Untersuchung Modifizierter Implantatoberflächen Für Den Orthopädischen Einsatz Zur Reduzierung Implantatassoziierter Infektionen Im Rattenmodell

Total Page:16

File Type:pdf, Size:1020Kb

Untersuchung Modifizierter Implantatoberflächen Für Den Orthopädischen Einsatz Zur Reduzierung Implantatassoziierter Infektionen Im Rattenmodell Tierärztliche Hochschule Hannover Untersuchung modifizierter Implantatoberflächen für den orthopädischen Einsatz zur Reduzierung implantatassoziierter Infektionen im Rattenmodell INAUGURAL – DISSERTATION zur Erlangung des Grades einer Doktorin der Veterinärmedizin - Doctor medicinae veterinariae - (Dr. med. vet.) vorgelegt von Marie-Luise Schröder aus Neustrelitz Hannover 2018 Wissenschaftliche Betreuung: PD Dr. med. vet. Janin Reifenrath, Klinik für Kleintiere, Tierärztliche Hochschule Hannover Orthopädische Klinik mit Sitz im NIFE, Medizinische Hochschule Hannover 1. Gutachterin/Gutachter: PD Dr. med. vet. Janin Reifenrath 2. Gutachterin/Gutachter: Prof. Dr. med. vet. Peter Stadler Tag der mündlichen Prüfung: 30.10.2018 Diese Dissertation wurde im Rahmen des Verbundprojektes Biofabrication for NIFE angefertigt und durch die Volkswagenstiftung und das Niedersächsische Ministerium für Wissenschaft und Kultur gefördert. Für meine Mutter, die immer hinter mir steht. Inhaltsverzeichnis Inhaltsverzeichnis 3.1. Einteilung und Diagnose von orthopädischen Implantatinfektionen ........... 6 3.2. Epidemiologie von Implantatinfektionen .................................................... 8 3.3. Erregerspektrum ...................................................................................... 10 3.4. Entstehung einer Implantatinfektion ......................................................... 12 3.4.1. Die Bildung von Biofilm auf der Implantatoberfläche ............................... 12 3.4.2. Resistenzmechanismen planktonischer und sessiler Bakterien............... 15 3.5. Histopathologische Reaktion des Gewebes auf eine Infektion ................ 17 3.5.1. Immun- und Fremdkörperreaktion auf ein steriles Implantat .................... 17 3.5.2. Immunantwort bei einer bakteriellen Infektion.......................................... 18 3.6. Therapiestrategien von Implantatinfektionen ........................................... 20 3.7. Innovative Oberflächenmodifikationen für die Reduktion von implantatassoziierten Infektionen ............................................................. 21 3.7.1. Antibakterielle Oberflächenmodifikationen ............................................... 21 3.7.2. Multifunktionale und „smarte“ Beschichtungen ........................................ 23 3.7.3. Antiadhäsive Oberflächenmodifikationen ................................................. 23 3.8. Tiermodelle für die Evaluation neuer Strategien zur Prophylaxe und Therapie von Implantatinfektionen ........................................................... 27 3.8.1. Bestimmung der Infektionslast im Tiermodel ........................................... 31 3.9. Ziel der Arbeit .......................................................................................... 33 4.1. Überblick über den Versuchsaufbau ........................................................ 34 4.2. Geräte, Programme, Medikamente und Verbrauchsmaterialien .............. 35 4.3. In vitro Versuche ...................................................................................... 40 4.3.1. Herstellung und Charakterisierung der Implantate ................................... 40 4.3.2. Infektionserreger ...................................................................................... 42 4.3.3. Ansatz der Bakteriensuspension ............................................................. 43 4.3.4. Vorbesiedlung der Implantate .................................................................. 44 4.4. In vivo Versuche ...................................................................................... 45 4.4.1. Versuchstiere ........................................................................................... 45 4.4.2. Gruppenaufteilung der Pilot- und Hauptstudie ......................................... 45 4.4.3. Durchführung der Operation .................................................................... 46 4.4.4. Postoperativer Verlauf ............................................................................. 48 I Inhaltsverzeichnis 4.4.5. Euthanasie und Probenentnahme ........................................................... 50 4.4.6. Nachweis des Entzündungsmarkers C-reaktives Protein ........................ 52 4.4.7. Mikrocomputertomographische Aufnahmen der Tibiae ........................... 53 4.4.8. Durchführung der konfokalmikroskopischen Aufnahmen ......................... 54 4.4.9. Durchführung der rasterelektronenmikroskopischen Aufnahmen ............ 54 4.4.10. Aufbereitung der Proben für die Histologie .............................................. 55 4.4.11. Herstellung und Färbung der histologischen Schnitte .............................. 55 4.4.12. Auswertung der Röntgenaufnahmen ....................................................... 57 4.4.13. Quantifizierung und morphologische Beurteilung der Besiedlung auf der Implantatoberfläche ................................................................................. 58 4.4.14. Auswertung der histologischen Schnitte .................................................. 66 4.5. Statistik .................................................................................................... 68 5.1. Charakterisierung der verwendeten Implantate ....................................... 69 5.2. Pilotstudie ................................................................................................ 70 5.2.1. Konzentration der Injektionslösung und der Inkubationssuspension für die vorbesiedelten Implantate ........................................................................ 70 5.2.2. Tierverluste .............................................................................................. 72 5.2.3. Befunde der täglichen Beurteilung ........................................................... 72 5.2.4. Relatives tibiales Gewicht der Tibiae ....................................................... 75 5.2.5. Bestimmung der CRP-Konzentration im Serum ....................................... 75 5.2.6. Ergebnisse der mikrobiologischen Evaluation ......................................... 76 5.2.7. Ergebnisse der CLSM Evaluation ............................................................ 78 5.2.8. REM Aufnahmen der infizierten explantierten Implantate ........................ 83 5.2.9. Ergebnisse der radiologischen Beurteilung ............................................. 83 5.2.10. Microcomputertomographische Untersuchung der Tibiae ....................... 87 5.2.11. Ergebnisse der histopathologischen Auswertung .................................... 88 5.2.12. Zusammenfassung der Ergebnisse der Pilotstudie .................................. 93 5.3. Hauptstudie.............................................................................................. 94 5.3.1. Konzentration der Bakteriensuspension und Tierverluste ........................ 94 5.3.2. Befunde der täglichen Beurteilung ........................................................... 94 5.3.3. Relatives tibiales Gewicht ........................................................................ 97 5.3.4. Ergebnisse der mikrobiologischen Evaluation ......................................... 97 5.3.5. Quantifizierung und morphologische Beurteilung der Besiedlung auf der Implantatoberfläche ................................................................................. 98 5.3.6. Beurteilung der exemplarischen REM Aufnahmen ................................ 102 5.3.7. Ergebnisse der radiologischen Beurteilung ........................................... 104 5.3.8. Mikrocomputertomographischen Untersuchung der Tibiae ................... 106 II Inhaltsverzeichnis 5.3.9. Ergebnisse der histologischen Beurteilung ............................................ 107 5.3.10. Zusammenfassung der Ergebnisse der Hauptstudie ............................. 111 6.1. Etablierung eines Tiermodells zur Abbildung einer low-grade ähnlichen implantatassoziierten Infektion ............................................................... 112 6.1.1. Tiermodell und verwendete Infektionskonzentrationen .......................... 113 6.1.2. Beurteilung infektionsbedingter Veränderungen .................................... 117 6.2. Implementierung einer Quantifizierungsmethode für die bakterielle Besiedlung auf der Implantatoberfläche in vivo ..................................... 122 6.2.1. Bestimmung der vitalen bakteriellen Biomasse mit der Software Imaris® x64 ......................................................................................................... 123 6.2.2. Bakterielle Besiedlung der Implantatoberfläche in der Pilotstudie ......... 126 6.3. Untersuchung der laserstrukturierten Spikeoberfläche im low-grade ähnlichen Tiermodell .............................................................................. 129 6.3.1. Bakterielle und zelluläre Besiedlung der Implantatoberflächen.............. 130 6.3.2. Beurteilung infektionsbedingter Parameter ............................................ 132 12.1. Detaillierte Darstellung des Bewertungssystems für die radiologische Auswertung ............................................................................................ 184 12.2. Übersichtstabelle über die Ergebnisse der Befunde der täglichen Kontrolle in der Pilotstudie .................................................................................... 188 12.3. Übersichtstabelle über die Ergebnisse der radiologischen Beurteilung der Pilotstudie .............................................................................................. 193 12.4. Übersichtstabelle über
Recommended publications
  • Management of Large Sets of Image Data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak
    Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Karol Kozak Download free books at Karol Kozak Management of large sets of image data Capture, Databases, Image Processing, Storage, Visualization Download free eBooks at bookboon.com 2 Management of large sets of image data: Capture, Databases, Image Processing, Storage, Visualization 1st edition © 2014 Karol Kozak & bookboon.com ISBN 978-87-403-0726-9 Download free eBooks at bookboon.com 3 Management of large sets of image data Contents Contents 1 Digital image 6 2 History of digital imaging 10 3 Amount of produced images – is it danger? 18 4 Digital image and privacy 20 5 Digital cameras 27 5.1 Methods of image capture 31 6 Image formats 33 7 Image Metadata – data about data 39 8 Interactive visualization (IV) 44 9 Basic of image processing 49 Download free eBooks at bookboon.com 4 Click on the ad to read more Management of large sets of image data Contents 10 Image Processing software 62 11 Image management and image databases 79 12 Operating system (os) and images 97 13 Graphics processing unit (GPU) 100 14 Storage and archive 101 15 Images in different disciplines 109 15.1 Microscopy 109 360° 15.2 Medical imaging 114 15.3 Astronomical images 117 15.4 Industrial imaging 360° 118 thinking. 16 Selection of best digital images 120 References: thinking. 124 360° thinking . 360° thinking. Discover the truth at www.deloitte.ca/careers Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities. Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.
    [Show full text]
  • SNARE Priming Is Essential for Maturation of Autophagosomes but Not for Their Formation
    SNARE priming is essential for maturation of autophagosomes but not for their formation Adi Abadaa, Smadar Levin-Zaidmanb, Ziv Poratc, Tali Dadoshb, and Zvulun Elazara,1 aDepartment of Biomolecular Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel; bDepartment of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel; and cLife Sciences Core Facilities, Weizmann Institute of Science, 76100 Rehovot, Israel Edited by Sharon Anne Tooze, Francis Crick Institute, London, United Kingdom, and accepted by Editorial Board Member Pietro De Camilli October 17, 2017 (received for review April 6, 2017) Autophagy, a unique intracellular membrane-trafficking pathway, autophagosome, a double-membrane vesicle, which is then tar- is initiated by the formation of an isolation membrane (phagophore) geted to the lysosome. These sequential stages of autophago- that engulfs cytoplasmic constituents, leading to generation of the some biogenesis demand significant membrane remodeling and autophagosome, a double-membrane vesicle, which is targeted to membrane fusion processes. There is no evidence however for the lysosome. The outer autophagosomal membrane consequently retrograde transport from this vesicle back to the original fuses with the lysosomal membrane. Multiple membrane-fusion membrane, suggesting that SNARE priming might not be es- events mediated by SNARE molecules have been postulated to sential for autophagosome biogenesis. promote autophagy. αSNAP, the adaptor molecule for the SNARE- The role of SNARE molecules in the autophagic process in priming enzyme N-ethylmaleimide-sensitive factor (NSF) is known yeast and in mammalian cells was recently reported. SNARE to be crucial for intracellular membrane fusion processes, but its complexes that promote fusion of vesicles with the lysosome in role in autophagy remains unclear.
    [Show full text]
  • Cellprofiler 3.0: Next-Generation Image Processing for Biology
    METHODS AND RESOURCES CellProfiler 3.0: Next-generation image processing for biology Claire McQuin1☯, Allen Goodman1☯, Vasiliy Chernyshev2,3☯, Lee Kamentsky1☯, Beth A. Cimini1☯, Kyle W. Karhohs1☯, Minh Doan1, Liya Ding4, Susanne M. Rafelski4, Derek Thirstrup4, Winfried Wiegraebe4, Shantanu Singh1, Tim Becker1, Juan C. Caicedo1, Anne E. Carpenter1* 1 Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America, 2 Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia, 3 Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia, 4 Allen Institute for Cell Science, a1111111111 Seattle, Washington, United States of America a1111111111 a1111111111 ☯ These authors contributed equally to this work. a1111111111 * [email protected] a1111111111 Abstract CellProfiler has enabled the scientific research community to create flexible, modular image OPEN ACCESS analysis pipelines since its release in 2005. Here, we describe CellProfiler 3.0, a new ver- Citation: McQuin C, Goodman A, Chernyshev V, sion of the software supporting both whole-volume and plane-wise analysis of three-dimen- Kamentsky L, Cimini BA, Karhohs KW, et al. (2018) sional (3D) image stacks, increasingly common in biomedical research. CellProfiler's CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol 16(7): e2005970. https://doi. infrastructure is greatly improved, and we provide a protocol for cloud-based, large-scale org/10.1371/journal.pbio.2005970 image processing. New plugins enable running pretrained deep learning models on images. Academic Editor: Tom Misteli, National Cancer Designed by and for biologists, CellProfiler equips researchers with powerful computational Institute, United States of America tools via a well-documented user interface, empowering biologists in all fields to create Received: March 9, 2018 quantitative, reproducible image analysis workflows.
    [Show full text]
  • Hemodynamic Forces Tune the Arrest, Adhesion and Extravasation Of
    bioRxiv preprint doi: https://doi.org/10.1101/183046; this version posted August 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Hemodynamic forces tune the arrest, adhesion and extravasation of circulating tumor cells Gautier Follain1-4, Naël Osmani1-4, Sofia Azevedo1-4, Guillaume Allio1-4, Luc Mercier1- 4, Matthia A. Karreman5, Gergely Solecki6, Nina Fekonja1-4, Claudia Hille7, Vincent Chabannes8, Guillaume Dollé8, Thibaut Metivet8, Christophe Prudhomme8, Bernhard Ruthensteiner9, André Kemmling10, Susanne Siemonsen11, Tanja Schneider11, Jens Fiehler11, Markus Glatzel12, Frank Winkler6, Yannick Schwab5, Klaus Pantel7, Sébastien Harlepp2,13-14, Jacky G. Goetz1-4* 1INSERM UMR_S1109, MN3T, Strasbourg, F-67200, France. 2Université de Strasbourg, Strasbourg, F-67000, France. 3LabEx Medalis, Université de Strasbourg, Strasbourg, F-67000, France. 4Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, F- 67000, France. 5Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, 69117, Germany. 6Department of Neurooncology, University Hospital Heidelberg, Heidelberg, 69120, Germany and Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany. 7Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg, 20246, Germany. 8LabEx IRMIA, CEMOSIS, Université de Strasbourg, Strasbourg, F-67000 France.
    [Show full text]
  • Deleting Mecp2 from the Cerebellum Rather Than Its Neuronal Subtypes
    SHORT REPORT Deleting Mecp2 from the cerebellum rather than its neuronal subtypes causes a delay in motor learning in mice Nathan P Achilly1,2,3, Ling-jie He1,4,5, Olivia A Kim6, Shogo Ohmae6, Gregory J Wojaczynski6, Tao Lin1,7, Roy V Sillitoe1,2,6,7, Javier F Medina6, Huda Y Zoghbi1,2,5,6,7,8,9* 1Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, United States; 2Program in Developmental Biology, Baylor College of Medicine, Houston, United States; 3Medical Scientist Training Program, Baylor College of Medicine, Houston, United States; 4Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, United States; 5Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States; 6Department of Neuroscience, Baylor College of Medicine, Houston, United States; 7Department of Pathology and Immunology, Baylor College of Medicine, Houston, United States; 8Department of Neurology, Baylor College of Medicine, Houston, United States; 9Department of Pediatrics, Baylor College of Medicine, Houston, United States Abstract Rett syndrome is a devastating childhood neurological disorder caused by mutations in MECP2. Of the many symptoms, motor deterioration is a significant problem for patients. In mice, deleting Mecp2 from the cortex or basal ganglia causes motor dysfunction, hypoactivity, and tremor, which are abnormalities observed in patients. Little is known about the function of Mecp2 in the cerebellum, a brain region critical for motor function. Here we show that deleting Mecp2 from the cerebellum, but not from its neuronal subtypes, causes a delay in motor learning that is overcome by additional training. We observed irregular firing rates of Purkinje cells and altered heterochromatin architecture within the cerebellum of knockout mice.
    [Show full text]
  • 3D Visualization Using Bitplane Imaris Practical Examples
    3D Visualization using Bitplane Imaris Practical Examples Center for Microscopy and Image Analysis University of Zurich 2019 This script was written as a short summary for the users of Center for Microscopy and Image Analysis, University of Zurich, Switzerland April 2019, Dominik Hänni and Joana Delgado Martins This script was written using Imaris 9.2.0. 2 Contents 1. ABBREVIATIONS ___________________________________________________________ 4 2. REMARKS _______________________________________________________________ 4 3. SOFTWARE: IMARIS _________________________________________________________ 5 4. OPENING STANDARD FILE TYPES ________________________________________________ 5 5. EXPLORE METADATA AND CALIBRATE IMAGES _______________________________________ 6 6. RESAVING IN THE NATIVE IMARIS FILE FORMAT ______________________________________ 6 7. ADJUSTING THE IMAGE VISUALIZATION ___________________________________________ 7 8. SLICE REPRESENTATIONS _____________________________________________________ 9 9. TIME SERIES _____________________________________________________________ 9 10. SNAPSHOTS _____________________________________________________________ 10 11. MOVIE ANIMATIONS _______________________________________________________ 10 12. 3D SEGMENTATION AND SURFACES _____________________________________________ 12 13. LITERATURE AND FURTHER INFORMATION_________________________________________ 16 3 1. Abbreviations ROI: Region of interest LUT: Look-up table Stack: Data structure with a set of related images of the same size and bit depth.
    [Show full text]
  • Quick Start Tutorials
    Quick Start Tutorials Imaris 6.3 Bitplane AG Badenerstrasse 682 CH-8048 Zurich www.bitplane.com [email protected] Table of Contents 1 Introduction 1 1.1 Reference1 Manual......................................................................... 3 2 Visualize Data Set 4 2.1 Imaris1 Main Screen......................................................................... 5 2.2 Open2 Data Set......................................................................... 7 2.3 Slice3 View ......................................................................... 9 2.4 Surpass4 View......................................................................... 11 2.5 Volume5 ......................................................................... 13 2.6 Select6 and Navigate......................................................................... 14 2.7 Rotate7 Image......................................................................... 15 2.8 Translate8 Image......................................................................... 16 2.9 Scale9 Image ......................................................................... 17 2.10 Save10 Scene......................................................................... File 18 2.11 Practice11 Makes......................................................................... Perfect 19 2.12 Change12 Background......................................................................... Color 22 2.13 Change13 Channel......................................................................... Color 24 3 Generating Movies
    [Show full text]
  • Teaching the Cellular and Molecular Basis of Breast Cancer Metastasis: a Novel Workflow for Incorporating Time-Lapse Microscopy Data Into 3D Animation
    Teaching the Cellular and Molecular Basis of Breast Cancer Metastasis: A Novel Workflow for Incorporating Time-lapse Microscopy Data into 3D Animation by Brittany Celeste Bennett A thesis submitted to Johns Hopkins University in conformity with the requirements for the degree of Master of Arts. Baltimore, Maryland March, 2019 © 2019 Brittany C. Bennett All Rights Reserved ABSTRACT Time-lapse confocal microscopy and organotypic 3D culture allow biologists to capture 3D movies of cells moving in real time. The Ewald Lab at Johns Hopkins School of Medicine developed this method to determine how molecular variables afect the growth of breast cancer tumors and cells’ ability to metastasize. The results support a new model of breast cancer metastasis, called Collective Epithelial Metastasis (CEM). Existing visuals of CEM are limited to microscopy and schematic model fgures. Although informative to biologists, these are not intuitive to non- specialist audiences such as patient advocates and research investors. There is a need for visuals that explain the molecular and cellular basis of CEM within an anatomical context, and make conclusions of complex research more accessible. The animation teaches the role of two proteins, E-cadherin and Keratin-14, during collective invasion and dissemination. The visual challenge was to contextualize molecular concepts for an audience that frst needs introduction to mammary gland anatomy, histology, and epithelial cancer defnitions. Learning objectives, a script, and twenty-four page partial-color storyboard were created to teach these concepts in an appropriate level of detail. A website was developed to display the animation and provide additional information and citations. The technical project goal was to incorporate the Ewald Lab’s time-lapse microscopy datasets into an educational animation.
    [Show full text]
  • A New Method for High-Throughput Histo-Cytometry Analysis of Images and Movies
    Chrysalis: A New Method for High-Throughput Histo-Cytometry Analysis of Images and Movies This information is current as Dmitri I. Kotov, Thomas Pengo, Jason S. Mitchell, Matthew of December 5, 2018. J. Gastinger and Marc K. Jenkins J Immunol published online 3 December 2018 http://www.jimmunol.org/content/early/2018/11/30/jimmun ol.1801202 Downloaded from Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision http://www.jimmunol.org/ • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: by guest on December 5, 2018 http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published December 3, 2018, doi:10.4049/jimmunol.1801202 The Journal of Immunology Chrysalis: A New Method for High-Throughput Histo-Cytometry Analysis of Images and Movies Dmitri I. Kotov,*,†,1 Thomas Pengo,‡,1 Jason S. Mitchell,*,x,{ Matthew J. Gastinger,‖ and Marc K. Jenkins*,† Advances in imaging have led to the development of powerful multispectral, quantitative imaging techniques, like histo-cytometry. The utility of this approach is limited, however, by the need for time consuming manual image analysis.
    [Show full text]
  • Imaris Tutorials
    Quick Start Tutorials Imaris 7.3 Bitplane AG Badenerstrasse 682 CH-8048 Zurich w w w .bitplane.com [email protected] Table of Contents 1 Introduction 1 1.1 Help1 Menu......................................................................... 3 2 Visualize Data Set 5 2.1 Imaris1 Main......................................................................... Screen 6 2.2 Open2 Data......................................................................... Set 8 2.3 Slice3 View......................................................................... 10 2.4 Surpass4 View......................................................................... 12 2.5 Volume5 ......................................................................... 14 2.6 Select6 and......................................................................... Navigate 15 2.7 Rotate7 Image......................................................................... 16 2.8 Translate8 ......................................................................... Image 17 2.9 Scale9 Image......................................................................... 18 2.10 Save10 as............................................................................ 19 2.11 Practice11 ......................................................................... Makes Perfect 20 2.12 Change12 ......................................................................... Background Color 22 2.13 Change13 ......................................................................... Channel Color 24 3 Generating Movies 25
    [Show full text]
  • Biological Image Analysis Primer
    Biological Image Analysis Primer Erik Meijering∗ and Gert van Cappellen# ∗Biomedical Imaging Group #Applied Optical Imaging Center Erasmus MC – University Medical Center Rotterdam, the Netherlands Typeset by the authors using LATEX2ε. Copyright c 2006 by the authors. All rights reserved. No part of this booklet may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the authors. Preface This booklet was written as a companion to the introductory lecture on digital image analysis for biological applications, given by the first author as part of the course In Vivo Imaging – From Molecule to Organism, which is organized an- nually by the second author and other members of the applied Optical Imag- ing Center (aOIC) under the auspices of the postgraduate school Molecular Medicine (MolMed) together with the Medical Genetics Center (MGC) of the Erasmus MC in Rotterdam, the Netherlands. Avoiding technicalities as much as possible, the text serves as a primer to introduce those active in biological investigation to common terms and principles related to image processing, image analysis, visualization, and software tools. Ample references to the rel- evant literature are provided for those interested in learning more. Acknowledgments The authors are grateful to Adriaan Houtsmuller, Niels Galjart, Jeroen Essers, Carla da Silva Almeida, Remco van Horssen, and Timo ten Hagen (Erasmus MC, Rotterdam, the Netherlands), Floyd Sarria and Har- ald Hirling (Swiss Federal Institute of Technology, Lausanne, Switzerland), Anne McKinney (McGill University, Montreal, Quebec, Canada), and Elisa- beth Rungger-Brandle¨ (University Eye Clinic, Geneva, Switzerland) for pro- viding image data for illustrational purposes.
    [Show full text]
  • Impact of Preterm Birth on the Developing Myocardium of the Neonate
    Articles | Basic Science Investigation Impact of preterm birth on the developing myocardium of the neonate Jonathan G. Bensley1, Lynette Moore2, Robert De Matteo1, Richard Harding1 and Mary Jane Black1 BACKGROUND: Globally, ∼ 10% of infants are born before the left and right ventricular outputs and marked increases in full term. Preterm birth exposes the heart to the demands of arterial blood pressure and heart rate (5). postnatal cardiovascular function before cardiac development In support of altered postnatal growth of the heart after is complete. Our aim was to examine, in hearts collected from preterm birth, a recent study utilizing ultrasound to examine infants at autopsy, the effects of preterm birth on myocardial the heart during gestation and following term/preterm birth, structure and on cardiomyocyte development. demonstrated that there was increased left and right METHODS AND RESULTS: Heart tissue was collected at ventricular mass (relative to body size) (6) in babies born perinatal autopsies of 16 infants who died following preterm preterm when examined at 3 months of postnatal age vs. birth between 23 and 36 weeks of gestation, and survived for term-born babies. This study also demonstrated that these 1–42 days; the hearts of 37 appropriately grown stillborn changes were not present before birth. In the longer term, – infants, aged 20 40 weeks of gestation, were used for cardiac magnetic resonance imaging studies, conducted in comparison. Using confocal microscopy and image analysis, young adults aged 20–39 years, have shown that, relative to cardiomyocyte proliferation, maturation, ploidy, and size were subjects born at term, those born preterm had an increase in quantified, and interstitial collagen and myocardial capillariza- left ventricular free wall mass, abnormal left ventricular wall tion were measured.
    [Show full text]