Let's Expand Rota's Twelvefold Way for Counting Partitions!
(Submitted to the American Mathematical Monthly.) Let's Expand Rota's Twelvefold Way For Counting Partitions! Robert A. Proctor Department of Mathematics University of North Carolina Chapel Hill, North Carolina 27599 rap -at- email.unc.edu January 5, 2007 Dedicated to the memory of Gian-Carlo Rota. 1. Introduction Let's suppose we have a diamond, an emerald, and a ruby. How many ways are there to store these gems in small velvet bags? The bags are identical, and we can use any number of them. Unused bags are ignored. Since the gems can move around within the bags, we may as well list the gems within each bag in alphabetical order. Since the bags are identical, we may as well record the bags in alphabetical order, according to their first elements. Using inner {}'s for the bags and outer {}'s to collect the bags, here are the possibilities: { {D}, {E}, {R} }, { {D,E}, {R} }, { {D,R}, {E} }, { {D}, {E,R} }, { {D,E,R} }. So there are 5 storage configurations. These are the "partitions" of the set {D, E, R}. For m ≥ 0, let B(m) denote the number of partitions of a set of m distinguishable items. So B(3) = 5. The counts B(0), B(1), B(2), B(3), … are called the "Bell numbers". Surprisingly, these numbers also arise in a Maclaurin series expansion: ex–1 xm e = ∑m≥0B(m)——— . m! There are dozens of variations of this notion of partition. If autographed baseballs were stored in socks, the order in which the baseballs were shoved into each sock would matter.
[Show full text]