Enumerative Combinatorics: Class Notes

Enumerative Combinatorics: Class Notes

Enumerative Combinatorics: class notes Darij Grinberg May 4, 2021 (unfinished!) Status: Chapters 1 and 2 finished; Chapter 3 outlined. Contents 1. Introduction7 1.1. Domino tilings . .8 1.1.1. The problem . .8 1.1.2. The odd-by-odd case and the sum rule . 12 1.1.3. The symmetry and the bijection rule . 14 1.1.4. The m = 1 case . 18 1.1.5. The m = 2 case and Fibonacci numbers . 19 1.1.6. Kasteleyn’s formula (teaser) . 26 1.1.7. Axisymmetric domino tilings . 28 1.1.8. Tiling rectangles with k-bricks . 31 1.2. Sums of powers . 38 1.2.1. The sum 1 + 2 + ... + n ....................... 38 1.2.2. What is a sum, actually? . 42 1.2.3. Rules for sums . 48 1.2.4. While at that, what is a finite product? . 53 1.2.5. The sums 1k + 2k + ... + nk .................... 54 1.3. Factorials and binomial coefficients . 58 1.3.1. Factorials . 58 1.3.2. Definition of binomial coefficients . 59 1.3.3. Fundamental properties of the binomial coefficients . 61 1.3.4. Binomial coefficients count subsets . 69 1.3.5. Integrality and some arithmetic properties . 74 1.3.6. The binomial formula . 78 1.3.7. Other properties of binomial coefficients . 86 1.4. Counting subsets . 93 1.4.1. All subsets . 93 1 Enumerative Combinatorics: class notes page 2 1.4.2. Lacunar subsets: the basics . 94 1.4.3. Intermezzo: SageMath . 97 1.4.4. Counting lacunar subsets . 102 1.4.5. Counting k-element lacunar subsets . 107 1.4.6. Counting subsets with a odd and b even elements . 111 1.4.7. The addition formula for Fibonacci numbers . 114 1.4.8. More subset counting . 119 1.4.9. Counting subsets containing a given subset . 126 1.5. Counting tuples and maps . 128 1.5.1. Tuples . 128 1.5.2. Counting maps . 132 1.5.3. Applications . 133 1.6. Interchange of summations . 136 1.6.1. The finite Fubini principle . 136 1.6.2. The Fubini principle with a predicate . 146 1.6.3. A cautionary tale about infinite sums . 156 1.7. Counting permutations: an introduction . 159 1.7.1. Permutations and derangements . 159 1.7.2. Only the size counts . 161 1.7.3. Intermezzo: OEIS . 166 1.7.4. The one-line notation . 168 1.7.5. Short-legged permutations . 172 1.7.6. Long-legged permutations . 176 2. Binomial coefficients 178 2.1. The alternating sum of a row of Pascal’s triangle . 178 2.1.1. Telescoping sums . 178 2.1.2. A war between the odd and the even . 184 2.2. The trinomial revision formula . 187 2.2.1. An algebraic proof . 187 2.2.2. A double counting proof . 191 2.3. The hockey-stick identity revisited . 198 2.4. Counting maps . 202 2.4.1. All maps . 202 2.4.2. Injective maps . 203 2.4.3. The pigeonhole principles . 210 2.4.4. Permutations . 212 2.4.5. Surjective maps . 213 2.5. 1m + 2m + ... + nm .............................. 224 2.6. The Vandermonde convolution . 226 2.6.1. The Vandermonde convolution theorem . 226 2.6.2. The polynomial identity trick . 232 2.6.3. Salvaging the proofs of Theorem 2.6.1 . 236 2.6.4. More consequences of the polynomial identity trick . 238 Enumerative Combinatorics: class notes page 3 2.6.5. Mutating the Chu–Vandermonde identity . 241 2.7. Counting subsets again . 248 2.8. Another use of polynomials . 253 2.9. The Principle of Inclusion and Exclusion . 257 2.9.1. The principles . 257 2.9.2. The cancellation lemma . 264 2.9.3. The proofs . 267 2.9.4. Application: Surjections . 273 2.9.5. Application: Derangements . 276 2.9.6. Application: Euler’s totient function . 282 2.9.7. Other cancellation-type lemmas . 290 2.10. Compositions and weak compositions . 290 2.10.1. Compositions . 291 2.10.2. Binary compositions . 295 2.10.3. Weak compositions . 296 2.10.4. Other composition-like counting problems . 298 2.11. Multisubsets . 299 2.11.1. Definitions . 299 2.11.2. Counting multisubsets of given size . 301 2.11.3. An application to lacunar subsets . 302 2.12. Multinomial coefficients . 307 2.12.1. Definition and formulas . 307 2.12.2. Counting maps that take values a given number of times . 309 2.12.3. Counting anagrams . 312 2.12.4. More formulas . 315 3. The twelvefold way 317 3.1. What is the twelvefold way? . 318 3.2. L ! L ..................................... 323 3.3. Equivalence relations . 324 3.3.1. Relations . 324 3.3.2. Equivalence relations . 326 3.3.3. Equivalence classes . 328 3.3.4. Defining unlabelled boxes and balls . 330 3.4. U ! L .................................... 333 3.5. L ! U .................................... 337 3.6. U ! U and integer partitions . 341 3.7. Integer partitions (an introduction) . 345 3.8. Odds and ends . 348 4. Permutations 349 4.1. Introduction . 349 4.2. Definitions . 350 4.3. Transpositions and cycles . 350 Enumerative Combinatorics: class notes page 4 4.4. Inversions and lengths . 353 4.5. Descents . 359 4.6. Signs . 360 5. Lattice paths (brief introduction) 363 6. Generating functions (introduction) 367 7. Solutions and references to the exercises 369 7.1. Reference to solution to Exercise 1.3.1 . 369 7.2. Solution to Exercise 1.3.2 . 369 7.3. Reference to solution to Exercise 1.3.3 . 369 7.4. Solution to Exercise 1.3.4 . 370 7.5. Reference to solution to Exercise 1.3.5 . 371 7.6. Solution to Exercise 1.3.6 . 371 7.7. Solution to Exercise 1.4.1 . 372 7.8. Solution to Exercise 1.4.2 . 374 7.9. Reference to solution to Exercise 1.4.6 . 375 7.10. Reference to solution to Exercise 1.4.7 . 375 7.11. Reference to solution to Exercise 1.4.8 . 375 7.12. Reference to solution to Exercise 1.5.1 . 375 7.13. Reference to solution to Exercise 1.5.2 . 375 7.14. Reference to solution to Exercise 2.1.1 . 375 7.15. Reference to solution to Exercise 2.2.1 . 376 7.16. Solution to Exercise 2.2.2 . 376 7.17. Reference to solution to Exercise 2.2.3 . 378 7.18. Solution to Exercise 2.4.1 . 378 7.19. Solution to Exercise 2.4.2 . 380 7.20. Solution to Exercise 2.4.3 . 382 7.21. Solution to Exercise 2.4.4 . 383 7.22. Solution to Exercise 2.4.5 . 389 7.23. Solution to Exercise 2.5.1 . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    505 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us