The Spitzer Survey of Interstellar Clouds in the Gould Belt

Total Page:16

File Type:pdf, Size:1020Kb

The Spitzer Survey of Interstellar Clouds in the Gould Belt The Astrophysical Journal Supplement Series, 194:43 (43pp), 2011 June doi:10.1088/0067-0049/194/2/43 C 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE SPITZER SURVEY OF INTERSTELLAR CLOUDS IN THE GOULD BELT. III. A MULTI-WAVELENGTH VIEW OF CORONA AUSTRALIS Dawn E. Peterson1, Alessio Caratti o Garatti2, Tyler L. Bourke1, Jan Forbrich1, Robert A. Gutermuth3,4, Jes K. Jørgensen5, Lori E. Allen6, Brian M. Patten1, Michael M. Dunham7, Paul M. Harvey7, Bruno Mer´ın8, Nicholas L. Chapman9, Lucas A. Cieza10, Tracy L. Huard11, Claudia Knez11, Brian Prager11, and Neal J. Evans II7 1 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA; [email protected] 2 Dublin Institute for Advanced Studies, Dublin 2, Ireland 3 Five College Astronomy Department, Smith College, Northampton, MA 01063, USA 4 Department of Astronomy, University of Massachusetts, Amherst, MA 01002, USA 5 Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K., Denmark 6 National Optical Astronomy Observatory, Tucson, AZ 85719, USA 7 Department of Astronomy, University of Texas at Austin, Austin, TX 78712-0259, USA 8 Herschel Science Centre, European Space Astronomy Centre (ESA), 28691 Villanueva de la Canada,˜ Madrid, Spain 9 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 10 Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822, USA 11 Department of Astronomy, University of Maryland, College Park, MD 20742, USA Received 2010 September 15; accepted 2011 April 8; published 2011 June 1 ABSTRACT We present Spitzer Space Telescope IRAC and MIPS observations of a 0.85 deg2 field including the Corona Australis (CrA) star-forming region. At a distance of 130 pc, CrA is one of the closest regions known to be actively forming stars, particularly within its embedded association, the Coronet. Using the Spitzer data, we identify 51 young stellar objects (YSOs) in CrA which include sources in the well-studied Coronet cluster as well as sources distributed throughout the molecular cloud. Twelve of the YSOs discussed are new candidates, one of which is located in the Coronet. Known YSOs retrieved from the literature are also added to the list, and a total of 116 candidate YSOs −1 in CrA are compiled. Based on these YSO candidates, the star formation rate is computed to be 12 M Myr , similar to that of the Lupus clouds. A clustering analysis was also performed, finding that the main cluster core, consisting of 68 members, is elongated (having an aspect ratio of 2.36), with a circular radius of 0.59 pc and mean −2 surface density of 150 pc . In addition, we analyze outflows and jets in CrA by means of new CO and H2 data. We present 1.3 mm interferometric continuum observations made with the Submillimeter Array (SMA) covering R CrA, IRS 5, IRS 7, and IRAS 18595-3712 (IRAS 32). We also present multi-epoch H2 maps and detect jets and outflows, study their proper motions, and identify exciting sources. The Spitzer and ISAAC/VLT observations of IRAS 32 show a bipolar precessing jet, which drives a CO(2–1) outflow detected in the SMA observations. There is also clear evidence for a parsec-scale precessing outflow, which is east–west oriented and originates in the SMA 2 region and likely driven by SMA 2 or IRS 7A. Key words: infrared: general – ISM: clouds – ISM: individual objects (Corona Australis) – ISM: jets and outflows – stars: formation – stars: pre-main sequence Online-only material: color figures 1. INTRODUCTION indicated no velocity gradient. Loren (1979) interpreted this to mean that the elongation is not due to contraction along the The Gould Belt Spitzer Legacy program is a GO-4 program rotational axis. However, Harju et al. (1993) argued that the designed to extend the earlier Spitzer Cores to Disks (c2d; Evans Loren (1979) data were not sufficient, and suggest from their et al. 2003, 2009) program, thereby completing a census of star- own C18O observations that the R CrA core is, in fact, a forming regions within 500 pc. The Gould Belt is a band of stars fragmented disk, explaining the observed elongation along the and molecular clouds located within ∼20◦ of the Galactic Plane major axis. It is somewhat surprising that CrA is not associated (Herschel 1847; Gould 1879). Although, at a declination of with the Gould Belt, considering its close distance of 130 pc12; approximately −40◦, Corona Australis (CrA) is not technically Mamajek & Feigelson (2001) argue that instead it formed as part within the Gould Belt, it is discussed in this paper as part of of expanding Sco-Cen superbubbles, specifically Loop I, citing the survey. We present an extensive study of the entire Corona evidence from the Harju et al. (1993) millimeter observations, Australis star-forming region, investigating the overall young and radio observations from Cappa de Nicolau & Poppel (1991). population, its spatial distribution along the molecular cloud, Studies from the literature have mainly focused on R CrA, and the young stellar object (YSO) outflows. the brightest star in the cluster, the Coronet region, and its Rossano (1978) used star counts to create an extinction population. The variability of the nebula surrounding the Herbig map, and identified five clouds in CrA, named clouds A–E, Ae star, R CrA, has been known since the early 1900s (Knox noting that CrA is highly elongated, oriented nearly east to Shaw 1916; Reynolds 1916). Many years later, the two variable west in the sky. Cloud A is in the west, and it is this cloud 12 which corresponds to the R CrA/Coronet region. Large-scale The distance to CrA is based on measurements to several stars, ranging from 85 to 190 pc. A comprehensive summary of the various measurements CO mapping by Loren (1979) also shows this elongation, but can be found in Neuhauser¨ & Forbrich (2008); throughout this paper, we use their high spatial resolution observations of the velocity field their suggested distance of 130 pc. 1 The Astrophysical Journal Supplement Series, 194:43 (43pp), 2011 June Peterson et al. stars R CrA and T CrA were identified by Herbig (1960) Table 1 to be young, and he then concluded that the associated stars Spitzer Observations of CrA should also be young. This prompted an interest in studying the Instrument AOR ID PID Observation Date R CrA region, and in 1973, the first major optical and infrared IRAC 0003650816 6 2004 Apr 20 study of the main stars near R CrA was conducted, finding a 0017672960 30784 2006 Sep 25 total of 11 stars in the young stellar group: TY CrA, S CrA, 0017673472 30784 2006 Sep 25 T CrA, R CrA, DG CrA, VV CrA, KS-15, HR 7169, HR 7170, 0027041280 30574 2008 May 10 Anon 1, and Anon 2 (Knacke et al. 1973). The following year, MIPS 0003664640 6 2004 Apr 11 IRS 1 was suggested by Strom et al. (1974)tobethedriving 0017673216 30784 2007 May 30 source for the Herbig-Haro (HH) object, HH 100. Subsequent 0017673728 30784 2007 May 29 infrared observations were made by many groups (Glass & 0027042816 30574 2008 Oct 23 Penston 1975;Vrbaetal.1976a; Taylor & Storey 1984; Wilking et al. 1986)aswellasHα observations (Marraco & Rydgren 1981) and emission-line observations (Graham 1993). These seem to be driven by YSOs inside it or in its outskirts. A few were followed by early X-ray (Walter 1986; Koyama et al. more HH objects are positioned close to HH100-IR (IRS 1), 1996; Neuhauser¨ & Preibisch 1997; Walter et al. 1997; Patten S CrA, VV CrA and IRAS 18595-3712 (IRAS 32), which seem 1998), radio (Brown 1987; Cappa de Nicolau & Poppel 1991), to drive outflows as well. On the other hand, there are very few millimeter (Harju et al. 1993), and far-infrared studies (Wilking and sparse studies on H2 jets and outflows in CrA (see, e.g., et al. 1992, who first mentioned IRAS 32). Wilking et al. 1990; Gredel 1994; Davis et al. 1999; Caratti Neuhauser¨ & Forbrich (2008) have recently reviewed the o Garatti et al. 2006). In these papers, the H2 counterparts of literature on the entire Corona Australis star-forming region, HH 99, 100, 101 and 104 were identified and studied, and a few although many of the studies cover only a subset of the region new jets in the Coronet were detected (Caratti o Garatti et al. which we include here as part of our Spitzer IRAC and MIPS 2006). Davis et al. (2010) cataloged five molecular hydrogen study. The most relevant recent studies include: deep infrared objects (MHOs, MHO 2000–2004), but so far, an extensive H2 observations (Wilking et al. 1997; Haas et al. 2008), millimeter map of the region has not been made. Thus, a complete census and submillimeter observations (Chini et al. 2003; Groppi et al. of outflows and their driving sources is lacking. 2004; Nutter et al. 2005) including Submillimeter Array (SMA) We present Spitzer observations of a 0.85 deg2 region in observations (Groppi et al. 2007), mid-infrared observations the Corona Australis molecular cloud, identifying the Spitzer- with the Infrared Space Observatory (ISO;Olofssonetal.1999), selected YSOs distributed throughout the cloud as well as the and a series of papers focusing on Chandra X-ray studies of outflows and their driving sources. This study includes infrared the region (Forbrich et al. 2006, 2007; Forbrich & Preibisch imaging of a much larger portion of the molecular cloud than 2007). Finally, some spectroscopic work has been done to many previous studies have included. In Section 2, we discuss determine association memberships (Patten 1998; Nisini et al.
Recommended publications
  • Corona-Australis Dance I
    A&A 634, A98 (2020) Astronomy https://doi.org/10.1051/0004-6361/201936708 & c P. A. B. Galli et al. 2020 Astrophysics Corona-Australis DANCe I. Revisiting the census of stars with Gaia-DR2 data? P. A. B. Galli1, H. Bouy1, J. Olivares1, N. Miret-Roig1, L. M. Sarro2, D. Barrado3, A. Berihuete4, and W. Brandner5 1 Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hillaire, 33615 Pessac, France e-mail: [email protected] 2 Depto. de Inteligencia Artificial, UNED, Juan del Rosal, 16, 28040 Madrid, Spain 3 Centro de Astrobiología, Depto. de Astrofísica, INTA-CSIC, ESAC Campus, Camino Bajo del Castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain 4 Dept. Statistics and Operations Research, University of Cádiz, Campus Universitario Río San Pedro s/n, 11510 Puerto Real, Cádiz, Spain 5 Max Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany Received 16 September 2019 / Accepted 11 December 2019 ABSTRACT Context. Corona-Australis is one of the nearest regions to the Sun with recent and ongoing star formation, but the current picture of its stellar (and substellar) content is not complete yet. Aims. We take advantage of the second data release of the Gaia space mission to revisit the stellar census and search for additional members of the young stellar association in Corona-Australis. Methods. We applied a probabilistic method to infer membership probabilities based on a multidimensional astrometric and photo- metric data set over a field of 128 deg2 around the dark clouds of the region. Results. We identify 313 high-probability candidate members to the Corona-Australis association, 262 of which had never been reported as members before.
    [Show full text]
  • The Corona Australis Star Forming Region
    Handbook of Star Forming Regions Vol. II Astronomical Society of the Pacific, 2008 Bo Reipurth, ed. The Corona Australis Star Forming Region Ralph Neuh¨auser Astrophysikalisches Institut und Universitats-Sternwarte,¨ Schillergaßchen¨ 2-3, D-07745 Jena, Germany Jan Forbrich Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS 72, Cambridge, MA 02138, USA Abstract. At a distance of about 130 pc, the Corona Australis molecular cloud complex is one of the nearest regions with ongoing and/or recent star formation. It is a region with highly variable extinction of up to AV ∼ 45 mag, containing, at its core, the Coronet protostar cluster. There are now 55 known optically detected members, starting at late B spectral types. At the opposite end of the mass spectrum, there are two confirmed brown dwarf members and seven more candidate brown dwarfs. The CrA region has been most widely surveyed at infrared wavelengths, in X-rays, and in the millimeter continuum, while follow-up observations from centimeter radio to X-rays have focused on the Coronet cluster. 1. Introduction: The Corona Australis Cloud Corona Australis (southern crown), abbreviated CrA, is one of the 48 ancient constella- tions listed by Ptolemy, who called it Stephanos Notios (in Greek). The latin translation was corona notia, austrina, australis, meridiana, or meridionalis, from which Allen (1936) picked corona australis; see also Botley (1980) for a discussion of the name. For an overview, see Fig. 1. 1.1. The Discovery Given the convention for naming variable stars, R CrA was the first variable star no- ticed in the CrA constellation.
    [Show full text]
  • The Corona Australis Star Forming Region
    Handbook of Star Forming Regions Vol. II Astronomical Society of the Pacific, 2008 Bo Reipurth, ed. The Corona Australis Star Forming Region Ralph Neuh¨auser Astrophysikalisches Institut und Universitats-Sternwarte,¨ Schillergaßchen¨ 2-3, D-07745 Jena, Germany Jan Forbrich Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS 72, Cambridge, MA 02138, USA Abstract. At a distance of about 130 pc, the Corona Australis molecular cloud complex is one of the nearest regions with ongoing and/or recent star formation. It is a region with highly variable extinction of up to AV ∼ 45 mag, containing, at its core, the Coronet protostar cluster. There are now 55 known optically detected members, starting at late B spectral types. At the opposite end of the mass spectrum, there are two confirmed brown dwarf members and seven more candidate brown dwarfs. The CrA region has been most widely surveyed at infrared wavelengths, in X-rays, and in the millimeter continuum, while follow-up observations from centimeter radio to X-rays have focused on the Coronet cluster. 1. Introduction: The Corona Australis Cloud Corona Australis (southern crown), abbreviated CrA, is one of the 48 ancient constella- tions listed by Ptolemy, who called it Stephanos Notios (in Greek). The latin translation was corona notia, austrina, australis, meridiana, or meridionalis, from which Allen (1936) picked corona australis; see also Botley (1980) for a discussion of the name. For an overview, see Fig. 1. 1.1. The Discovery arXiv:0808.3374v1 [astro-ph] 25 Aug 2008 Given the convention for naming variable stars, R CrA was the first variable star no- ticed in the CrA constellation.
    [Show full text]
  • THE STAR FORMATION NEWSLETTER an Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds
    THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar evolution and molecular clouds No. 192 — 6 Dec 2008 Editor: Bo Reipurth ([email protected]) Special Issue Handbook of Star Forming Regions Edited by Bo Reipurth The Handbook describes the ∼60 most important star forming regions within approximately 2 kpc, and has been written by a team of 105 authors with expertise in the individual regions. It consists of two full color volumes, one for the northern and one for the southern hemisphere, with a total of over 1900 pages. The Handbook aims to be a source of comprehensive factual information about each region, with very extensive references to the literature. The development of our understanding of a given region is outlined, and hence many of the earliest studies are, if not discussed, then at least mentioned, even if they are only of historical interest today. Young low- and high-mass populations are discussed, as well as the molecular and ionized gas. The text is supported by extensive use of figures and tables. Authors have been encouraged to complete their chapters with a section on individual objects of special interest. Little emphasis is placed on more general discussions of star formation processes and the properties of young stars, subjects that are well covered elsewhere. The Handbook will thus serve as a reference guide for researchers and students embarking on a study of one or more of these regions, and will hopefully also inspire new work to be done where information is clearly missing. In order to keep the Handbook within some reasonable limits, it was from the beginning decided to limit regions to those closer than approximately 2 kpc.
    [Show full text]
  • The COLOUR of CREATION Observing and Astrophotography Targets “At a Glance” Guide
    The COLOUR of CREATION observing and astrophotography targets “at a glance” guide. (Naked eye, binoculars, small and “monster” scopes) Dear fellow amateur astronomer. Please note - this is a work in progress – compiled from several sources - and undoubtedly WILL contain inaccuracies. It would therefor be HIGHLY appreciated if readers would be so kind as to forward ANY corrections and/ or additions (as the document is still obviously incomplete) to: [email protected]. The document will be updated/ revised/ expanded* on a regular basis, replacing the existing document on the ASSA Pretoria website, as well as on the website: coloursofcreation.co.za . This is by no means intended to be a complete nor an exhaustive listing, but rather an “at a glance guide” (2nd column), that will hopefully assist in choosing or eliminating certain objects in a specific constellation for further research, to determine suitability for observation or astrophotography. There is NO copy right - download at will. Warm regards. JohanM. *Edition 1: June 2016 (“Pre-Karoo Star Party version”). “To me, one of the wonders and lures of astronomy is observing a galaxy… realizing you are detecting ancient photons, emitted by billions of stars, reduced to a magnitude below naked eye detection…lying at a distance beyond comprehension...” ASSA 100. (Auke Slotegraaf). Messier objects. Apparent size: degrees, arc minutes, arc seconds. Interesting info. AKA’s. Emphasis, correction. Coordinates, location. Stars, star groups, etc. Variable stars. Double stars. (Only a small number included. “Colourful Ds. descriptions” taken from the book by Sissy Haas). Carbon star. C Asterisma. (Including many “Streicher” objects, taken from Asterism.
    [Show full text]
  • Radio and X-Ray Variability of Young Stellar Objects in the Coronet Cluster
    Astronomy & Astrophysics manuscript no. coronetaarrct July 26, 2018 (DOI: will be inserted by hand later) Radio and X-ray variability of Young Stellar Objects in the Coronet cluster J. Forbrich1,2, Th. Preibisch1, and K. M. Menten1 1 Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, D-53121 Bonn, Germany 2 Astrophysikalisches Institut und Universit¨ats-Sternwarte Jena, Schillerg¨aßchen 2-3, D-07745 Jena, Germany Received / Accepted Abstract. The Coronet Cluster in the nearby R CrA dark cloud offers the rare opportunity to study at least four “class I” protostellar sources as well as one candidate “class 0” source, a Herbig Ae star, and a candidate brown dwarf within a few square arcminutes – most of them detected at radio- and X-ray wavelengths. These sources were observed with the Very Large Array (VLA) at λ = 3.5 cm on nine occasions in 1998, spread over nearly four months. The source IRS 5, earlier shown to emit circularly polarized radio emission, was observed to undergo a flux increase accompanied by changes in its polarization properties. Comparison with VLA measurements taken in January 1997 allows for some analysis of longer-term variability. In addition to this radio monitoring, we analyze archival Chandra and XMM-Newton X-ray data of these sources. Three class I protostars are bright enough for X-ray spectroscopy, and we perform a variability analysis for these sources, covering a total of 154 ksec spread over more than two and a half years. Also in X-rays, IRS 5 shows the most pronounced variability, whilst the other two class I protostars IRS 1 and IRS 2 have more stable emission.
    [Show full text]
  • H2 Flows in the Corona Australis Cloud and Their Driving Sources
    Astronomy & Astrophysics manuscript no. aa16860msrev3 c ESO 2018 November 8, 2018 H2 flows in the Corona Australis cloud and their driving sources M. S. N. Kumar1, Saurabh Sharma2,5, C. J . Davis3,4, J. Borissova,2 and J. M. C. Grave1 1 Centro de Astrof´ısica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 2 Departamento de F´ısica y Astronom´ıa, Facultad de Ciencias, Universidad de Valpara´ıso,Ave. Gran Breta˜na 1111, Playa Ancha, Casilla 53, Valpara´ıso, Chile 3 Joint Astronomy Center, 660 N. A’ohoku Pl, Hilo, Hawaii 96720, USA 4 NASA Headquarters, Science Mission Directorate, 300 E St SW, Washington, DC 20546, USA 5 Aryabhatta Research Institute of Observational Sciences, Nainital 263129, India e-mail: [email protected] November 8, 2018 ABSTRACT Aims. We uncover the H2 flows in the Corona Australis molecular cloud and in particular identify the flows from the Coronet cluster. Methods. A deep, near-infrared H2 v=1–0 S(1), 2.122µm -line, narrow-band imaging survey of the R CrA cloud core was carried out. The nature of all candidate-driving sources in the region was evaluated using data available from the literature and also by fitting the spectral energy distributions (SED) of each source either with an extincted photosphere or YSO model. Archival Spitzer-IRAC and MIPS data was used to obtain photometry, which was combined with USNO, 2MASS catalogs and millimeter photometry from the literature, to build the SEDs. We identify the best candidate-driving source for each outflow by comparing the flow properties, available proper motions, and the known/estimated properties of the driving sources.
    [Show full text]
  • A Hipparcos Census of the Nearby Ob Associations1 P
    THE ASTRONOMICAL JOURNAL, 117:354È399, 1999 January ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. A HIPPARCOS CENSUS OF THE NEARBY OB ASSOCIATIONS1 P. T. DE ZEEUW,R.HOOGERWERF, AND J. H. J. DE BRUIJNE Sterrewacht Leiden, Postbus 9513, 2300 RA Leiden, The Netherlands A. G. A. BROWN Instituto deAstronom• aMe U.N.A.M., Apartado Postal 877, Ensenada, 22800 Baja California, xico AND A. BLAAUW Kapteyn Instituut, Postbus 800, 9700 AV Groningen, The Netherlands; and Sterrewacht Leiden, Postbus 9513, 2300 RA Leiden, The Netherlands Received 1998 June 26; accepted 1998 September 14 ABSTRACT A comprehensive census of the stellar content of the OB associations within 1 kpc from the Sun is presented, based on Hipparcos positions, proper motions, and parallaxes. It is a key part of a long-term project to study the formation, structure, and evolution of nearby young stellar groups and related star- forming regions. OB associations are unbound ““ moving groups,ÏÏ which can be detected kinematically because of their small internal velocity dispersion. The nearby associations have a large extent on the sky, which traditionally has limited astrometric membership determination to bright stars(V [ 6 mag), with spectral types earlier than DB5. The Hipparcos measurements allow a major improvement in this situation. Moving groups are identiÐed in the Hipparcos Catalog by combining de BruijneÏs refurbished convergent point method with the ““ Spaghetti method ÏÏ of Hoogerwerf & Aguilar. Astrometric members are listed for 12 young stellar groups, out to a distance of D650 pc. These are the three subgroups Upper Scorpius, Upper Centaurus Lupus, and Lower Centaurus Crux of Sco OB2, as well as Vel OB2, Tr 10, Col 121, Per OB2, a Persei (Per OB3), CasÈTau, Lac OB1, Cep OB2, and a new group in Cepheus, designated as Cep OB6.
    [Show full text]
  • Download This Article in PDF Format
    A&A 533, A137 (2011) Astronomy DOI: 10.1051/0004-6361/201116860 & c ESO 2011 Astrophysics H2 flows in the Corona Australis cloud and their driving sources M. S. N. Kumar1,S.Sharma2,5,C.J.Davis3,4, J. Borissova2, and J. M. C. Grave1 1 Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 2 Departamento de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Ave. Gran Bretaña 1111, Playa Ancha, Casilla 53, Valparaíso, Chile 3 Joint Astronomy Center, 660 N. A’ohoku Pl, Hilo, Hawaii 96720, USA 4 NASA Headquarters, Science Mission Directorate, 300 E St SW, Washington, DC 20546, USA 5 Aryabhatta Research Institute of Observational Sciences, Nainital 263129, India e-mail: [email protected] Received 9 March 2011 / Accepted 2 August 2011 ABSTRACT Aims. We uncover the H2 flows in the Corona Australis molecular cloud and in particular identify the flows from the Coronet cluster. Methods. A deep, near-infrared H2 v = 1–0 S(1), 2.122 μm-line, narrow-band imaging survey of the R CrA cloud core was carried out. The nature of all candidate-driving sources in the region was evaluated using data available from the literature and also by fitting the spectral energy distributions (SED) of each source either with an extincted photosphere or YSO model. Archival Spitzer-IRAC and MIPS data was used to obtain photometry, which was combined with USNO, 2MASS catalogs and millimeter photometry from the literature, to build the SEDs. We identify the best candidate-driving source for each outflow by comparing the flow properties, available proper motions, and the known/estimated properties of the driving sources.
    [Show full text]
  • July 2018 BRAS Newsletter
    Monthly Meeting Monday, July 9th at 7PM at HRPO (Monthly meetings are on 2nd Mondays, Highland Road Park Observatory). Presenter: J. Robert Parks, LSU Astronomy Instructor will talk about his research to characterize young stellar objects. What's In This Issue? President’s Message Secretary's Summary Outreach Report Astrophotography Group Light Pollution Committee Report “Free The Milky Way” Campaign Recent Forum Entries Messages from the HRPO Friday Night Lecture Series Edge Of Night Globe at Night Mercurian Elongation Great Martian Opposition Observing Notes – Corona Australis – The Southern Crown & Mythology Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Newsletter of the Baton Rouge Astronomical Society July 2018 © 2018 President’s Message We are now into summer and getting longer nights. The highlights June was the Opposition of Saturn. In space exploration news the Japan Aerospace Exploration Agency (JAXA) space probe Hayabusa2 has been sending back striking images of the asteroid (162173) Ryugu. Hayabusa2 is on a mission to return a sample to Earth in 2020. On June 30th we had the 1st Asteroid Day at HRPO . Our Secretary Krista Dison has resigned. I would like to take this moment thank her for her service. Any member willing to fill the role of Secretary should let me know. Here’s our new Member Pin. Have you claimed yours yet? REMINDERS: The BRAS Business Meeting will be Tuesday July 3 (because the 4th is a holiday), and the BRAS Monthly Meeting will be Monday July 9, both will be at HRPO and at 7 PM.
    [Show full text]