupiter encounter, SDC took measurements in two main Figure 1: The New Horizons flight path up to January 1, 2010. periods of the inner solar system: 2.66-3.55 A.U.
    [Show full text]
  • 1 the Atmosphere of Pluto As Observed by New Horizons G
    The Atmosphere of Pluto as Observed by New Horizons G. Randall Gladstone,1,2* S. Alan Stern,3 Kimberly Ennico,4 Catherine B. Olkin,3 Harold A. Weaver,5 Leslie A. Young,3 Michael E. Summers,6 Darrell F. Strobel,7 David P. Hinson,8 Joshua A. Kammer,3 Alex H. Parker,3 Andrew J. Steffl,3 Ivan R. Linscott,9 Joel Wm. Parker,3 Andrew F. Cheng,5 David C. Slater,1† Maarten H. Versteeg,1 Thomas K. Greathouse,1 Kurt D. Retherford,1,2 Henry Throop,7 Nathaniel J. Cunningham,10 William W. Woods,9 Kelsi N. Singer,3 Constantine C. C. Tsang,3 Rebecca Schindhelm,3 Carey M. Lisse,5 Michael L. Wong,11 Yuk L. Yung,11 Xun Zhu,5 Werner Curdt,12 Panayotis Lavvas,13 Eliot F. Young,3 G. Leonard Tyler,9 and the New Horizons Science Team 1Southwest Research Institute, San Antonio, TX 78238, USA 2University of Texas at San Antonio, San Antonio, TX 78249, USA 3Southwest Research Institute, Boulder, CO 80302, USA 4National Aeronautics and Space Administration, Ames Research Center, Space Science Division, Moffett Field, CA 94035, USA 5The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA 6George Mason University, Fairfax, VA 22030, USA 7The Johns Hopkins University, Baltimore, MD 21218, USA 8Search for Extraterrestrial Intelligence Institute, Mountain View, CA 94043, USA 9Stanford University, Stanford, CA 94305, USA 10Nebraska Wesleyan University, Lincoln, NE 68504 11California Institute of Technology, Pasadena, CA 91125, USA 12Max-Planck-Institut für Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany 13Groupe de Spectroscopie Moléculaire et Atmosphérique, Université Reims Champagne-Ardenne, 51687 Reims, France *To whom correspondence should be addressed.
    [Show full text]
  • Anticipated Scientific Investigations at the Pluto System
    Space Sci Rev (2008) 140: 93–127 DOI 10.1007/s11214-008-9462-9 New Horizons: Anticipated Scientific Investigations at the Pluto System Leslie A. Young · S. Alan Stern · Harold A. Weaver · Fran Bagenal · Richard P. Binzel · Bonnie Buratti · Andrew F. Cheng · Dale Cruikshank · G. Randall Gladstone · William M. Grundy · David P. Hinson · Mihaly Horanyi · Donald E. Jennings · Ivan R. Linscott · David J. McComas · William B. McKinnon · Ralph McNutt · Jeffery M. Moore · Scott Murchie · Catherine B. Olkin · Carolyn C. Porco · Harold Reitsema · Dennis C. Reuter · John R. Spencer · David C. Slater · Darrell Strobel · Michael E. Summers · G. Leonard Tyler Received: 5 January 2007 / Accepted: 28 October 2008 / Published online: 3 December 2008 © Springer Science+Business Media B.V. 2008 L.A. Young () · S.A. Stern · C.B. Olkin · J.R. Spencer Southwest Research Institute, Boulder, CO, USA e-mail: [email protected] H.A. Weaver · A.F. Cheng · R. McNutt · S. Murchie Johns Hopkins University Applied Physics Lab., Laurel, MD, USA F. Bagenal · M. Horanyi University of Colorado, Boulder, CO, USA R.P. Binzel Massachusetts Institute of Technology, Cambridge, MA, USA B. Buratti Jet Propulsion Laboratory, Pasadena, CA, USA D. Cruikshank · J.M. Moore NASA Ames Research Center, Moffett Field, CA, USA G.R. Gladstone · D.J. McComas · D.C. Slater Southwest Research Institute, San Antonio, TX, USA W.M. Grundy Lowell Observatory, Flagstaff, AZ, USA D.P. Hinson · I.R. Linscott · G.L. Tyler Stanford University, Stanford, CA, USA D.E. Jennings · D.C. Reuter NASA Goddard Space Flight Center, Greenbelt, MD, USA 94 L.A. Young et al.
    [Show full text]
  • Giant Planet / Kuiper Belt Flyby
    Giant Planet / Kuiper Belt Flyby Amanda Zangari (SwRI) Tiffany Finley (SwRI) with Cecilia Leung (LPL/SwRI) Simon Porter (SwRI) OPAG: February 23, 2017 Take Away • New Horizons provided scientifically valuable exploration of the Kuiper Belt in the New Frontiers cost cap. • The Kuiper Belt is full of objects with a diverse range of stories that go beyond what we learned from Pluto. • Giant Planet flybys add scientific value to a Kuiper Belt mission • Found preliminary trajectory examples for high interest KBOs-- Haumea, Varuna, 2015 RR245 can be reached via Jupiter AND Saturn, Uranus or Neptune flyby in the 2030s. • To be a candidate New Frontiers mission, a 2 Giant planet+KBO mission must be endorsed by a decadal survey according to current rules. New Horizons Heritage NH Jupiter Encounter planned around Pluto flyby timing, which was dominated by achieving quadruple occultations, “interesting” side up. New Horizons Heritage Pluto flyby took advantage of Ecliptic crossing, enabling access to the cold classical belt (where 2014 MU69 is located). New Horizons Heritage 2014 MU69 discovered while in flight. Targeting was from spacecraft propulsion and took advantage of cold classical population density. Object is small, reddish ~40 km diameter. Saturn’s moons show incredible diversity NASA/JPL As do Uranus and Neptune Some Kuiper Belt Geography Where do we want to go? Getting there- JGA “anytime” New Horizons model: Fast Launch, Jupiter Flyby, Launch window every 11 years McGranaghan et al 2011 Can we go to more than just Jupiter? If so, where, what? New Horizons 2 • 2008 launch using New Horizons flight spares • Proposed Jupiter flyby, equinox flyby of Uranus, and flyby of (47171) 1999 TC36 (now know to be trinary).
    [Show full text]
  • The Deep Space Network - a Technology Case Study and What Improvements to the Deep Space Network Are Needed to Support Crewed Missions to Mars?
    The Deep Space Network - A Technology Case Study and What Improvements to the Deep Space Network are Needed to Support Crewed Missions to Mars? A Master’s Thesis Presented to Department of Telecommunications State University of New York Polytechnic Institute Utica, New York In Partial Fulfillment of the Requirements for the Master of Science Degree By Prasad Falke May 2017 Abstract The purpose of this thesis research is to find out what experts and interested people think about Deep Space Network (DSN) technology for the crewed Mars mission in the future. The research document also addresses possible limitations which need to be fix before any critical missions. The paper discusses issues such as: data rate, hardware upgrade and new install requirement and a budget required for that, propagation delay, need of dedicated antenna support for the mission and security constraints. The Technology Case Study (TCS) and focused discussion help to know the possible solutions and what everyone things about the DSN technology. The public platforms like Quora, Reddit, StackExchange, and Facebook Mars Society group assisted in gathering technical answers from the experts and individuals interested in this research. iv Acknowledgements As the thesis research was challenging and based on the output of the experts and interested people in this field, I would like to express my gratitude and appreciation to all the participants. A special thanks go to Dr. Larry Hash for his guidance, encouragement, and support during the whole time. Additionally, I also want to thank my mother, Mrs. Mangala Falke for inspiring me always. Last but not the least, I appreciate the support from Maricopa County Emergency Communications Group (MCECG) and Arizona Near Space Research (ANSR) Organization for helping me to find the experts in space and communications field.
    [Show full text]
  • Target: Pluto-Charonpluto-Charon
    New Horizons is New Frontiers 1 Launch: Jan ‘06 Target:Target: Pluto-CharonPluto-Charon KBOs? Pluto-Charon Jupiter System 2017-2020 July 2015 March 2007 Stern/10 June 2005 Toward New Frontiers New Horizons is Demonstrating That A Class of Focused But Exciting Low Cost Outer Planet Missions Is Indeed Feasible. Stern/10 June 2005 NH: What About the KB? Sampling the Diversity of the Kuiper Belt Was The Highest Priority New Frontiers Recommendation of the Decadal Survey Stern/10 June 2005 NASA New Horizons Mission Requirements Despite the Wishes of the Decadal Survey, NASA’s Requirements for New Horizons 1 Make Clear That Kuiper Belt Exploration is only a Goal. Requirement: Flyby Pluto-Charon before the end of 2020. Desirement: NASA desires to visit one or more KBOs if an extended mission is approved after Pluto and conditions allow. This disappointment is exacerbated by the well- known New Horizons RTG fuel problems at LANL. Stern/10 June 2005 WHAT IS NEW HORIZONS 2? Protect Decadal Survey Science at KBOs. Enable the Exploration of Both Large and Small KBOs. Enable the Opportunity To Conduct A Target-of-Opportunity Uranus Flyby Near Equinox. Obtain Jupiter Science Deep Among the Galileans. Use An Identical NH Spacecraft and Instrument Payload. But Select A Newly Competed Science Team. Estimated Cost: <$500M. Time Critical Launch Window: 2008-2009 to Reach Uranus. Uranus Data Return by 2014-2015, KBOs by 2019-2021. Stern/10 June 2005 New Horizons 2 Example Mission Design 1999 TC36 Flyby 15 Sept 2020 Target: KBO 1999 TC36 Speed: 12 km/s A Big KBO Binary Sun Dist: 31 AU Uranus flyby 07 Oct 2015 C/A range: 2.4 RU Launch 19 Mar 2008 2 2 Jupiter flyby C3: 103 km /s 12 Aug 2009 C/A range: 24 RJ 1999 TC36: ~400 Diameter with ~200 km Satellite Both 2008 and 2009 Launch Windows Exist Stern/10 June 2005 NEW HORIZONS 2: THE URANUS-EQUINOX OPPORTUNITY A PERISHABLE OPPORTUNITY TO EXPLORE URANUS NEAR EQUINOX EQUINOX OCCURS EVERY 42 YEARS (1965, 2007, 2047).
    [Show full text]
  • Pluto-Bound CU Instrument Renamed for Girl Who Named Ninth Planet in 1930 30 June 2006
    Pluto-Bound CU Instrument Renamed For Girl Who Named Ninth Planet In 1930 30 June 2006 The University of Colorado at Boulder student-built Research Associate Mihaly Horanyi, principal science instrument on NASA's New Horizons investigator for the student instrument. The CU- mission to Pluto has been renamed to honor Boulder team should be able to infer the population another famous student -- the 11-year-old girl who of comets and other distant colliding bodies that are named the ninth planet more than 75 years ago. too small to detect with telescopes, he said. For the rest of the New Horizons spacecraft's The dust counter also could be used to search for voyage to Pluto and the Kuiper Belt beyond, the dust in the Pluto system, said Horanyi, a CU- Student Dust Counter -- the first science Boulder professor of physics. Such dust might be instrument on a NASA planetary mission to be generated by collisions of tiny impactors on Pluto designed, built and operated by students -- will be and its moons, Charon, Nix and Hydra. known as the Venetia Burney Student Dust Counter, or "Venetia," for short. The new name The device combines an 18-by-12-inch detector honors Venetia Burney Phair, now 87 and living in mounted on the outside of the spacecraft with an Epsom, England, who offered the name "Pluto" for electronics box inside the craft that determines the the newly discovered ninth planet in 1930. mass and speed of the particles that hit the detector, he said. Because no dust detector has "It's fitting that we name an instrument built by ever flown beyond 18 astronomical units from the students after Mrs.
    [Show full text]
  • New Horizons 2 Alan Stern (Swri), Rick Binzel (MIT), Hal Levison
    New Horizons 2 Alan Stern (SwRI), Rick Binzel (MIT), Hal Levison (SwRI), Rosaly Lopes (JPL), Bob Millis (Lowell Observatory), and Jeff Moore (NASA Ames) New Horizons is the inaugural mission in NASA’s New Frontiers program—a series of mid-sized planetary exploration projects. This mission was competitively selected in 2001 after a peer review competition between industry-university teams. The mission is on track toward a planned launch in January 2006—just over 6 months hence. The primary objective of New Horizons (NH) is to make the first reconnaissance of the solar system’s farthest planet, Pluto, its comparably sized satellite Charon. If an extended mission is approved, New Horizons may be able to also flyby a Kuiper Belt Object (KBOs) farther from the Sun. The exploration of the Kuiper Belt and Pluto-Charon was ranked as the highest new start priority for planetary exploration by the National Research Council’s recently completed (2002) Decadal Survey for Planetary Science. In accomplishing its goals, the mission is expected to reveal fundamental new insights into the nature of the outer solar system, the formation history of the planets, the workings of binary worlds, and the ancient repository of water and organic building blocks called the Kuiper Belt. Beyond its scientific ambitions, New Horizons is also breaking ground in lowering the cost of exploration of the outer solar system—for it is being built and launched for what are literally dimes on the dollar compared to deep outer solar system missions like Voyager, Galileo, and Cassini. The New Horizons spacecraft carries a suite of seven advanced, miniaturized instruments to obtain detailed imagery, mapping spectroscopy, thermal mapping, gravitational data, and in situ plasma composition, density, and energy sampling of the exotic, icy Pluto- Charon binary and a modest-sized (~50 km diameter) KBO.
    [Show full text]
  • Trailing (L5) Neptune Trojans: 2004 KV18 and 2008 LC18
    Trailing (L5) Neptune Trojans: 2004 KV18 and 2008 LC18 Pu Guan, Li-Yong Zhou,∗ Jian Li Astronomy Department, Nanjing University, Key Laboratory of Modern Astronomy and Astrophysics in MOE, Nanjing 210093, China November 11, 2018 Abstract The population of Neptune Trojans is believed to be bigger than that of Jupiter Trojans and that of asteroids in the main belt, although only eight members of this far distant asteroid swarm have been observed up to now. Six leading Neptune Trojans around the Lagrange point L4 dis- covered earlier have been studied in detail, but two trailing ones found recently around the L5 point, 2004 KV18 and 2008 LC18, have not been investigated yet. In this paper, we report our investigations on the dynamical behaviors of these two new Neptune Trojans. Our calculations show that the asteroid 2004 KV18 is a temporary Neptune Trojan. Most probably, it was captured into the trailing Trojan cloud no earlier than 2.03 105 yr ago, and it will not keep this identity no later than 1.65 105 yr in future. Based on the× statistics on our orbital simulations, we argue that this object is more× like a scattered Kuiper belt object. On the contrary, the orbit of asteroid 2008 LC18 is much more stable. Among the clone orbits spread within the orbital uncertainties, a considerable portion of clones may survive on the L5 tadpole orbits for 4Gyr. The strong depen- dence of the stability on the semimajor axis and resonant angle suggests that further observations are badly needed to confine the orbit in the stable region.
    [Show full text]
  • Onference 2.000
    I I I A m v m I ONFERENCE 2 .0 0 0 San Diego, California - July 12-16 Registration information inside VOL. XXVI NO. 2 March/April 2000 ONE GIANT STEP FOR AVIATION When you’re in an orbit of 235 by 226 statute miles, you need to be able to depend on your communications equipment. When the USA’s First F.xpeditionary Team inhabits the International Space Station later this year, they will be depending on the PA 17-79 ANR headset for their communications. After exhaustive testing, NASA has cer­ tified a slightly modified version based on the headset’s performance, dura­ bility and comfort over long periods of time. T o the best of our knowledge, this is only the second time an ANR has been certified for use in space— the Russian MIR Space Station also used the self-contained PA 17-79 ANR. We have stated in our past advertisements that our ANR was the “Quietest on the Planet." W e respectfully amend that at this time. You don’t have to wait for the next space launch, call or visit your down-to-earth Pilot PA 17-79 DNC XL local pilot shop, avionics shop, mail-order store or FBO. Independence Series PILOT COMMUNICATIONS WE LISTEN, SO YOU CAN HEAR. US Corporate Headquarters: 10015 Muirlands Blvd, Unit G, Irvine, CA 92618 • 1-888-G O -PILO T, (949) 597-1012, Fax: (949) 597-1049 F.uropean Headquarters: 4 Burley Road, Summerley Estate, Felpham, West Sussex, P022 7NF England • +44(0)1243 584 384, Fax: +44(0)1243 586 Tvww.pilot-conimtniications.com • e-m ail: [email protected] To receive PILOT literature by fax call 1-800-327-8882 code 105835 INTERNATIONAL WOMEN PILOTS (ISSN 0273-608x) 99 NEWS INTERNATIONAL Published by THE NINETY-NINES"INC.
    [Show full text]
  • The Plutoed Planet 2 Read Each Source Below
    Unit The Plutoed Planet 2 Read each source below . Then complete the activities on pages 10–11 . Source 1 Tri-City Tribune May 2, 1930 Child Names Planet Pluto The astronomers of Lowell Observatory have March 24, a vote was held at Lowell Observa- voted, and it is official: our solar system’s new- tory to determine the planet’s name. In addi- est planet will be named Pluto. This name was tion to Pluto, the names Minerva and Cronus first suggested by Venetia Burney, an 11-year- were also on the ballot. Yesterday, the results old schoolgirl from Oxford, England. A fan of of the vote were announced, and they were mythology, Ms. Burney believed that the unanimous. Every member chose Pluto for planet should be named after Pluto, the Roman the planet’s name. god of the cold, dark underworld. Pluto now joins an exclusive club, as it Pluto’s journey from discovery to named becomes one of only nine planets in our solar planet has been quick. It was first observed system. Of these, Pluto is the farthest from on February 18 of this year by Clyde Tom- the Sun. Astronomers believe that it is the baugh at Lowell Observatory in Arizona. On coldest and smallest of the nine. Source 2 Tri-City Tribune September 14, 2006 Pluto Ousted! Pluto has always been the little planet that astronomers, while others believe Pluto should was a little different than all the others. Yes- have been stripped of its planet status long ago. terday, the International Astronomical Union (IAU) announced that Pluto will no longer be In 1930, Pluto was named the ninth planet in considered a planet.
    [Show full text]