Chemdraw V19.1 User Guide

Total Page:16

File Type:pdf, Size:1020Kb

Chemdraw V19.1 User Guide ChemDraw 19.1 User Guide ChemDraw: User Guide Table of Contents Recent Additions vii Chapter 1: Introduction 1 About this Guide 1 Chapter 2: Getting Started 4 About ChemDraw Tutorials 4 ChemDraw User Interface 4 Toolbars 5 Documents 6 Chapter 3: Page Layout 15 The Drawing Area 15 The Document Type 15 Printing 17 Saving Page Setup Settings 18 35mm Slide Boundary Guides 18 Viewing Drawings 19 Tables 21 Chapter 4: Preferences and Settings 25 Setting Preferences 25 Customizing Toolbars 31 Document and Object Settings 32 Customizing Hotkeys 42 Working with Color 44 Document Settings 50 Chapter 5: Shortcuts and Hotkeys 56 Atom Hotkeys 56 Bond Hotkeys 59 Generic Hotkeys (tool switching hotkeys) 61 © Copyright 1998-2020 PerkinElmer Informatics, Inc. All rights reserved. i ChemDraw: User Guide Modified Hotkeys 62 Drawing Reactions Using Hotkeys 62 Shortcuts 63 Nicknames 67 Chapter 6: Basic Drawings 70 Bonds 70 Atoms 75 Captions 76 Drawing Rings 85 Chains 89 Objects 90 Clean Up Structure 109 Checking Structures 110 Chemical Warnings 111 Chapter 7: BioDraw (Professional Level only) 113 BioDraw Templates 113 Customizable Objects 116 Chapter 8: Drawing Monomer Sequences 122 Drawing Amino Acid Sequences 125 Drawing RNA Sequences 133 Replacing Monomers 135 Copying Sequence(s) as HELM String 135 Pasting HELM Strings 136 Copying a Sequence as HELM (Natural Analog) 137 Nonlinear Sequences (Multi-line Sequences) 139 Basic Sequence Operations 140 Monomer Editors 147 ChemDraw Shared Monomers 152 © Copyright 1998-2020 PerkinElmer Informatics, Inc. All rights reserved. ii ChemDraw: User Guide Chapter 9: Advanced Drawing Techniques 160 Coloring Objects 160 Labels 161 Attachment Points 164 Atom Numbering 167 Structure Perspective 168 Mass Fragmentation 169 Drawing Reactions 171 Stoichiometry Grid 177 Templates 181 Defining Nicknames 183 ChemScript 186 Chapter 10: Struct=Name (Professional Level) 188 Struct>Name 188 Name>Struct 194 Adding Structures to a Dictionary 197 Dictionary of FDA Approved Drugs 197 Chapter 11: Chemistry Features 198 Structure Analysis 198 Stereochemistry 200 Chemical Properties 204 Chemical Annotations 211 3D Viewing 215 TLC 218 ChemNMR (Professional Level) 223 Chapter 12: ChemDraw/Excel and CombiChem 231 Setting Up ChemDraw/Excel 231 Importing tables 231 © Copyright 1998-2020 PerkinElmer Informatics, Inc. All rights reserved. iii ChemDraw: User Guide Importing hit lists 232 Exporting tables 232 Synchronizing Tables 233 Adding structures 234 Searching 235 R-Group analysis 236 Working with Structures 237 ChemDraw/Excel Functions 239 Chemical Properties 253 General Preferences 261 CombiChem 262 Chapter 13: ChemScript 271 Why use ChemScript? 271 How ChemScript works 272 Getting Started 272 Editing Scripts 273 Introducing the ChemScript API 274 Tutorials 275 Useful References 278 Chapter 14: Query Structures 280 Search Limitations 280 Generic Labels 280 Atom Properties 283 Bond Properties 291 Element Lists 294 Polymers 295 Alternative Groups 301 Anonymous Alternative Groups 308 © Copyright 1998-2020 PerkinElmer Informatics, Inc. All rights reserved. iv ChemDraw: User Guide Expand Generic Structures 309 Expand Generic Structure To SDF 312 Atom-to-Atom Mapping 315 Stereochemical Symbols 318 3D Properties 318 Export Compatibility 319 Chapter 15: Sharing Information 324 The Clipboard 324 Transferring Objects 327 Embedding Objects 328 Exporting 329 Importing 330 Transferring Across Platforms 334 Understanding ChemDraw Cloud 334 Chapter 16: Chemical Interpretation 346 Database Conventions 346 Chapter 17: Property Calculations 359 Chapter 18: ChemDraw Add-ins 362 Add-in Manager 362 ChemACX.com Structure from CAS Registry Number Add-in 367 ChemACX Explorer Add-in 368 Dynamic Add-ins 379 PubChem GHS LCSS Add-in 381 Creating a ChemDraw Add-in 383 ChemDraw Add-in Tutorials 386 Creating a Remote Add-in 394 Adding a Remote Add-in 395 OAuth Based Authorization Workflow in ChemDraw Add-ins 396 © Copyright 1998-2020 PerkinElmer Informatics, Inc. All rights reserved. v ChemDraw: User Guide Chapter 19: ChemDraw Web Resources 400 400 User’s Guide 400 Technical Support 400 ChemDraw Web Resources 401 Querying SciFinder® with ChemDraw 402 Querying Reaxys® with ChemDraw 404 Chapter 20: Tutorials 408 Tutorial 1: Drawing a Structure 408 Tutorial 2: Drawing rings 409 Tutorial 3: Fischer projections 411 Tutorial 4: Perspective Drawings 414 Tutorial 5: Newman projections 418 Tutorial 6: Stereochemistry 421 Tutorial 7: Templates 424 © Copyright 1998-2020 PerkinElmer Informatics, Inc. All rights reserved. vi ChemDraw: User Guide Recent Additions Querying Reaxys® with ChemDraw. Reaxys is a web-based chemical search engine designed for synthetic and medicinal chemists. The Reaxys data- base includes chemical properties, structures, reactions and experimental data. Using the Search Reaxys func- tionality, you can now search the Reaxys database for query structures drawn in ChemDraw. If your subscription is through a university or institution, you can use a proxy server to connect you to Reaxys®. For more details, see "Querying Reaxys® with ChemDraw " on page 404. Import/Export Reaction Data Files. ChemDraw now supports importing and exporting Reaction Data Files. You can choose to import .rd or .rdf (v2000 and v3000) files. Ring Fill Colors. Using the Ring Fill Colors option, you can now fill different ring structures with colors of your choice. The ring color is propagated when atom labels and nicknames in generic structures are expanded. For more details, see "Ring Fill Colors" on page 46. Atom Hotkey to add atom label CF3. You can now use the hotkey Shift+f to add the atom label CF3. For more information on Atom Hotkeys see, "Atom Hotkeys" on page 56. Add-ins Toolbar. The Search toolbar has now been renamed to Add-ins toolbar. The Scifinder® and Reaxys® search buttons are now located on this toolbar. For more information, see "The Add-ins Toolbar" on page 379. Dynamic Add-ins. ChemDraw now supports dynamic add-ins. A dynamic add-in behaves like a normal add-in, with the addition that a button will be dynamically added to the Add-ins toolbar when the add-in is successfully loaded. For more information, see "Dynamic Add-ins" on page 379. PubChem GHS LCSS Add-ins. You can use the PubChem GHS LCSS add-in to search for the selected structure and its safety data in PubChem from the ChemDraw interface. You can also copy the GHS Hazard Statement and the Precautionary Statement Codes to the clipboard. For more information, see "PubChem GHS LCSS Add-in" on page 381. Accessing remote add-ins. © Copyright 1998-2020 PerkinElmer Informatics, Inc. All rights reserved. vii ChemDraw: User Guide You can now access add-ins deployed on remote sites. Deploying add-ins on remote sites accessible by ChemDraw makes the central management of such add-ins much more convenient. For more details, see "Creating a Remote Add-in" on page 394. Expand Generic Structure To SDF. You can now export multiple structures from an annotated combinatorial structure with the Expand Generic Structure to SDF option. For details, see "Expand Generic Structure To SDF" on page 312. Parameterized brackets. The paired brackets are now parameterized i.e. you can specify the label or repeat count and/or the molecular weight. When the molecular weight is specified, the specified molecular weight overrides the molecular weight of the molecules inside the brackets. For more information, see "Paired Brackets" on page 97, "Molecular Weight Override and Derived Calculations" on page 199 and "Converting Unspecified Bracket Type to Parameterized Bracket" on page 299. Support for native Pistoia Alliance format. ChemDraw now supports the native Pistoia Alliance format for the monomer database for both read and write oper- ations. For details, see "ChemDraw Shared Monomers" on page 152. ChemDraw Shared Monomers. ChemDraw can be used as a full featured monomer editing and curation tool. Monomers can be downloaded from web, network or local locations, and written anywhere the user has write permission. Monomers can be entered de-novo, or imported via CDXML files or from JSON libraries. For more information, see "ChemDraw Shared Monomers" on page 152. Toggle Aromatic Display. Toggle Aromatic Display option lets you change an aromatic structure from Alternating double/single bond to Aromatic circle and vice versa. You can now define the way aromatic structures are displayed when you open a file of non nat- ive chemical format or paste as SMILES. For more information, see "Toggle Aromatic Display" on page 88. © Copyright 1998-2020 PerkinElmer Informatics, Inc. All rights reserved. viii ChemDraw: User Guide Introduction Designed for scientists, students, and scientific authors, ChemDraw is a powerful, yet easy-to use, tool for producing chemical and biological drawings. You can create your own drawings or use those provided in the library of available templates. Technical Support The online menu link Technical Support opens the Technical Support Web page. Here you can find desktop support resources, including the PerkinElmer Informatics Knowledge Base, product downloads, FAQ, and documentation. To reach the PerkinElmer Informatics Technical Support Web page: 1. Navigate to Online>Browse PerkinElmer Technical Support. The Technical Support Web page opens. 2. Click Desktop Support. About this Guide This guide describes the features in ChemDraw. Some tasks described in this guide must be performed in conjunction with other software. For example, instructions for ChemDraw/Excel describe tasks that require Microsoft Excel. For
Recommended publications
  • Docteur» at the University François Rabela
    UNIVERSITÉ FRANÇOIS – RABELAIS DE TOURS École Doctorale « Santé - Sciences Biologiques - Chimie du Vivant » and UNIVERSITY OF LJUBLJANA, FACULTY OF PHARMACY «Department of Pharmaceutical Chemistry» A cotutelle thesis submitted in fulfillment of the requirements for the degree of «Docteur» at the University François Rabelais of Tours (France) and Doctor of Pharmacy at the University of Ljubljana (Slovenia) In Pharmaceutical Chemistry Publicly defended on the 1st of March 2013 by Mitja KOVAČ in Ljubljana FLUORATION DE DERIVES DU BENZOVESAMICOL POUR L'OBTENTION DE RADIOLIGANDS POTENTIELS DU TRANSPORTEUR VESICULAIRE DE L'ACETYLCHOLINE Under the co-direction of: Associate Professor Sylvie Mavel (MCU, Tours) and Associate Professor Marko Anderluh (Ljubljana) ----------------- JURY for Oral Defense: Ms MAVEL Sylvie – Associate Professor, University François-Rabelais, Tours, France Mr ANDERLUH Marko – Associate Professor, University of Ljubljana, Slovenia Mr DOLLÉ Frédéric – Service Hospitalier Frédéric Joliot, Institut d'Imagerie BioMédicale - CEA, Orsay, France (Reviewer) Mr EMOND Patrick – Professor, University François-Rabelais, Tours, France Ms GMEINER STOPAR Tanja – Assistant Professor, University of Ljubljana, Slovenia (Reviewer) Mr GOBEC Stanislav – Professor, University of Ljubljana, Slovenia (Chairman) This cotutelle PhD was carried out with the collaboration between the University of Tours (Laboratoire de Biophysique Médicale et Pharmaceutique, Unité INSERM U930 - FRANCE) and the University of Ljubljana (Faculty of Pharmacy, Department of Pharmacutical Chemistry - SLOVENIA). The work was supported by a grant from the Slovene Human Resources Development and Scholarship Fund, by a grant from the University of Ljubljana (Inovativna shema za sofinanciranje doktorskega študija za spodbujanje sodelovanja z gospodarstvom in reševanja aktualnih družbenih izzivov - generacija 2010 Univerza v Ljubljani), and by a Slovenia- French bilateral collaboration project (project n° BI-FR/12-13-PROTEUS-007).
    [Show full text]
  • Solving the Schrödinger Equation for Helium Atom and Its Isoelectronic
    THE JOURNAL OF CHEMICAL PHYSICS 127, 224104 ͑2007͒ Solving the Schrödinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction „ICI… method ͒ Hiroyuki Nakashima and Hiroshi Nakatsujia Quantum Chemistry Research Institute, Kyodai Katsura Venture Plaza 106, Goryo Oohara 1-36, Nishikyo-ku, Kyoto 615-8245, Japan and Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan ͑Received 31 July 2007; accepted 2 October 2007; published online 11 December 2007͒ The Schrödinger equation was solved very accurately for helium atom and its isoelectronic ions ͑Z=1–10͒ with the free iterative complement interaction ͑ICI͒ method followed by the variational principle. We obtained highly accurate wave functions and energies of helium atom and its isoelectronic ions. For helium, the calculated energy was −2.903 724 377 034 119 598 311 159 245 194 404 446 696 905 37 a.u., correct over 40 digit accuracy, and for H−,itwas−0.527 751 016 544 377 196 590 814 566 747 511 383 045 02 a.u. These results prove numerically that with the free ICI method, we can calculate the solutions of the Schrödinger equation as accurately as one desires. We examined several types of scaling function g ␺ and initial function 0 of the free ICI method. The performance was good when logarithm functions were used in the initial function because the logarithm function is physically essential for three-particle collision area. The best performance was obtained when we introduce a new logarithm function containing not only r1 and r2 but also r12 in the same logarithm function.
    [Show full text]
  • Many-Electron System I – Helium Atom and Pauli Exclusion Principle
    Lecture 17 Many-electron System I { Helium Atom and Pauli Exclusion Principle Study Goal of This Lecture • Helium atom - many electron wavefunctions • Helium atom - variational ground state (screening) • Eigenstates of a two-spin system 17.1 Helium Atom Helium atom includes two electrons moving around a fixed nucleus with charge Z = 2, we can write down the Hamiltonian as: 2 2 2 2 ^ ~ 2 2 1 Ze Ze e H = − (r1 + r2) − ( + − ) 2me 4π0 r1 r2 r12 2 2 2 2 2 ~ 2 1 Ze ~ 2 1 Ze e = − r1 − − − r2 − + 2me 4π0 r1 2me 4π0 r2 4π0r12 (17.1) | {z } | {z } | {z } H^1 H^2 H^12 = H^1 + H^2 + H^12: 1 If H^12 = 0(or neglected) then the problem is exactly solved. Recall that for a total system composes of independent sub-systems H^T = H^1 + H^2 + ··· ; (17.2) and we can firstly solve all ^ n n n Hnφm = Emφm; (17.3) then the solution of H^T is the product states Y n = φ : (17.4) n If consider as many-electrons, i.e. H^n for the n-th electron. Then the product solu- tion is a natural "independent electron" solution. Even when the electron-electron interactions are non-zero, we will see the independent electorn approximation is a good starting point. Let's consider the Helium atom, we know: H^1φ1 = E1φ1; (17.5) H^2φ2 = E2φ2; and total E = E1 + E2. φ1; φ2 are Helium hydrogen-like atomic orbitals. We know the two ground states (neglect spin for a moment.) H^1φ1s(1) = E1sφ1s(1); (17.6) H^2φ1s(2) = E1sφ1s(2); number 1 and 2 denotes electorn 1 and electron 2 respectively.
    [Show full text]
  • Helium Atom, Approximate Methods
    Helium Atom, Approximate Methods 22nd April 2008 I. The Helium Atom and Variational Principle: Approximation Methods for Complex Atomic Systems The hydrogen atom wavefunctions and energies, we have seen, are deter- mined as a combination of the various quantum "dynamical" analogues of classical motions (translation, vibration, rotation) and a central-force inter- action (i.e, the Coulomb interaction between an electron and a nucleus). Now, we consider the Helium atom and will see that due to the attendant 3-body problem for which we cannot determine a close-for, first-principles analytic solution, we will have to find recourse in approximate methods. The Helium atom has 2 electrons with coordinates r1 and r2 as well as a single nucleus with coordinate R. The nuclues carries a Z = +2e charge. The Schrodinger equation is: 2 2 2 h¯ 2 h¯ 2 h¯ 2 1 2 (R; r1; r2) + −2M r − 2me r − 2me r ! 2e2 2e2 e2 + (R; r ; r ) = E (R; r ; r ) −4π R r − 4π R r 4π r r 1 2 1 2 o j − 1j o j − 2j o j 1 − 2j! where the symbol "nabla", when squared, is given by: @2 @2 @2 2 = + + r @x2 @y2 @z2 Keep in mind that the R, r, and r represent the Cartesian coordinates of each paticle. This is a 3-body problem and such problems are not solved exactly. Thus, the problem will be reformulated in terms of 2 variables. The first approximations: Mme , fix the nucleous at the origin (R) = 0. Thus, the Schrodinger equation in relative variables is: 1 2 2 2 h¯ 2 2 2e 1 1 e 1 2 (r1; r2) + + (r1; r2) = E (r1; r2) 2me −∇ − r −4πo r1 r2 4πo r2 r1 j − j Recall that the 2, representing the kinetic energy operator, in spherical r polar coordinates is: 1 @ @ 1 @ @ 1 @2 r2 + sinθ + 2 @r 1 @r 2 @θ 1 @θ 2 2 2 r1 1 1 r1sinθ1 1 1 r1sin θ1 @φ1 The Independent Electron Approximation to Solving the Helium Atom Schrodinger Equation If we neglect electron-electron repulsion in the Helium atom problem, we can simplify and solve the effective 2-body problem.
    [Show full text]
  • The Ozonolysis of Phenyl Grignard Reagent
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1971 The ozonolysis of phenyl Grignard reagent Gale Manning Sherrodd The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Sherrodd, Gale Manning, "The ozonolysis of phenyl Grignard reagent" (1971). Graduate Student Theses, Dissertations, & Professional Papers. 8297. https://scholarworks.umt.edu/etd/8297 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE OZONOLYSIS OF PHENYL GRIGNARD REAGENT By Gale M. Sherrodd B.S., Rocky Mountain College, I969 Presented in partial fulfillment of the requirements for the degree of Master of Arts for Teachers UNIVERSITY OF MONTANA 1971 Approved by: Chairman, Board of Examiners De^ , Graduate *School / n ? / Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP39098 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT DiMMtstion PuWiahing UMI EP39098 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.
    [Show full text]
  • TOXICOLOGICAL REVIEW of BROMOBENZENE (CAS No
    DRAFT - DO NOT CITE OR QUOTE EPA/635/R-07/002 www.epa.gov/iris TOXICOLOGICAL REVIEW OF BROMOBENZENE (CAS No. 108-86-1) In Support of Summary Information on the Integrated Risk Information System (IRIS) June 2007 NOTICE This document is an interagency review draft. It has not been formally released by the U.S. Environmental Protection Agency and should not at this stage be construed to represent Agency position on this chemical. It is being circulated for review of its technical accuracy and science policy implications. U.S. Environmental Protection Agency Washington, DC DISCLAIMER This document is a preliminary draft for review purposes only and does not constitute U.S. Environmental Protection Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. 6/7/07 ii DRAFT – DO NOT CITE OR QUOTE CONTENTSCTOXICOLOGICAL REVIEW OF BROMOBENZENE (CAS No. 108-86-1) LIST OF FIGURES ....................................................................................................................... vi LIST OF TABLES........................................................................................................................ vii LIST OF ABBREVIATIONS AND ACRONYMS ........................................................................x FOREWORD ................................................................................................................................. xi AUTHORS, CONTRIBUTORS, AND REVIEWERS ................................................................ xii
    [Show full text]
  • Reactivity of Nucleophiles Toward Phenyl Radical James Louis Anderson Jr
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1986 Reactivity of nucleophiles toward phenyl radical James Louis Anderson Jr. Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Anderson, James Louis Jr., "Reactivity of nucleophiles toward phenyl radical " (1986). Retrospective Theses and Dissertations. 8135. https://lib.dr.iastate.edu/rtd/8135 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent apon the quality of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand comer and continuing fiijm left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a 17"x 23" black and white photographic print.
    [Show full text]
  • Friction of Iron Lubricated with Aliphatic and Aromatic Hydrocarbons and Halogenated Analogs
    NASA TECHNICAL NOTE 00 0 N w n a c 4 &A 4 a w~.~,z..p~COPY: RETURN TO --;F?.f-..wL TECHNICAL LIBRARY 1(LWTWND ATS, M* M* FRICTION OF IRON LUBRICATED WITH ALIPHATIC AND AROMATIC HYDROCARBONS AND HALOGENATED ANALOGS Donald H. Buckley Lewis Research Center NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. APRIL 1976 TECH LIBRARY KAFB,"I .-- - -.- ~~ OL337b7 I 1. Report No. I 2. Government Accession No. ]Recipient's Catalog NO. TN D -8208 I- .- .. I I 4. Title and Subtitle 5. Report Date FRICTION OF IRON LUBRICATED WITH ALIPHATIC AND I April 1976 Performing OrganizationCode AROMATIC HYDROCARBONS AND HALOGENATED ANALOGS I 7. Author(s1 8. Performing Organization Report No. E-8558 Donald H. Buckley ~__ .. 10. Wcrk Unit No. 9. Performing Organization Name and Address 506-16 Lewis Research Center 11. Contract or Grant No. National Aeronautics and Space Administration I Cleveland, Ohio 44135 13. Type of Report and Period Covered ~~ 12. Sponsoring Agency Name and Address Technical Note National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546 I 1 15. Supplementary Notes - -- ­ L16. Abstract An investigation was conducted to determine the influence of oxygen and various organic mole­ cules on the reduction of the friction of an iron (011) single crystal surface. A comparison was made between aliphatic and aromatic structures, all of which contained six carbon atoms, and among various halogen atoms. Results of the investigation indicate that hexane and benzene give similar friction coefficients over a range of loads except at very light loads. At light loads, the friction decreased with an increase in the load where the halogens fluorine and chlorine are in­ corporated into the benzene molecular structure; however, over the same load range when bro­ mine and iodine were present, the friction was relatively unchanged.
    [Show full text]
  • UNITED STATES PATENT OFFICE 2,677,686 PYRAZINEDERVATIVES and METHO) of PREPARING the SAME Victor K
    Patented May 4, 1954 2,677,686 UNITED STATES PATENT OFFICE 2,677,686 PYRAZINEDERVATIVES AND METHO) OF PREPARING THE SAME Victor K. Smith, Jr., Feari River, and Samuel Kushner, Nanuet, N. Y., assignors to American Cyanamid Company, New York, N. Y., a corpo ration of Maine No Drawing. Application 5uly 22, 1952, Serial No. 300,336 8 Claims. (C. 260-250) 2 This invention relates to mono-substituted ous layer is extracted with a solvent, such as di pyrazine. More particularly, it relates to substi ethyl ether. The ether can be concentrated and tuted-2-carbonyl pyrazine. the desired compound crystallized out Or the The role of vitamins in nutrition is well known ether can be removed and the product distilled. i and assumes greater importance as new informa 5, The reaction of the present invention may be tion is made available concerning the particular carried out at a temperature of -10° to 15° C. function of each. Recently it has been found The reaction is complete in from about a few that folic acid was effective in curing macrocytic ininutes up to about tWO hours. anemias and other blood conditions. Also, Com The process of the present invention is de pounds which are folic acid antagonistS, Such as scribed in greater particularity by the following aninopterin, have been found useful in treating specific examples which are given by way of ill abnormal blood conditions such as leukemia. lustration and not limitation. it is well established that nicotinamide is an im Eacample 1 portant, vitamin of the B complex group and its deficiency is the specific cause of pelagira.
    [Show full text]
  • Quantum Physics (UCSD Physics 130)
    Quantum Physics (UCSD Physics 130) April 2, 2003 2 Contents 1 Course Summary 17 1.1 Problems with Classical Physics . .... 17 1.2 ThoughtExperimentsonDiffraction . ..... 17 1.3 Probability Amplitudes . 17 1.4 WavePacketsandUncertainty . ..... 18 1.5 Operators........................................ .. 19 1.6 ExpectationValues .................................. .. 19 1.7 Commutators ...................................... 20 1.8 TheSchr¨odingerEquation .. .. .. .. .. .. .. .. .. .. .. .. .... 20 1.9 Eigenfunctions, Eigenvalues and Vector Spaces . ......... 20 1.10 AParticleinaBox .................................... 22 1.11 Piecewise Constant Potentials in One Dimension . ...... 22 1.12 The Harmonic Oscillator in One Dimension . ... 24 1.13 Delta Function Potentials in One Dimension . .... 24 1.14 Harmonic Oscillator Solution with Operators . ...... 25 1.15 MoreFunwithOperators. .. .. .. .. .. .. .. .. .. .. .. .. .... 26 1.16 Two Particles in 3 Dimensions . .. 27 1.17 IdenticalParticles ................................. .... 28 1.18 Some 3D Problems Separable in Cartesian Coordinates . ........ 28 1.19 AngularMomentum.................................. .. 29 1.20 Solutions to the Radial Equation for Constant Potentials . .......... 30 1.21 Hydrogen........................................ .. 30 1.22 Solution of the 3D HO Problem in Spherical Coordinates . ....... 31 1.23 Matrix Representation of Operators and States . ........... 31 1.24 A Study of ℓ =1OperatorsandEigenfunctions . 32 1.25 Spin1/2andother2StateSystems . ...... 33 1.26 Quantum
    [Show full text]
  • HELIUM ATOM R R2 R1 R2 R1
    HELIUM ATOM Now that we have treated the Hydrogen like atoms in some detail, we now proceed to discuss the next­simplest system: the Helium atom. In this situation, we have tow electrons – with coordinates z r1 and r2 – orbiting a nucleus with charge Z = 2 located at the point R. Now, for the hydrogen atom we were able to ignore the motion of the nucleus r2 by transforming to the center of mass. We then obtained a Schrödinger equation for a single R y effective particle – with a reduced mass that was very close to the electron mass – orbiting the x origin. It turns out to be fairly difficult to r1 transform to the center of mass when dealing with three particles, as is the case for Helium. However, because the nucleus is much more massive than either of the two electrons (MNuc ≈ 7000 mel) it is a very good z approximation to assume that the nucleus sits at the center of mass of the atom. In this approximate set of COM coordinates, then, R=0 r2 and the electron coordinates r and r measure 1 2 y the between each electron and the nucleus. Further, we feel justified in separating the motion of the nucleus (which will roughly x r correspond to rigidly translating the COM of the 1 atom) from the relative d the electrons orbiting the nucleus within the COM frame. Thus, in what follows, we focus only on the motion of the electrons and ignore the motion of the nucleus. We will treat the quantum mechanics of multiple particles (1,2,3…) in much the same way as we described multiple dimensions.
    [Show full text]
  • Comparing Many-Body Approaches Against the Helium Atom Exact Solution
    SciPost Phys. 6, 040 (2019) Comparing many-body approaches against the helium atom exact solution Jing Li1,2, N. D. Drummond3, Peter Schuck1,4,5 and Valerio Olevano1,2,6? 1 Université Grenoble Alpes, 38000 Grenoble, France 2 CNRS, Institut Néel, 38042 Grenoble, France 3 Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom 4 CNRS, LPMMC, 38042 Grenoble, France 5 CNRS, Institut de Physique Nucléaire, IN2P3, Université Paris-Sud, 91406 Orsay, France 6 European Theoretical Spectroscopy Facility (ETSF) ? [email protected] Abstract Over time, many different theories and approaches have been developed to tackle the many-body problem in quantum chemistry, condensed-matter physics, and nuclear physics. Here we use the helium atom, a real system rather than a model, and we use the exact solution of its Schrödinger equation as a benchmark for comparison between methods. We present new results beyond the random-phase approximation (RPA) from a renormalized RPA (r-RPA) in the framework of the self-consistent RPA (SCRPA) originally developed in nuclear physics, and compare them with various other approaches like configuration interaction (CI), quantum Monte Carlo (QMC), time-dependent density- functional theory (TDDFT), and the Bethe-Salpeter equation on top of the GW approx- imation. Most of the calculations are consistently done on the same footing, e.g. using the same basis set, in an effort for a most faithful comparison between methods. Copyright J. Li et al. Received 15-01-2019 This work is licensed under the Creative Commons Accepted 21-03-2019 Check for Attribution 4.0 International License.
    [Show full text]