BASIC DISCRETE MATHEMATICS Contents 1. Introduction 2 2. Graphs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Total Positivity of Narayana Matrices Can Also Be Obtained by a Similar Combinatorial Approach?
Total positivity of Narayana matrices Yi Wanga, Arthur L.B. Yangb aSchool of Mathematical Sciences, Dalian University of Technology, Dalian 116024, P.R. China bCenter for Combinatorics, LPMC, Nankai University, Tianjin 300071, P.R. China Abstract We prove the total positivity of the Narayana triangles of type A and type B, and thus affirmatively confirm a conjecture of Chen, Liang and Wang and a conjecture of Pan and Zeng. We also prove the strict total positivity of the Narayana squares of type A and type B. Keywords: Totally positive matrices, the Narayana triangle of type A, the Narayana triangle of type B, the Narayana square of type A, the Narayana square of type B AMS Classification 2010: 05A10, 05A20 1. Introduction Let M be a (finite or infinite) matrix of real numbers. We say that M is totally positive (TP) if all its minors are nonnegative, and we say that it is strictly totally positive (STP) if all its minors are positive. Total positivity is an important and powerful concept and arises often in analysis, algebra, statistics and probability, as well as in combinatorics. See [1, 6, 7, 9, 10, 13, 14, 18] for instance. n Let C(n, k)= k . It is well known [14, P. 137] that the Pascal triangle arXiv:1702.07822v1 [math.CO] 25 Feb 2017 1 1 1 1 2 1 P = [C(n, k)]n,k≥0 = 13 31 14641 . . .. Email addresses: [email protected] (Yi Wang), [email protected] (Arthur L.B. Yang) Preprint submitted to Elsevier April 12, 2018 is totally positive. -
Motzkin Paths, Motzkin Polynomials and Recurrence Relations
Motzkin paths, Motzkin polynomials and recurrence relations Roy Oste and Joris Van der Jeugt Department of Applied Mathematics, Computer Science and Statistics Ghent University B-9000 Gent, Belgium [email protected], [email protected] Submitted: Oct 24, 2014; Accepted: Apr 4, 2015; Published: Apr 21, 2015 Mathematics Subject Classifications: 05A10, 05A15 Abstract We consider the Motzkin paths which are simple combinatorial objects appear- ing in many contexts. They are counted by the Motzkin numbers, related to the well known Catalan numbers. Associated with the Motzkin paths, we introduce the Motzkin polynomial, which is a multi-variable polynomial “counting” all Motzkin paths of a certain type. Motzkin polynomials (also called Jacobi-Rogers polyno- mials) have been studied before, but here we deduce some properties based on recurrence relations. The recurrence relations proved here also allow an efficient computation of the Motzkin polynomials. Finally, we show that the matrix en- tries of powers of an arbitrary tridiagonal matrix are essentially given by Motzkin polynomials, a property commonly known but usually stated without proof. 1 Introduction Catalan numbers and Motzkin numbers have a long history in combinatorics [19, 20]. 1 2n A lot of enumeration problems are counted by the Catalan numbers Cn = n+1 n , see e.g. [20]. Closely related to Catalan numbers are Motzkin numbers M , n ⌊n/2⌋ n M = C n 2k k Xk=0 similarly associated to many counting problems, see e.g. [9, 1, 18]. For example, the number of different ways of drawing non-intersecting chords between n points on a circle is counted by the Motzkin numbers. -
A86 INTEGERS 21 (2021) on SOME P -ADIC PROPERTIES AND
#A86 INTEGERS 21 (2021) ON SOME p -ADIC PROPERTIES AND SUPERCONGRUENCES OF DELANNOY AND SCHRODER¨ NUMBERS Tam´asLengyel Department of Mathematics, Occidental College, USA [email protected] Received: 2/27/21, Revised: 6/7/21, Accepted: 8/13/21, Published: 8/27/21 Abstract The Delannoy number d(n) is defined as the number of paths from (0; 0) to (n; n) with steps (1,0), (1,1), and (0,1), which is equal to the number of paths from (0; 0) to (2n; 0) using only steps (1; 1), (2; 0) and (1; −1). The Schr¨odernumber s(n) counts only those paths that never go below the x-axis. We discuss some p-adic properties n n of the sequences fd(p )gn!1, and fd(ap + b)gn!1 with a 2 N,(a; p) = 1, b 2 Z, and prime p. We also present similar p-adic properties of the Schr¨odernumbers. We provide several supercongruences for these numbers and their differences. Some conjectures are also proposed. 1. Introduction The central Delannoy number d(n) is defined as the number of paths from (0; 0) to (n; n) in an n × n grid using only steps north, northeast and east (i.e., steps (1,0), (1,1), and (0,1)). With n ≥ 0 the first few values are: 1, 3, 13, 63, 321, 1683, 8989, cf. A001850,[8]. It is also the number of paths from (0; 0) to (2n; 0) using only steps (1; 1), (2; 0) and (1; −1). The corresponding paths are called Delannoy paths. -
The Twelvefold Way, the Nonintersecting Circles Problem, and Partitions of Multisets
Turkish Journal of Mathematics Turk J Math (2019) 43: 765 – 782 http://journals.tubitak.gov.tr/math/ © TÜBİTAK Research Article doi:10.3906/mat-1805-72 The twelvefold way, the nonintersecting circles problem, and partitions of multisets Toufik MANSOUR1,, Madjid MIRZVAZIRI2, Daniel YAQUBI2;∗ 1Department of Mathematics, University of Haifa, Haifa, Israel 2Department of Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran Received: 14.05.2018 • Accepted/Published Online: 30.01.2019 • Final Version: 27.03.2019 Abstract: Let n be a nonnegative integer and A = fa1; : : : ; akg be a multiset with k positive integers such that a1 6 ··· 6 ak . In this paper, we give a recursive formula for partitions and distinct partitions of positive integer n with respect to a multiset A. We also consider the extension of the twelvefold way. By using this notion, we solve the nonintersecting circles problem, which asks to evaluate the number of ways to draw n nonintersecting circles in the plane regardless of their sizes. The latter also enumerates the number of unlabeled rooted trees with n + 1 vertices. Key words: Multiset, partitions and distinct partitions, twelvefold way, nonintersecting circles problem, rooted trees, Wilf partitions 1. Introduction A partition of n is a sequence λ1 > λ2 > ··· > λk of positive integers such that λ1 + λ2 + ··· + λk = n (see [2]). We write λ ` n to denote that λ is a partition of n. The nonzero integers λ in λ are called parts of λ. P k j j The number of parts of λ is the length of λ, denoted by `(λ), and λ = k>1 λk is the weight of λ. -
Divisors and Specializations of Lucas Polynomials Tewodros Amdeberhan, Mahir Bilen Can, and Melanie Jensen
Journal of Combinatorics Volume 6, Number 1–2, 69–89, 2015 Divisors and specializations of Lucas polynomials Tewodros Amdeberhan, Mahir Bilen Can, and Melanie Jensen Three-term recurrences have infused a stupendous amount of re- search in a broad spectrum of the sciences, such as orthogonal polynomials (in special functions) and lattice paths (in enumera- tive combinatorics). Among these are the Lucas polynomials, which have seen a recent true revival. In this paper one of the themes of investigation is the specialization to the Pell and Delannoy num- bers. The underpinning motivation comprises primarily of divis- ibility and symmetry. One of the most remarkable findings is a structural decomposition of the Lucas polynomials into what we term as flat and sharp analogs. AMS 2010 subject classifications: 05A10, 11B39. Keywords and phrases: Lucas polynomials, flat and sharp lucanomi- als, divisors, Iwahori-Hecke algebra. 1. Introduction In this paper, we focus on two themes in Lucas polynomials, the first of which has a rather ancient flavor. In mathematics, often, the simplest ideas carry most importance, and hence they live longest. Among all combina- torial sequences, the (misattributed) Pell sequence seem to be particularly resilient. Defined by the simple recurrence (1.1) Pn =2Pn−1 + Pn−2 for n ≥ 2, with respect to initial conditions P0 =0,P1 = 1, Pell numbers appear in ancient texts (for example, in Shulba Sutra, approximately 800 BC). The first eight values of Pn are given by (0, 1, 2, 5, 12, 29, 70, 169), and the remainders modulo 3 are (1.2) (P0,P1,P2,P3,P4,P5,P6,P7) ≡3 (0, 1, 2, 2, 0, 2, 1, 1). -
Shifted Jacobi Polynomials and Delannoy Numbers
SHIFTED JACOBI POLYNOMIALS AND DELANNOY NUMBERS GABOR´ HETYEI A` la m´emoire de Pierre Leroux Abstract. We express a weigthed generalization of the Delannoy numbers in terms of shifted Jacobi polynomials. A specialization of our formulas extends a relation between the central Delannoy numbers and Legendre polynomials, observed over 50 years ago [8], [13], [14], to all Delannoy numbers and certain Jacobi polynomials. Another specializa- tion provides a weighted lattice path enumeration model for shifted Jacobi polynomials and allows the presentation of a combinatorial, non-inductive proof of the orthogonality of Jacobi polynomials with natural number parameters. The proof relates the orthogo- nality of these polynomials to the orthogonality of (generalized) Laguerre polynomials, as they arise in the theory of rook polynomials. We also find finite orthogonal polynomial sequences of Jacobi polynomials with negative integer parameters and expressions for a weighted generalization of the Schr¨odernumbers in terms of the Jacobi polynomials. Introduction It has been noted more than fifty years ago [8], [13], [14] that the diagonal entries of the Delannoy array (dm,n), introduced by Henri Delannoy [5], and the Legendre polynomials Pn(x) satisfy the equality (1) dn,n = Pn(3), but this relation was mostly considered a “coincidence”. An important observation of our present work is that (1) can be extended to (α,0) (2) dn+α,n = Pn (3) for all α ∈ Z such that α ≥ −n, (α,0) where Pn (x) is the Jacobi polynomial with parameters (α, 0). This observation in itself is a strong indication that the interaction between Jacobi polynomials (generalizing Le- gendre polynomials) and the Delannoy numbers is more than a mere coincidence. -
Combinatorics—
The Ohio State University October 10, 2016 Combinatorics | 1 Functions and sets Enumerative combinatorics (or counting), at its heart, is all about finding functions between different sets in such a way that reveals their size. A little combinatorics goes a long way: you'll probably run into it in every discipline that involves numbers. Beyond numbers and sets, there is not much additional formal theory needed to get started. For sets A and B; a function f : A ! B is any assignment of elements of B defined for every element of A: All f needs to do to be a function from A to B is that there is a rule defined for obtaining f(a) 2 B for every element of a 2 A: In some situations, it can be non-obvious that a rule in unambiguous (we will see examples), in which case it may be necessary to prove that f is well-defined. We will be interested in counting, which motivates the following three definitions. Definition 1: A function f : A ! B is injective if and only if for all x; y 2 A; f(x) = f(y) ) x = y: These are sometimes called one-to-one functions. Think of injective functions as rules for placing A inside of B in such a way that we can undo our steps. Lemma 1: A function f : A ! B is injective if and only if there is a function g : B ! A so that 8x 2 A g(f(x)) = x: This function g is called a left-inverse for f Proof. -
Determinantal Forms and Recursive Relations of the Delannoy Two-Functional Sequence
Advances in the Theory of Nonlinear Analysis and its Applications 4 (2020) No. 3, 184–193. https://doi.org/10.31197/atnaa.772734 Available online at www.atnaa.org Research Article Determinantal forms and recursive relations of the Delannoy two-functional sequence Feng Qia, Muhammet Cihat Dağlıb, Wei-Shih Duc aCollege of Mathematics and Physics, Inner Mongolia University for Nationalities, Tongliao 028043, Inner Mongolia, China; School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin 300387, China; Institute of Mathematics, Henan Polytechnic University, Jiaozuo 454010, Henan, China. bDepartment of Mathematics, Akdeniz University, 07058-Antalya, Turkey. cDepartment of Mathematics, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan. Abstract In the paper, the authors establish closed forms for the Delannoy two-functional sequence and its difference in terms of the Hessenberg determinants, derive recursive relations for the Delannoy two-functional sequence and its difference, and deduce closed forms in terms of the Hessenberg determinants and recursive relations for the Delannoy one-functional sequence, the Delannoy numbers, and central Delannoy numbers. Keywords: closed form; recursive relation; difference; Hessenberg determinant; Delannoy two-functional sequence; Delannoy one-functional sequence; Delannoy number; central Delannoy number. 2010 MSC: 05A10, 11B83, 11C20, 11Y55, 26C05. 1. Introduction A tridiagonal determinant is a determinant whose nonzero elements locate only on the diagonal and slots horizontally or vertically adjacent the diagonal. Technically speaking, a determinant H = jhijjn×n is called a tridiagonal determinant if hij = 0 for all pairs (i; j) such that ji − jj > 1. For more information, please refer to the paper [11]. A determinant H = jhijjn×n is called a lower (or an upper, respectively) Hessenberg determinant if hij = 0 for all pairs (i; j) such that i+1 < j (or j +1 < i, respectively). -
Homomesies Lurking in the Twelvefold Way
Homomesies Lurking in the Twelvefold Way Tom Roby (UConn) Describing joint research with Michael Joseph & Michael LaCroix Special Session on Enumerative Combinatorics AMS Central Sectional Meeting University of St. Thomas Minneapolis, MN USA 28 October 2016 (Friday) Slides for this talk are available online (or will be soon) at http://www.math.uconn.edu/~troby/research.html Homomesies Lurking in the Twelvefold Way Tom Roby (UConn) Describing joint research with Michael Joseph & Michael LaCroix Special Session on Enumerative Combinatorics AMS Central Sectional Meeting University of St. Thomas Minneapolis, MN USA 28 October 2016 (Friday) Slides for this talk are available online (or will be soon) at http://www.math.uconn.edu/~troby/research.html Abstract Abstract: Given a group acting on a finite set of combinatorial objects, one can often find natural statistics on these objects which are homomesic, i.e., over each orbit of the action, the average value of the statistic is the same. Since the notion was codified a few years ago, homomesic statistics have been uncovered in a wide variety of situations within dynamical algebraic combinatorics. We discuss several examples lurking in Rota's Twelvefold Way related to actions on injections, surjections (joint work with Michael Joseph), and bijections/permutations (joint work with Michael LaCroix) of finite sets. Acknowledgments This seminar talk discusses joint work with Michael Joseph and Michael La Croix. Thanks to James Propp for suggesting the study of whirling and of Foatic actions, as well as earlier collaborations on the homomesy phenomenon. Please feel free to interrupt with questions or comments. Outline Actions, orbits, and homomesy; The Twelvefold Way; Foatic actions on Sn. -
Accepted Manuscript
Accepted Manuscript Some properties of central Delannoy numbers Feng Qi, Viera Cerˇ nanová,ˇ Xiao-Ting Shi, Bai-Ni Guo PII: S0377-0427(17)30354-0 DOI: http://dx.doi.org/10.1016/j.cam.2017.07.013 Reference: CAM 11224 To appear in: Journal of Computational and Applied Mathematics Received date : 29 June 2017 Please cite this article as: F. Qi, V. Cerˇ nanová,ˇ X. Shi, B. Guo, Some properties of central Delannoy numbers, Journal of Computational and Applied Mathematics (2017), http://dx.doi.org/10.1016/j.cam.2017.07.013 This is a PDF file of an unedited manuscript that has been accepted for publication. As aserviceto our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Manuscript Click here to view linked References SOME PROPERTIES OF CENTRAL DELANNOY NUMBERS FENG QI, VIERA CERˇ NANOVˇ A,´ XIAO-TING SHI, AND BAI-NI GUO Abstract. In the paper, by investigating the generating function of central Delannoy numbers, the authors establish several explicit expressions, includ- ing determinantal expressions, for central Delannoy numbers, present three identities involving the Cauchy products of central Delannoy numbers, dis- cover an integral representation for central Delannoy numbers, find (absolute) monotonicity, convexity, and logarithmic convexity for the sequence of central Delannoy numbers, and construct several product and determinantal inequal- ities for central Delannoy numbers. -
A Species Approach to the Twelvefold
A species approach to Rota’s twelvefold way Anders Claesson 7 September 2019 Abstract An introduction to Joyal’s theory of combinatorial species is given and through it an alternative view of Rota’s twelvefold way emerges. 1. Introduction In how many ways can n balls be distributed into k urns? If there are no restrictions given, then each of the n balls can be freely placed into any of the k urns and so the answer is clearly kn. But what if we think of the balls, or the urns, as being identical rather than distinct? What if we have to place at least one ball, or can place at most one ball, into each urn? The twelve cases resulting from exhaustively considering these options are collectively referred to as the twelvefold way, an account of which can be found in Section 1.4 of Richard Stanley’s [8] excellent Enumerative Combinatorics, Volume 1. He attributes the idea of the twelvefold way to Gian-Carlo Rota and its name to Joel Spencer. Stanley presents the twelvefold way in terms of counting functions, f : U V, between two finite sets. If we think of U as a set of balls and V as a set of urns, then requiring that each urn contains at least one ball is the same as requiring that f!is surjective, and requiring that each urn contain at most one ball is the same as requiring that f is injective. To say that the balls are identical, or that the urns are identical, is to consider the equality of such functions up to a permutation of the elements of U, or up to a permutation of the elements of V. -
Richard Stanley's Twelvefold Way
Richard Stanley's Twelvefold Way August 31, 2009 Many combinatorial problems can be framed as counting the number of ways to allocate balls to urns, subject to various conditions. Richard Stanley invented the \twelvefold way" to organize these results into a table with twelve entries. See his book Enumerative Combinatorics, Volume 1. Let b represent the number of balls available and u the number of urns. The following table gives the number of ways to partition the balls among the urns according to the various states of labeled or unlabeled and subject to certain restrictions. The column headed \≤ 1" corresponds to requiring that there be no more than one ball in each urn. Similarly, the column headed \≥ 1" corresponds to requiring at least one ball in each urn. Balls Urns unrestricted ≤ 1 ≥ 1 b labeled labeled u (u)b u!S(b; u) unlabeled labeled u u u b b b-u labeled unlabeled u i=1 S(b; i) [b ≤ u] S(b; u) unlabeled unlabeled u P i=1 pi(b) [b ≤ u] pu(b) P For convenient cross referencing, we will refer to each of the cases by three symbols. The rst character is an l or a u depending on whether the balls 1 are labeled or unlabeled. The second character similarly indicates whether the urns are labeled or unlabeled. The nal character is one the regular expression symbols *, ?, or + indicating no restrictions, at most one ball per urn, and at least one ball per urn respectively. 1 Labeled balls, labeled urns, unrestricted (ll*) This is the number of b-tuples of u things.