Pipeline Spring 2007 the Official ARB Newsletter Full PDF Print Edition

Total Page:16

File Type:pdf, Size:1020Kb

Pipeline Spring 2007 the Official ARB Newsletter Full PDF Print Edition Issue 004 Pipeline Spring 2007 The official ARB Newsletter Full PDF print edition In This Issue: Climbing OpenGL Longs Peak, Camp 3 - An OpenGL ARB Update 1 Another Object Lessson . 5 Shaders Go Mobile:Announcing OpenGL ES 2.0 . 2 Transforming OpenGL Debugging to a “White Box” Model . 8 Longs Peak Update: Buffer Object Improvements . 3 Climbing OpenGL Longs Peak, Camp 3 More context creation options are available. In the previ- ous edition of OpenGL Pipeline I described how we are planning An OpenGL ARB Progress Update on handling interoperability of OpenGL 2. and Longs Peak code. As a result, the application needs to explicitly create an OpenGL Longs Peak or OpenGL 2.x context. To aid debugging, it is also possible to request the GL to create a debug context. A debug context is only intended for use during application development. It provides additional validation, logging and error checking, but possibly at the cost of performance. The object handle model is fleshed out. We finalized all the nitty-gritty details of the object model that have to do with ob- ject and handle creation and deletion, attachment of an object to a container object, and the behavior of these operations across contexts. Here is a brief summary: . The GL creates handles, not the application, as can be the case in OpenGL 2.. This is done in the name of ef- ficiency. 2. Object creation can be asynchronous. This means that th Longs Peak – 14,255 feet, 15 highest mountain in Colo- it is possible that the creation of an object happens later rado. Mount Evans is the 14th highest mountain in Colorado. in time than the creation of the handle to the object. A (Therefore, we have at least 13 OpenGL revisions to go!) call to an object creation routine will return the handle to the caller immediately. The GL server might not get Since the last edition of OpenGL Pipeline we’ve increased our to the creation of the actual object until later. This is efforts even more. We held a face-to-face meeting in March and again done for performance reasons. The rule that all another face-to-face meeting at the end of May. Currently we’re commands are executed in the order issued still applies on track to meet face-to-face six times this year, instead of the (within a given context). Thus, asynchronous object usual four! The ARB recognizes it is extremely important to get creation might mean that a later request to operate on OpenGL Longs Peak and Mount Evans done. We also still meet an object will have to block until the object is created. by phone five times per week. This is a big commitment from Fences and queries can help determine if this will be the our members, and I’m very happy and proud to see the graph- case. ics industry working together to make OpenGL the best graphics 3. Object use by the GL is reference counted. Once the platform! “refcount” of an object goes to zero, the GL implemen- tation is free to delete the storage of the object. Object A lot has happened since the last edition of Pipeline. Below creation sets the refcount to . follows a brief summary of the most important advances. Other 4. The application does not delete an object, but instead articles in this edition will go into more detail on some of the top- invalidates the object handle. The invalidation decre- ics. Happy reading! ments the object’s refcount. An object’s refcount is incremented whenever it is “in Maximize vertex throughput using buffer objects. Just like use.” Examples of “in use” include attaching an object in OpenGL 2., an application can map a buffer object in OpenGL to a container object, or binding an object into the con- Longs Peak. Mapping a buffer object returns a pointer to the ap- text. plication which can be used to write (or read) data to (or from) the 6. Once a handle is invalidated, it cannot be used to refer buffer object. In OpenGL Longs Peak the mapping is made more to its underlying object anymore, even if the object still sophisticated, with the end result that maximum parallelism can exists. be achieved between the application writing data into the buffer object and the GL implementation reading data out of it. Read more about this cool feature in an article later in this newsletter. OpenGL Pipeline, The Official ARB Newsletter | Spring 2007, Issue 004 Page Pipeline Pipeline The official ARB Newsletter The official ARB Newsletter Most context state will be moved into an object. We are A Lean, Mean, Shadin’ Machine… currently pondering which state stays in the context, and which context state is moved into an object. One interesting set of state Like its predecessors, OpenGL ES 2.0 is based on a version I want to highlight is the state for the per-fragment operations, of desktop OpenGL – in this case, OpenGL 2.0. That means, of described in Chapter 4 of the OpenGL 2. specification. This state course, that it supports vertex and fragment shaders written in a actually applies per sample, not per fragment. Think of state such high-level programming language. But almost as interesting as as alpha test, stencil test, depth test, etc. We expect that some what ES 2.0 has, is what it doesn’t have. As I said in the OpenGL time in the future hardware will be available that makes all these ES article in OpenGL Pipeline #3, one of the fundamental design operations programmable. Once that happens, we’ll define an- principles of OpenGL ES is to avoid providing multiple ways of other program object type, and would like to be able to just “drop achieving the same goal. In OpenGL 2.0 on the desktop, you can it in” to the framework defined in OpenGL Longs Peak. Therefore, do your vertex and fragment processing in shaders or you can we are working on defining a sample operation state object that use traditional fixed-functionality transformation, lighting, and contains all this state. texturing controlled by state-setting commands. You can even mix and match, using the fixed-functionality vertex pipeline with We’re also working on fleshing out the draw commands as a fragment shader, or vice versa. It’s powerful, flexible, and back- well as display lists. Good progress was made defining what ward compatible; but isn’t it, perhaps, a little bit… redundant? the draw calls will look like. We decided to keep it simple, and largely mirror what is done in OpenGL 2.. There will be DrawAr- One of the first (and toughest) decisions we made for OpenGL rays, DrawElements, etc. commands that take vertex indices. In ES 2.0 was to break backward compatibility with ES .0 and .. order to actually render, at least a program object, a vertex array We decided to interpret the “avoid redundancy” rule to mean object, and an FBO need to be bound to the context. Possibly a that anything that can be done in a shader should be removed from sample operation state object, as describe above, will also need the fixed-functionality pipeline. That means that transformation, to be bound. lighting, texturing, and fog calculation have been removed from the API. We even removed alpha test, since you can perform it You can meet the designers behind OpenGL Longs Peak and in a fragment shader using discard. Depth test, stencil test, Mount Evans at Siggraph 2007 in August. The traditional OpenGL and blending are still there, because you can’t perform them in a BOF (Birds of a Feather) will likely be on Wednesday evening, Au- shader; even if you could read the frame buffer, these operations gust 8th, from 6:00pm – 8:00pm. I hope to see you there! must be executed per sample, whereas fragment shaders work on fragments. In the remainder of this issue you’ll find an update from the OpenGL ES Working Group, a discussion of Longs Peak buffer ob- Living without the fixed-functionality pipeline may seem a ject improvements, a look at the Longs Peak object model with little scary, but the advantages are enormous. The API becomes source code samples, and an article showing how to use gDEBug- very simple and easy to learn – a handful of state-setting calls, ger as a window exposing what’s happening within the GL. plus a few functions to load and compile shaders. At the same time, the driver gets a lot smaller. An OpenGL 2.0 driver has to do a lot of work to let you switch back and forth smoothly between Barthold Lichtenbelt, NVIDIA fixed-functionality and programmable mode, access fixed-func- Khronos OpenGL ARB Steering Group chair tionality state inside your shaders, and so on. Since OpenGL ES 2.0 has no fixed-functionality mode, all of that complexity goes away. Shaders Go Mobile: …with Leather Seats, AC, and Cruise Control Announcing OpenGL ES 2.0 OpenGL ES 2.0 lacks the fixed-functionality capability of OpenGL It’s here at last! At the Game Developers Conference in March, ES .x, but don’t get the impression that it is a stripped-down, the OpenGL ES Working Group announced the release of OpenGL bare-bones API. Along with the shader capability, we’ve added ES 2.0, the newest version of OpenGL for mobile devices. OpenGL many other new features that weren’t available in ES .0 or .. ES 2.0 brings shader-based rendering to cell phones, set-top box- Among them are: es, and other embedded platforms.
Recommended publications
  • Realizm Data Sheet200.Indd
    The Ultimate in Professional 3D Graphics Processing Welcome to a new kind of Realizm . where precision, speed, and your creativity are combined in ways you’ve only dreamed. 3Dlabs® puts the power of the industry’s most advanced visual processing right at your fingertips with Wildcat® Realizm™ 200. 3Dlabs’ AGP 8x-based graphics solution delivers all the performance, image fidelity, and features you’d expect from a professional graphics accelerator. So, whether you’re working on realistic animations, intricate CAD renderings, or complex scientific visualizations – if you can imagine it, you can make it real with Wildcat Realizm. Remove the boundaries to Remove the boundaries to your creativity. your productivity. With Wildcat Realizm 200’s no- Wildcat Realizm graphics compromise performance plus accelerators offer the highest levels the industry’s largest memory of image precision. You get quality resources, you’ll have more time and performance in one advanced to devote to your creativity. technology solution. Unmatched VPU Performance Extreme Geometry Performance • The most advanced Visual Processing Unit (VPU) available today • Manipulate the most complex models easily in real-time offering unparalleled levels of performance, programmability, • Wildcat Realizm’s VPU features full floating-point pipelines from With over 40 years of combined engineering talent, accuracy, and fidelity input vertices to displayed pixels to offer you unparalleled levels of 3Dlabs is the only graphics hardware developer 100% • Optimized floating-point precision across the entire pipeline performance, programmability, accuracy, and fidelity dedicated to building solutions designed specifically for The Most Memory Available on Any AGP Graphics Card – Image Quality graphics professionals. • Genuine real-time image manipulation and rendering using advanced 512 MB The Advanced Benefits of Wildcat Realizm 200 .
    [Show full text]
  • From a Programmable Pipeline to an Efficient Stream Processor
    Computation on GPUs: From a Programmable Pipeline to an Efficient Stream Processor João Luiz Dihl Comba 1 Carlos A. Dietrich1 Christian A. Pagot1 Carlos E. Scheidegger1 Resumo: O recente desenvolvimento de hardware gráfico apresenta uma mu- dança na implementação do pipeline gráfico, de um conjunto fixo de funções, para programas especiais desenvolvidos pelo usuário que são executados para cada vértice ou fragmento. Esta programabilidade permite implementações de diversos algoritmos diretamente no hardware gráfico. Neste tutorial serão apresentados as principais técnicas relacionadas a implementação de algoritmos desta forma. Serão usados exemplos baseados em artigos recentemente publicados. Através da revisão e análise da contribuição dos mesmos, iremos explicar as estratégias por trás do desenvolvimento de algoritmos desta forma, formando uma base que permita ao leitor criar seus próprios algoritmos. Palavras-chave: Hardware Gráfico Programável, GPU, Pipeline Gráfico Abstract: The recent development of graphics hardware is presenting a change in the implementation of the graphics pipeline, from a fixed set of functions, to user- developed special programs to be executed on a per-vertex or per-fragment basis. This programmability allows the efficient implementation of different algorithms directly on the graphics hardware. In this tutorial we will present the main techniques that are involved in implementing algorithms in this fashion. We use several test cases based on recently published pa- pers. By reviewing and analyzing their contribution, we explain the reasoning behind the development of the algorithms, establishing a common ground that allow readers to create their own novel algorithms. Keywords: Programmable Graphics Hardware, GPU, Graphics Pipeline 1UFRGS, Instituto de Informática, Caixa Postal 15064, 91501-970 Porto Alegre/RS, Brasil e-mail: {comba, cadietrich, capagot, carlossch}@inf.ufrgs.br Este trabalho foi parcialmente financiado pela CAPES, CNPq e FAPERGS.
    [Show full text]
  • Evolution of the Programmable Graphics Pipeline
    Course Roadmap Evolution of the Programmable Graphics ►Graphics Pipeline (GLSL) ►GPGPU (GLSL) Pipeline Briefly ►GPU Computing (CUDA, OpenCL) Lecture 2 ►Choose your own adventure Original Slides by: Suresh Venkatasubramanian Choose your own adventure Updates by Joseph Kider Student Presentation Final Project ►Goal: Prepare you for your presentation and project Lecture Outline The evolution of the pipeline ► A historical perspective on the graphics pipeline Elements of the graphics pipeline: Parameters controlling design of the pipeline: Dimensions of innovation. 1. A scene description: vertices, triangles, colors, lighting 1. Where is the boundary Where we are today between CPU and GPU ? 2. Transformations that map the Fixed-function vs programmable pipelines scene to a camera viewpoint 2. What transfer method is used ? ► A closer look at the fixed function pipeline 3. “Effects”: texturing, shadow 3. What resources are provided Walk thru the sequence of operations mapping, lighting calculations at each step ? Reinterpret these as stream operations 4. Rasterizing: converting geometry 4. What units can access which into pixels GPU memory elements ? ► We can program the fixed-function pipeline ! 5. Pixel processing: depth tests, Some examples stencil tests, and other per-pixel ► What constitutes data and memory, and how operations. access affects program design. Generation I: 3dfx Voodoo (1996) Aside: Mario Kart 64 • One of the first true 3D game cards ►High fragment load / low vertex load • Worked by supplementing standard 2D video
    [Show full text]
  • Evolution of the Programmable Graphics Pipeline Graphics Pipeline
    Administrivia Evolution of the Tip: google “cis 565” Programmable Slides posted before each class Graphics Pipeline Tentative assignment dates on website 1st assignment handed out today Patrick Cozzi Write concisely University of Pennsylvania Due start of class, one week from today CIS 565 - Spring 2011 Google group in progress FYI. GDC Early Registration - 01/24 Survey Results Survey Results 15/23 – graphics experience Class interests Most students have usable video cards Pure architecture Game rendering Lerk – don’t be scared Physical simulations I want to be a Toys R Us kid too Animation Vision algorithms Image/video processing … 1 Course Roadmap Agenda Graphics Pipeline (GLSL) Why program the GPU? GPGPU (GLSL) Graphics Review Briefly Evolution of the Programmable Graphics GPU Computing (CUDA, OpenCL) Pipeline Choose your own adventure Understand the past Student Presentation Final Project Goal : Prepare you for your presentation and project Why Program the GPU? Why Program the GPU? Graph from: http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf Graph from: http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf 2 Why Program the GPU? NVIDIA GPU Evolution Compute Intel Core i7 – 4 cores – 100 GFLOP NVIDIA GTX280 – 240 cores – 1 TFLOP Memory Bandwidth System Memory – 60 GB/s NVIDIA GT200 – 150 GB/s Install Base Over 200 million NVIDIA G80s shipped Numbers from Programming Massively Parallel Processors . Slide from David Luebke: http://s08.idav.ucdavis.edu/luebke-nvidia-gpu-architecture.pdf Graphics Review Graphics Review: Modeling Modeling Modeling Rendering Polygons vs Triangles How do you store a triangle mesh? Animation Implicit Surfaces Height maps … 3 Triangles Triangles Image courtesy of A K Peters, Ltd.
    [Show full text]
  • Opengl Shading Language Course Chapter 1 – Introduction to GLSL By
    OpenGL Shading Language Course Chapter 1 – Introduction to GLSL By Jacobo Rodriguez Villar [email protected] TyphoonLabs’ GLSL Course 1/29 CHAPTER 1: INTRODUCTION INDEX An Introduction to Programmable Hardware 3 Brief History of the OpenGL Programmable Hardware Pipeline 3 Fixed Function vs. Programmable Function 5 Programmable Function Scheme 6 Fixed Function Scheme 7 Shader 'Input' Data 7 Uniform Variables 7 Vertex Attributes 9 Varying Variables 10 Shader 'Output' Data 12 Vertex Shader 12 Fragment Shader 12 Simple GLSL Shader Example 13 Shader Designer IDE 16 User Interface 16 Toolbar 17 Menu 17 State Properties 22 Light States 22 Vertex States 24 Fragment States 25 Code Window 26 Uniform Variables Manager 27 TyphoonLabs’ GLSL Course 2/29 An Introduction to Programmable Hardware Brief history of the OpenGL Programmable Hardware Pipeline 2000 Card(s) on the market: GeForce 2, Rage 128, WildCat, and Oxygen GVX1 These cards did not use any programmability within their pipeline. There were no vertex and pixel shaders or even texture shaders. The only programmatically think was the register combiners. Multi-texturing and additive blending were used to create clever effects and unique materials. 2001 Card(s) on the market: GeForce 3, Radeon 8500 With GeForce 3, NVIDIA introduced programmability into the vertex processing pipeline, allowing developers to write simple 'fixed-length' vertex programs using pseudo-assembler style code. Pixel processing was also improved with the texture shader, allowing more control over textures. ATI added similar functionality including some VS and FS extensions (EXT_vertex_shader and ATI_fragment_shader) Developers could now interpolate, modulate, replace, and decal between texture units, as well as extrapolate or combine with constant colors.
    [Show full text]
  • A Survey of General-Purpose Computation on Graphics Hardware
    EUROGRAPHICS 2005 STAR – State of The Art Report A Survey of General-Purpose Computation on Graphics Hardware John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krüger, Aaron E. Lefohn, and Timothy J. Purcell Abstract The rapid increase in the performance of graphics hardware, coupled with recent improvements in its programma- bility, have made graphics hardware a compelling platform for computationally demanding tasks in a wide va- riety of application domains. In this report, we describe, summarize, and analyze the latest research in mapping general-purpose computation to graphics hardware. We begin with the technical motivations that underlie general-purpose computation on graphics processors (GPGPU) and describe the hardware and software developments that have led to the recent interest in this field. We then aim the main body of this report at two separate audiences. First, we describe the techniques used in mapping general-purpose computation to graphics hardware. We believe these techniques will be generally useful for researchers who plan to develop the next generation of GPGPU algorithms and techniques. Second, we survey and categorize the latest developments in general-purpose application development on graphics hardware. This survey should be of particular interest to researchers who are interested in using the latest GPGPU applications in their systems of interest. Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture; D.2.2 [Software Engineering]: Design Tools and Techniques 1. Introduction: Why GPGPU? 1.1. Powerful and Inexpensive Recent graphics architectures provide tremendous memory Commodity computer graphics chips are probably today’s bandwidth and computational horsepower.
    [Show full text]
  • Advanced Computer Graphics to Do Motivation Real-Time Rendering
    To Do Advanced Computer Graphics § Assignment 2 due May 19 § Should already be well on way. CSE 163 [Spring 2017], Lecture 12 § Contact us for difficulties etc. Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir Motivation Real-Time Rendering § Today, create photorealistic computer graphics § Goal: interactive rendering. Critical in many apps § Complex geometry, lighting, materials, shadows § Games, visualization, computer-aided design, … § Computer-generated movies/special effects (difficult or impossible to tell real from rendered…) § Until 10-15 years ago, focus on complex geometry § CSE 168 images from rendering competition (2011) § § But algorithms are very slow (hours to days) Chasm between interactivity, realism Evolution of 3D graphics rendering Offline 3D Graphics Rendering Interactive 3D graphics pipeline as in OpenGL Ray tracing, radiosity, photon mapping § Earliest SGI machines (Clark 82) to today § High realism (global illum, shadows, refraction, lighting,..) § Most of focus on more geometry, texture mapping § But historically very slow techniques § Some tweaks for realism (shadow mapping, accum. buffer) “So, while you and your children’s children are waiting for ray tracing to take over the world, what do you do in the meantime?” Real-Time Rendering SGI Reality Engine 93 (Kurt Akeley) Pictures courtesy Henrik Wann Jensen 1 New Trend: Acquired Data 15 years ago § Image-Based Rendering: Real/precomputed images as input § High quality rendering: ray tracing, global illumination § Little change in CSE 168 syllabus, from 2003 to
    [Show full text]
  • All the Pipelines – Journey Through the Gpu Lou Kramer, Developer Technology Engineer, Amd Overview
    ALL THE PIPELINES – JOURNEY THROUGH THE GPU LOU KRAMER, DEVELOPER TECHNOLOGY ENGINEER, AMD OVERVIEW … GIC 2020: All the pipelines – Journey through the GPU 2 CONTENT CREATION Some 3d model created via your software of choice (e.g., Blender - www.blender.org). This model is represented by a bunch of triangles. Each triangle is defined by 3 vertices. Vertices can have a number of attributes: ▪ Position ▪ Normal Vector ▪ Texture coordinate ▪ … GIC 2020: All the pipelines – Journey through the GPU 3 CONTENT CREATION .dae .abc .3ds Export .fbx .ply .obj .x3d .stl <custom> Positions Normal Vectors Texture Coordinates Connectivity Information … GIC 2020: All the pipelines – Journey through the GPU 4 CONTENT CREATION .dae .abc .3ds .fbx .ply Import .obj .x3d Game Engine of your choice .stl <custom> GIC 2020: All the pipelines – Journey through the GPU 5 RENDERING – PREPARATION ON THE CPU Geometry Render Abstraction Graphics Front End Layer APIs Engine Specific format Mesh Creation: • Vertex Buffers. Vulkan® • Index Buffers. MyDraw (vkCmdDrawIndexed,vkCmdDispatch, …) • Textures. MyDispatch D3D12 • … … Visibility Testing (DrawIndexedInstanced,Dispatch, …) • The less work the GPU D3D11 needs to do the better. … … Buffers in List of Commands System Memory (CPU) GIC 2020: All the pipelines – Journey through the GPU 6 RENDER FRONT END Data (Buffers, Textures …) PCIe® System memory Video memory GIC 2020: All the pipelines – Journey through the GPU 7 GPU COMMANDS List of Commands vkCmdBindPipeline vkCmdBindVertexBuffers vkCmdBindIndexBuffer vkCmdDrawIndexed ▪ Send a batch of commands to the GPU … so the GPU is busy for quite a while. ▪ Every command list submission takes some time! GIC 2020: All the pipelines – Journey through the GPU 8 GPU COMMANDS List of Commands vkCmdBindPipeline vkCmdBindVertexBuffers vkCmdBindIndexBuffer vkCmdDrawIndexed ▪ Send a batch of commands to the GPU … so the GPU is busy for quite a while.
    [Show full text]
  • Graphics and Computing Gpus
    B APPENDIX Graphics and Computing GPUs John Nickolls Imagination is more Director of Architecture important than NVIDIA knowledge. David Kirk Chief Scientist Albert Einstein On Science, 1930s NVIDIA B.1 Introduction B-3 B.2 GPU System Architectures B-7 B.3 Programming GPUs B-12 B.4 Multithreaded Multiprocessor Architecture B-25 B.5 Parallel Memory System B-36 B.6 Floating-point Arithmetic B-41 B.7 Real Stuff: The NVIDIA GeForce 8800 B-46 B.8 Real Stuff: Mapping Applications to GPUs B-55 B.9 Fallacies and Pitfalls B-72 B.10 Concluding Remarks B-76 B.11 Historical Perspective and Further Reading B-77 B.1 Introduction Th is appendix focuses on the GPU—the ubiquitous graphics processing unit graphics processing in every PC, laptop, desktop computer, and workstation. In its most basic form, unit (GPU) A processor the GPU generates 2D and 3D graphics, images, and video that enable Window- optimized for 2D and 3D based operating systems, graphical user interfaces, video games, visual imaging graphics, video, visual computing, and display. applications, and video. Th e modern GPU that we describe here is a highly parallel, highly multithreaded multiprocessor optimized for visual computing. To provide visual computing real-time visual interaction with computed objects via graphics, images, and video, A mix of graphics the GPU has a unifi ed graphics and computing architecture that serves as both a processing and computing programmable graphics processor and a scalable parallel computing platform. PCs that lets you visually interact with computed and game consoles combine a GPU with a CPU to form heterogeneous systems.
    [Show full text]
  • GPU Architecture
    GPU Architecture Michael Doggett ATI GPU Architecture • RADEON X1800/X1900 • Microsoft’s XBOX360 • Xenos GPU • GPU research areas ATI - Driving the Visual Experience Everywhere • Products from cell phones to super computers Integrated Gaming Console Embedded Display Gaming Notebook Color Phone Display Digital TV Multimedia Workstation Multi Monitor Display RADEON X1800/X1900 RADEON X1800 • November ‘05 • DirectX 9.0 Shader Model 3.0 • Core clock 625MHz • Memory clock 750MHz • 512MB of graphics memory • 321 Million transistors, 288mm2, 90nm • 8 Vertex Shaders • 16 Pixel Shaders • 32bit IEEE Single Precision float • 4 quad based, threaded units • 512 threads of 16 pixels allow efficient dynamic branching X1800 top level architecture Vertex Shader Pixel Shader • ALU 1 • 1 Vec3 ADD + Input Modifier • 1 Scalar ADD + Input Modifier • ALU 2 • 1 Vec3 ADD/MULL/MADD • 1 Scalar ADD/MULL/MADD • Branch Execution Unit • 1 Flow Control Instruction Memory Controller RADEON X1900 XTX • 48 shader pipes • Core clock 650MHz • Memory clock 775MHz • 512MB of graphics memory • 384 Million transistors, 352mm2, 90nm Xenos: XBOX360 GPU System architecture CPU 2x 10.8 GB/s 22.4GB/s UNIFIED Southbridge GPU MEMORY 2x PCIE Northbridge 700MHz 500MB/s 128bit GDDR3 32GB/s DAUGHTER DIE Rendering performance • GPU to Daughter Die interface •8 pixels/clk • 32BPP color • 4 samples Z - Lossless compression • 16 pixels/clk – Double Z • 4 samples Z - Lossless compression GPU 32GB/s DAUGHTER DIE Rendering performance • Alpha and Z logic to EDRAM interface • 256GB/s • Color and
    [Show full text]
  • Efficient GPU Rendering of Subdivision Surfaces Using Adaptive Quadtrees
    Efficient GPU Rendering of Subdivision Surfaces using Adaptive Quadtrees Wade Brainerd* Tim Foley* Manuel Kraemer Henry Moreton Matthias Nießner Activision NVIDIA NVIDIA NVIDIA Stanford University Figure 1: In our method, a subdivision surface model (left) is rendered in a single pass, without a separate subdivision step. Each quad face is submitted as a single tessellated primitive; a per-face adaptive quadtree is used to map tessellated vertices to the appropriate subdivided face (middle). Our approach makes tessellated subdivision surfaces easy to integrate into modern video game rendering (right). c 2014 Activision Publishing, Inc. Abstract 1 Introduction We present a novel method for real-time rendering of subdivision Subdivision surfaces [Catmull and Clark 1978; Loop 1987; Doo surfaces whose goal is to make subdivision faces as easy to ren- and Sabin 1978] have been used in movie productions for many der as triangles, points, or lines. Our approach uses standard GPU years. They have evolved into a de facto industry standard sur- tessellation hardware and processes each face of a base mesh inde- face representation, due to the flexibility they provide in modeling. pendently, thus allowing an entire model to be rendered in a single With an increasing demand for richer images with more and more pass. The key idea of our method is to subdivide the u; v domain of visual detail, it is desirable to render such movie-quality assets in each face ahead of time, generating a quadtree structure, and then real time, enabling the use of subdivision surfaces in both content submit one tessellated primitive per input face.
    [Show full text]
  • Real-Time High Quality Rendering Outline of Lecture Basic Hardware
    Outline of Lecture Real-Time High Quality Rendering §. Basics of hardware pipeline §. Reflection and Rendering equations CSE 274 [Fall 2015], Lecture 2 §. Typical Lighting, shading in hardware Graphics Hardware Pipeline, Reflection and §. Taxonomy of methods/papers Rendering Equations, Taxonomy of Methods http://www.cs.ucsd.edu/~ravir §. Assignment: Sign up for paper presentations §. And send basic info: §. Name, e-mail, status (Senior, PhD etc.) Background in graphics/comments §. Will you be taking course grades or P/F Basic concepts/review only. If interested in more background/in depth detail, refer to handouts Basic Hardware Pipeline Geometry or Vertex Pipeline Application Geometry Rasterizer CPU GPU Model, View Lighting Projection Clipping Screen Transform These fixed function stages can be replaced by a general per-vertex calculation using vertex shaders in modern programmable hardware Create geometry, lights, Transform and lighting calcs. materials, textures, Apply per-vertex operations Textures, Cubemaps cubemaps, … as inputs Per-pixel (per-fragment) operations Pixel or Fragment Pipeline GPU Programmable Shaders Programmable in Modern GPUs Programmable in (Vertex Shader) Modern GPUs Rasterization Texture Z-buffering Framebuffer Geometry (Fragment (scan conversion) Mapping Vertices Primitive Shader) Scan Framebuffer Operations Fragment Conversion Operations (Rasterize) These fixed function stages can be replaced by a general per-fragment calculation using fragment shaders in modern programmable hardware Pixel Texture Images Operations Memory Traditional Approach: Fixed function pipeline (state machine) New Development (2003-): Programmable pipeline 1 Outline of Lecture Reflection Equation §. Basics of hardware pipeline §. Reflection and Rendering equations §. Typical Lighting, shading in hardware ω §. Taxonomy of methods/papers i ωr x §. Assignment: Sign up for paper presentations L (x,ω ) = L (x,ω ) + L (x,ω )f (x,ω ,ω )(ω i n) r r e r i i i r i Basic concepts/review only.
    [Show full text]