Methods and Technologies for Experimenting with Ubiquitous Computing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Afcai Systems: a Ective Computing with Context Awareness For
AfCAI systems: Aective Computing with Context Awareness for Ambient Intelligence. Research proposal. Grzegorz J. Nalepa, Krzysztof Kutt, Szymon Bobek, and Mateusz Z. ¦picki AGH University of Science and Technology Al. Mickiewicza 30, 30-059 Krakow, Poland {gjn,kkutt,sbobek,mzl}@agh.edu.pl Keywords: context-aware systems, emotions, mobile devices. 1 Introduction Context-aware systems gained huge popularity over the last decade. Rapid evo- lution of personal mobile devices such as smartphones, tablets, smartwatches and other types of wearables forced researchers and developers to work on ecient methods for modelling, and processing contextual information. The most recent research in the area of mobile context-aware systems identies four challenges that should be met by the every context-aware system. These are [1]: intelligi- bility, eciency, privacy and robustness. Assuring these requirements is a major challenge for systems that operate in dynamic environment, where contextual information is constantly delivered in a streaming manner. To address the four challenges, in our previous work we proposed a human-readable rule-language that is capable of modeling and processing uncertain knowledge with an ecient rule-engine under the soft real-time constraints. Moreover, knowledge discovery methods from uncertain streaming data were proposed [1]. Context in context-aware systems can be described as any information that can be used to characterize the situation of an entity [4]. Such a broad denition allows us to consider a variety of factors as the context: (a) physical, collected using a device's sensors, e.g. ambient light luminance and user location, (b) environmental, obtained via software services, e.g. -
Private Data Protection in Ubiquitous Computing
UBICOMM 2016 : The Tenth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies Private Data Protection in Ubiquitous Computing Malika Yaici Samia Ameza¤, Ryma Houariy and Sabrina Hammachiz Laboratoire LTII Computer Department, University of Bejaia University of Bejaia Bejaia, 06000, Algeria Bejaia, 06000, Algeria ¤[email protected] [email protected] [email protected] [email protected] Abstract—A system in ubiquitous computing consists of a large care and safety where the end-user has authorized credentials amount of heterogeneous users and devices that communicate anonymity. with each other. Users in this dynamic field communicate with lightweight and autonomous devices, which accentuate security In [3], the author uses the framework of contextual integrity problems and make them more complex. The existing mechanisms related to privacy, developed by Nissenbaum in 2010 [4], as and solutions are inadequate to address new challenges mainly a tool to understand citizen’s response to the implementation for problems of authentication and protection of privacy. In this of IoT related technology in a supermarket. The purpose was paper, a new security architecture called Tree Based distributed to identify and understand specific changes in information Privacy Protection System is proposed. It supports protection of practices brought about by the IoT that may be perceived users private data and addresses the shortcomings of systems as privacy violations. Issues identified included the mining of like GAIA, OpenID and User-directed Privacy Protection (UPP). medical data, invasive targeted advertising, and loss of auton- Furthermore, it takes into account the domain dissociation omy through marketing profiles or personal affect monitoring. -
Consumer Data and Privacy in Ubiquitous Computing
ESPOO 2007 VTT PUBLICATIONS 647 VTT PUBLICATIONS VTT PUBLICATIONS 647 Consumer Data and Privacy in Ubiquitous Computing 629 Communications Technologies. VTT's Research Programme 2002–2006. Final Report. Ed. by Markku Sipilä. 2007. 354 p. 630 Solehmainen, Kimmo. Fabrication of microphotonic waveguide components on silicon. 2007. 68 p. + app. 35 p. 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 631 Törrö, Maaretta. Global intellectual capital brokering. Facilitating the emergence of 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 innovations through network mediation. 106 p. + app. 2 p. 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 632 Lanne, Marinka. Yhteistyö yritysturvallisuuden hallinnassa. Tutkimus sisäisen 12345678901234567890123456789012123456789012345678901234567890121234567890123456789012345678901212345 -
Ambient Multimodality: an Asset for Developing Universal Access to the Information Society
Ambient Multimodality: an Asset for Developing Universal Access to the Information Society Noëlle Carbonell University Henri Poincaré, LORIA, CNRS & INRIA LORIA, Campus Scientifique BP 249 F54506 Vandœuvre-lès-Nancy Cedex France [email protected] Abstract Our aim is to point out the benefits that can be derived from research advances in the implementation of concepts such as ambient intelligence and ubiquitous/pervasive computing for promoting Universal Access to the Information Society, that is, for contributing to enable everybody, especially people with physical disabilities, to have easy access to all computing resources and information services that the coming worldwide Information Society will make available to the general public as well as to expert users in the near future. Following definitions of basic concepts relating to multimodal interaction, the significant contribution of multimodality to developing Universal Access is briefly discussed. Then, a short state of the art in ambient intelligence research is presented, including references to some of the major recent and current research projects in this area. The last section is devoted to bringing out the potential contribution of advances in ambient intelligence research and technology to the improvement of computer access for physically disabled people, hence, to the implementation of Universal Access. This claim is mainly supported by the following observations: (i) most projects aiming at implementing ambient intelligence focus their research efforts on the design -
Ubiquitous Commerce: Ubiquitous Computing Based Commerce Dolly Amit Pruthi Deptt
Volume 4, Issue 8, August 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Ubiquitous Commerce: Ubiquitous Computing Based Commerce Dolly Amit Pruthi Deptt. of Computer Science & Applications, G.J. University of Sci. & Tech., M.D. University, Rohtak, India Hisar, India Abstract- With the rapid advancement in field of networking and communications, no aspect of human life is untouched. Commercial activities are also affected by the new advancements. Traditional commercial activities are changed and modified with the passage of time. Firstly, the age of E-Commerce arrived, then M-Commerce. Now, after E-Commerce and M-Commerce, the age of Ultimate Commerce is arrived. Any time/ Always/ Anywhere service providing is the key to this ultimate or ubiquitous commerce. This paper studies the concept of ubiquitous computing and its adaption to commerce with new issues associated. Keywords- Ubiquitous computing, Ubiquitous commerce. I. INTRODUCTION Ubiquitous commerce, also referred to as „u-commerce‟ is a new paradigm that broadens and extends the Internet usage in today‟s environment. With the rapid development of ubiquitous computing and mobile communication technologies, the traditional business model is changing drastically. As a logical extension of e-commerce and m-commerce, Watson proposed the concept of ubiquitous commerce (u-commerce) in 2000. As the next generation business model, it immediately gained a lot of attention. U-commerce emerges as a continuous, seamless stream of communication, content and services exchanged among businesses, suppliers, employees, customers, and products. It will enable interactions and transactions to happen anywhere and at any time without being constrained to stay connected through power and telephone lines. -
Ubiquitous Computing: Trends and History
Ubiquitous Computing: Trends and History Lecture 2 CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 1 Introduction Review: What is Ubiquitous Computing? • Immerses computers in a real environment • Sensors support interact with and control the environment. • Limited power supply, storage, memory and bandwidth. • Operate unattended (much like embedded systems). • Devices are mobile/wireless. • May reside on a person (wearable computing). • Have special peripherals. • Contrast this with virtual reality which immerses humans in a computer generated articial environment. CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 2 Historical Origins and Trends Computers are becoming smaller and cheaper over time • Originally few computers many operators . Machines Expensive and Large . People (relatively) cheap • Trend toward more computers per person . Users may not be tech savvy . Even tech savvy users have limited time . Minimal intervention is required People don't want to be separated from their data • But spying on users upsets them • And can violate laws - security is important • Mobility and wireless access are critical. CSI 660, William A. Maniatty, Dept. of Computer Science, University at Albany 3 Some Popular Views Many visions were popularized in the press • First to work on it, although other visionaries preceded him • Entertainment Industry (Ian Fleming, Gene Rodenberry) • Vanaver Bush's seminal article [1] As We Might Think predicted the WWW and Ubiquitous Computing in 1945! • Vernor Vinge (retired Computer Science Professor and Science ction writer) has interesting ubiquitous computing visions. • Movies: The Terminator, numerous Philip K. Dick books and screen plays (Blade Runner, Total Recall, Minority Report). Has been popular in the research community for over a decade CSI 660, William A. -
Wearable and Ubiquitous Computing
Education & Training Editor: Scott F. Midkiff ■ Virginia Tech ■ [email protected] Wearable and Ubiquitous Computing Tom Martin EDITOR’S INTRODUCTION ture and thickness of the user’s device primarily depends on the relative power This issue’s column continues its coverage of innovative courses in pervasive computing. consumption and expense of computa- Tom Martin of Virginia Tech describes a course on wearable and ubiquitous computing that tion, communication, and local storage. he developed and has taught twice. He describes the course’s scope, assignments and grad- Because wearable and ubiquitous ing, and design projects and his experiences with them. Please send me your comments and computing systems face significant suggestions for future columns. —Scott Midkiff power consumption challenges, the course spends a good amount of time on low-power design and system-level irginia Tech has offered a course on • User input/output devices power management. These topics are V wearable and ubiquitous comput- • Location and context awareness also some of my main research areas ing in the Bradley Department of Elec- • Application case studies and let me connect teaching and re- trical and Computer Engineering twice: search. I begin this section of the class one at the senior or master’s level in The wearable and ubiquitous com- with the power consumption mecha- spring 2002 (15 students) and another puting overview begins with Mark nisms in digital CMOS (complementary at the master’s level in spring 2003 (11 Weiser’s papers from the early 1990s1–2 metal-oxide semiconductor) circuits and students). The course aims to provide and more recent articles by Mahadev then move on to higher-level power students with an appreciation of current Satyanarayanan3 and Thad Starner.4–5 management problems, such as dynamic wearable and ubiquitous computing These provide a road map and motiva- CPU speed-setting, low-power compi- research issues and give them hands-on tion for topics covered later in the lation and source code modification, design experience. -
Ubiquitous Computing, Virtual Worlds, and the Displacement of Property Rights
Ubiquitous Computing, Virtual Worlds, and the Displacement of Property Rights M. ScoT BOONE* Abstract: Examining one emerging technology, virtual worlds, may provide us with insight about another emerging technology, ubiquitous computing. The rapid increase in both the popularity and economic value of virtual worlds has resulted in a conflict over whether players in these worlds have any property rights with respect to virtual world objects associated with their avatars. A close examination however reveals that even if such rights exist, they can be overridden through the combined use of contract and technology. This observation may in turn provide an insight about the future of real world property. The emerging technology of ubiquitous computing shares technological characteristics with virtual worlds such that ubiquitous computing would make a displacement of property rights in real world objects possible in the same way that virtual world technology makes such a displacement possible for potential property rights in virtual world objects. "Associate Professor of Law, Appalachian School of Law. I would like to thank Charlie Condon, Judie Barger, David Ritchie and James McGrath for their helpful comments on drafts of this article. I would also like to thank for their comments the participants of the Works-in-Progress Intellectual Property Colloquium, the participants of the Intellectual Property & Communications Law and Policy Scholars Roundtable sponsored by Michigan State University College of Law, and the participants of the annual meeting of Southeastern Association of Laws Schools. The research assistance of Russell Kloosterman and Justin Williams was also immensely helpful. I/S: A JOURNAL OF LAWAND POLICY [VOL. -
Ambient Intelligence in Assistive Technologies
G.A.247447 Collaborative Project of the 7th Framework Programme Work Package 5 AmI and Social Network Services D.5.1: Ambient Intelligence in Assistive Technologies Fundació Privada Barcelona Digital Centre Tecnològic Version 1.1 29/04/2010 www.BrainAble.org Document Information Project Number 247447 Acronym BrainAble Full title Autonomy and social inclusion through mixed reality Brain‐Computer Interfaces: connecting the disabled to their physical and social world Project URL http://www.BrainAble.org EU Project officer Jan Komarek Deliverable Number 5.1 Title Ambient Intelligence in Assistive Technologies Work package Number 5 Title AmI and Social Network Services Date of delivery Contractual PM04 Actual PM04 Status Reviewed Final Nature Prototype Report Dissemination Other Dissemination Level Public Consortium Authors (Partner) Fundació Privada Barcelona Digital Centre Tecnològic (BDCT) Responsible Author Agustin Navarro Email [email protected] Partner BDCT Phone +34 93 553 45 40 Abstract State of the Art about Ambient Intelligence with special emphasis to its application in (for assisted environments dissemination) Keywords AmI, Ambient Assisted Living, Context‐awareness, Smart devices, Interoperability Version Log Issue Date Version Author Change 31/01/2010 DRAFT ‐ v.0.1 Agustin Navarro First released version for internal reviewers 28/04/2010 Version 1.0 Agustin Navarro Details and feedback from partners 28/04/2010 Version 1.1 Agustin Navarro Formatting, final version released to the P.O. The information in this document is provided as is and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability. -
User Experience Evaluation in Intelligent Environments: a Comprehensive Framework
technologies Article User Experience Evaluation in Intelligent Environments: A Comprehensive Framework Stavroula Ntoa 1,* , George Margetis 1 , Margherita Antona 1 and Constantine Stephanidis 1,2 1 Foundation for Research and Technology Hellas, Institute of Computer Science, N. Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Greece; [email protected] (G.M.); [email protected] (M.A.); [email protected] (C.S.) 2 Department of Computer Science, University of Crete, GR-700 13 Heraklion, Greece * Correspondence: [email protected] Abstract: ‘User Experience’ (UX) is a term that has been established in HCI research and practice, subsuming the term ‘usability’. UX denotes that interaction with a contemporary technological system goes far beyond usability, extending to one’s emotions before, during, and after using the system and cannot be defined only by studying the fundamental usability attributes of effectiveness, efficiency and user satisfaction. Measuring UX becomes a substantially more complicated endeavor when the interaction target is not just a technological system or application, but an entire intelligent environment and the systems contained therein. Motivated by the imminent need to assess, measure and quantify user experience in intelligent environments, this paper presents a methodological and conceptual framework that provides concrete guidance for UX research, design and evaluation, explaining which UX parameter should be measured, how, and when. An evaluation of the frame- work indicated that it can be valuable for researchers and practitioners, assisting them in planning, carrying out, and analyzing UX studies in a comprehensive and thorough manner, thus enhancing Citation: Ntoa, S.; Margetis, G.; their understanding and improving the experiences they design for intelligent environments. -
A Context-Aware Middleware Cloud Approach for Integrating Precision Farming Facilities Into the Iot Toward Agriculture 4.0
applied sciences Article A Context-Aware Middleware Cloud Approach for Integrating Precision Farming Facilities into the IoT toward Agriculture 4.0 Eleni Symeonaki 1,2, Konstantinos Arvanitis 1,* and Dimitrios Piromalis 2 1 Department of Natural Resources Management and Agricultural Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; [email protected] 2 Department of Industrial Design and Production Engineering, University of West Attica, Thivon 250 and P. Ralli, 12244 Egaleo, Greece; [email protected] * Correspondence: [email protected] Received: 24 December 2019; Accepted: 20 January 2020; Published: 23 January 2020 Abstract: The adoption of Precision Farming (PF) practices involving ubiquitous computing advancements and conceptual innovations of “smart” agricultural production toward Agriculture 4.0 is a significant factor for the benefit of sustainable growth. In this context, the dynamic integration of PF facility systems into the Internet of Things (IoT) represents an excessive challenge considering the large amount of heterogeneous raw data acquired in agricultural environments by Wireless Sensor and Actuator Networks (WSANs). This paper focuses on the issue of facilitating the management, process, and exchange of the numerous and diverse data points generated in multiple PF environments by introducing a framework of a cloud-based context-aware middleware solution as part of a responsive, adaptive, and service-oriented IoT integrated system. More particularly, the paper presents in detail a layered hierarchical structure according to which all functional elements of the system cope with context, while the context awareness operation is accomplished into a cloud-based distributed middleware component that is the core of the entire system acting as a Decision Support System (DSS). -
Context Awareness in Health Care: a Review
i n t e r n a t i o n a l j o u r n a l o f m e d i c a l i n f o r m a t i c s 7 6 ( 2 0 0 7 ) 2–12 journal homepage: www.intl.elsevierhealth.com/journals/ijmi Review Context awareness in health care: A review a, b Nathalie Bricon-Souf ∗, Conrad R. Newman a Centre d’Etude et de Recherche en Informatique Medicale´ , Universite´ de Lille2, 59045 Lille, France b Centre for Health Informatics, University of New South Wales, Sydney, Australia a r t i c l e i n f o a b s t r a c t Article history: Background: Health care systems will integrate new computing paradigms in the coming Received 5 April 2005 years. Context-awareness computing is a research field which often refers to health care as Received in revised form an interesting and rich area of application. 4 January 2006 Aim: Through a survey of the research literature, we intended to derive an objective view Accepted 4 January 2006 of the actual dynamism of context awareness in health care, and to identify strengths and weaknesses in this field. Methods: After discussing definitions of context, we proposed a simple framework to analyse Keywords: and characterize the use of context through three main axes. We then focused on context- Context awareness awareness computing and reported on the main teams working in this area. We described Medical informatics some of the context-awareness projects in health care.