Risk Management – an Area of Knowledge for All Engineers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hearing Loss Prevention and a Survey of Firefighters
Update 2017 Vol. 29, Issue 1 The Council for Accreditation in Occupational Hearing Conservation Hearing Loss Prevention and a Survey of Firefighters Submitted by: Natalie Rothbauer, Illinois State University According to the Occupational and Safety Administration (OSHA), Candidates with the following medical conditions shall not be certified as approximately 30 million people are exposed to hazardous noise annually, meeting the medical requirements of this standard: (1) Chronic vertigo which places them at risk for auditory injuries such as noise-induced or impaired balance as demonstrated by the inability to tandem gait hearing loss (NIHL) and tinnitus. Noise-induced hearing loss can be walk. (2) On audiometric testing, average hearing loss in the unaided costly to workers as it can interfere with their daily tasks. It may make it better ear greater than 40 decibels (dB) at 500 Hz, 1000 Hz, and 2000 impossible to hear important warning signals and other important sounds, Hz when the audiometric device is calibrated to ANSI Z24.5. (3) Any possibly resulting in a worker being relieved from duty. Firefighting is ear condition (or hearing impairment) that results in a person not being considered a hearing critical profession because warning signal audibility able to safely perform essential job tasks. - NFPA Standard 1582 (pp. 11) could be the difference between life and death (Hong et al, 2013). Knowledge A literature review did not reveal a consistent sound exposure profile for Survey data indicated that many firefighters were knowledgeable of some career firefighters due to the variable noises and length of work shift. Some of the aspects of hearing loss and approaches to prevention. -
System Safety Engineering: Back to the Future
System Safety Engineering: Back To The Future Nancy G. Leveson Aeronautics and Astronautics Massachusetts Institute of Technology c Copyright by the author June 2002. All rights reserved. Copying without fee is permitted provided that the copies are not made or distributed for direct commercial advantage and provided that credit to the source is given. Abstracting with credit is permitted. i We pretend that technology, our technology, is something of a life force, a will, and a thrust of its own, on which we can blame all, with which we can explain all, and in the end by means of which we can excuse ourselves. — T. Cuyler Young ManinNature DEDICATION: To all the great engineers who taught me system safety engineering, particularly Grady Lee who believed in me, and to C.O. Miller who started us all down this path. Also to Jens Rasmussen, whose pioneering work in Europe on applying systems thinking to engineering for safety, in parallel with the system safety movement in the United States, started a revolution. ACKNOWLEDGEMENT: The research that resulted in this book was partially supported by research grants from the NSF ITR program, the NASA Ames Design For Safety (Engineering for Complex Systems) program, the NASA Human-Centered Computing, and the NASA Langley System Archi- tecture Program (Dave Eckhart). program. Preface I began my adventure in system safety after completing graduate studies in computer science and joining the faculty of a computer science department. In the first week at my new job, I received a call from Marion Moon, a system safety engineer at what was then Ground Systems Division of Hughes Aircraft Company. -
Industrial Engineering and Management Sciences 1
Industrial Engineering and Management Sciences 1 Methods for designing and analyzing industrial experiments. Blocking; INDUSTRIAL ENGINEERING randomization; multiple regression; factorial and fractional factorial experiments; response surface methodology; Taguchi's robust design; AND MANAGEMENT SCIENCES split plot experimentation. Homework, labs, and project. Prerequisite: IEMS 201-0, IEMS 303-0, or equivalent. Degree Types: PhD IEMS 308-0 Data Science and Analytics (1 Unit) The Industrial Engineering and Management Sciences PhD Program Focuses on select problems in data science, in particular clustering, (https://www.mccormick.northwestern.edu/industrial/phd-program/) association rules, web analytics, text mining, and dimensionality produces researchers who combine strength in core methodologies reduction. Lectures will be completed with exercises and projects in open of operations research (e.g., optimization, stochastic modeling and source framework R. Prior knowledge of classification techniques and R simulation, statistics, and data analytics) with the ability to apply them is required. to yield practical benefits in solving problems that are important in the Prerequisites: IEMS 304-0; COMP_SCI 217-0. real world. The program offers students the opportunity to use skills IEMS 310-0 Operations Research (1 Unit) in computing, mathematical analysis and modeling, and economics to Survey of operations research techniques. Linear programming, decision produce research that helps to improve the efficiency, quality, and the theory, stochastic processes, game theory. May not be taken for credit potential of organizations to fulfill their missions. The program prepares with or after IEMS 313-0. students for research-based careers in industry, academia, non-profit, and Prerequisites: IEMS 201-0 or IEMS 202-0; GEN_ENG 205-1 or MATH 240-0. -
Industrial Engineering Roles in Industry
Industrial Engineering Roles In Industry Prepared by the IIE-IAB (Institute of Industrial Engineers – Industry Advisory Board) www.iienet.org What Do IEs Do? • Industrial Engineers work to make things better, be theyyp processes ,p, products or s ystems • Typical focus areas include: – Project Management – Manufacturing, Production and Distribution – Supply Chain Management – Productivity, Methods and Process Eng ineerin g – Quality Measurement and Improvement – Program Management – Ergonomics/Human Factors – Technology Development and Transfer – Strategic Planning – Management of Change – Financ ia l Eng ineer ing 2 Projjgect Management • Develop the detailed work breakdown structure of complex activities and form them into an integrated plan • Provide time based schedules and resource allocations for complex plans or implementations • UjtUse project managemen tthitft techniques to perform • Industrial Engineering analyses and investigations • Conduct facility planning and facility layout development of new and revised production plants and office buildings • Form and direct both small and large teams that work towards a defined objective , scope & deliverables • Perform risk analysis of various project options and outcomes 3 Manufacturing, Production and Distribution •Particippgate in design reviews to ensure manufacturabilit y of the product • Determine methods and procedures for production distribution activity • Create documentation and work instructions for production and distribution • Manage resources and maintain schedule requirements -
Control of Hazardous Energy by Lock-Out and Tag-Out
Control of Hazardous Energy By Lock-out and Tag-out Why Lock-Out and Tag-Out? Basics of Lock-Out and Tag-Out Learning From Case Histories What Industry Process Safety Leaders Say Additional Reading February 23, 2005 This Safety Alert can also be found on the CCPS Web site at http://www.aiche.org/ccps/safetyalert Copyright 2005 American Institute of Chemical Engineers Engineers Chemical of Institute Copyright 2005 American CCPS Safety Alert, February 23, 2005 The Center for Chemical Process Safety was established by the American Institute of Chemical Engineers in 1985 to focus on the engineering and management practices to prevent and mitigate major incidents involving the release of hazardous chemicals and hydrocarbons. CCPS is active worldwide through its comprehensive publishing program, annual technical conference, research, and instructional material for undergraduate engineering education. For more information about CCPS, please call 212-591-7319, e-mail [email protected], or visit www.aiche.org/ccps Copyright 2005 American Institute of Chemical Engineers 3 Park Avenue New York, New York 10016 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior permission of the copyright owner. It is sincerely hoped that the information presented in this document will lead to an even more impressive record for the entire industry; however, the American Institute of Chemical Engineers, its consultants, CCPS Subcommittee members, their employers, and their employers’ officers and directors disclaim making or giving any warranties, expressed or implied, including with respect to fitness, intended purpose, use or merchantability and/or correctness or accuracy of the content of the information presented in this document. -
Ergonomic Challenges for Nanotechnology Safety and Health
of Ergo al no rn m u ic o s J Kim, J Ergonomics 2016, 6:5 Journal of Ergonomics DOI: 10.4172/2165-7556.1000e160 ISSN: 2165-7556 Editorial Open Access Ergonomic Challenges for Nanotechnology Safety and Health Practices In-Ju Kim Department of Industrial Engineering and Engineering Management, College of Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates Corresponding author: In-Ju Kim, Department of Industrial Engineering and Engineering Management, College of Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates, Tel: 0501340498; E-mail: [email protected] Received date: July 27, 2016; Accepted date: July 30, 2016; Published date: July 31, 2016 Copyright: ©2016 Kim IJ et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Introduction These tiny-sized substances are known as nanomaterials and could be either natural or anthropogenic in their origins [9]. Nanotechnology Nanotechnology has been broadly introduced to a wide range of involves the manipulation of matter on nanometer scales and offers the industry fields such as aeronautics, agriculture, architectural design, potential for unparalleled improvements in many different areas [11]. bio-medical engineering, communication sciences, constructions, The capability to operate matters at the atomic or molecular level environmental science, food production, and information technology makes it possible to form new materials, structures, and devices that over the last decades [1-4]. Nanotechnology has the perspective to develop exclusive physical and chemical properties related to nanoscale radically advance the efficiency of current industries and industrial structures. -
Requirements for the Bachelor of Science In
REQUIREMENTS FOR THE BACHELOR OF SCIENCE IN INDUSTRIAL ENGINEERING (Accredited by the Accreditation Board for Engineering and Technology) COLLEGE OF ENGINEERING THE UNIVERSITY OF OKLAHOMA GENERAL REQUIREMENTS For Students Entering the Total Credit Hours .......................... 131• Industrial Engineering Oklahoma State System Minimum Retention/Graduation Grade Point Averages: for Higher Education: Overall - Combined and OU ....................2.00 0913A Summer 2000 through Major - Combined and OU ....................2.00 Bachelor of Science in Spring 2001 Curriculum - Combined and OU .................2.00 Industrial Engineering A minimum grade of C is required for each course in the curriculum. Year FIRST SEMESTER Hours SECOND SEMESTER Hours ENGL 1113, Prin. of English Composition (Core I) 3 ENGL 1213, Prin. of English Composition (Core I) 3 CHEM 1315, General Chemistry (Core II) 5 MATH 2423, Calculus & Analytic Geometry II (Core I) 3 MATH 1823, Calculus & Analytic Geometry I (Core I) 3 HIST 1483, U.S., 1492-1865, or 3 P SC 1113, American Federal Government (Core III) 3 1493, U.S., 1865-Present (Core IV) ENGR 1112, Intro. to Engineering 2 PHYS 2514, General Physics for Engineering & Science 4 Majors (Core II) C S 1313, Computer Programming 3 FRESHMAN TOTAL CREDIT HOURS 16 TOTAL CREDIT HOURS 16 MATH 2433, Calculus & Analytic Geometry III 3 MATH 2443, Calculus & Analytic Geometry IV 3 PHYS 2524, General Physics for Engineering & Science 4 MATH 3333, Linear Algebra 3 Majors ENGR 2153, Strength of Materials 3 ENGR 2113, Rigid Body Mechanics -
Towards Safety Assessment Checklist for Safety-Critical Systems P.V
Article can be accessed online at http://www.publishingindia.com Towards Safety Assessment Checklist for Safety-critical Systems P.V. Srinivas Acharyulu*, P. S. Ramaiah** Abstract 1. Introduction Safety-critical systems are ever increasing in day to Safety-Critical Systems are those systems whose failure day life such as use from microwave oven to robots could result in loss of life, significant property damage, involving computer systems and software. Safety- or damage to environment (Knight, J.C, 2002). Safety in critical systems must consider safety engineering and broad pertains to the whole system, computer hardware, safety management principles in order to be safe when software, other electronic & electrical components and they are put into use. Safety analysis must be done. stake holders. A safety-critical system is such a system Safety assessment of such systems is difficult but not impossible. They must deal with the hazards analysis which has the potential to cause hazard either directly or in order to reduce or prevent risks to environment, indirectly. The emphasis of this paper is on the element property damage and / or loss of life through risk-free of software for such safety critical systems, which can and failure free or fail-safe operations. The existing be referred to as safety critical software. Some of the methods are found to be limited and inadequate safety critical applications include flight control systems, to address the risks associated and for safety medical diagnostic and treatment devices, weapon assessment. This paper proposes a methodology for systems, nuclear power systems, robots and many. Failure safety assessment of safety critical systems based on free and risk free or fail-safe operations may not lead to identifying significant and non-significant aspects of hazards. -
Information Technology and Business Process Redesign
-^ O n THE NEW INDUSTRIAL ENGINEERING: INFORMATION TECHNOLOGY AND BUSINESS PROCESS REDESIGN Thomas H. Davenport James E. Short CISR WP No. 213 Sloan WP No. 3190-90 Center for Information Systems Research Massachusetts Institute of Technology Sloan School of Management 77 Massachusetts Avenue Cambridge, Massachusetts, 02139-4307 THE NEW INDUSTRIAL ENGINEERING: INFORMATION TECHNOLOGY AND BUSINESS PROCESS REDESIGN Thomas H. Davenport James E. Short June 1990 CISR WP No. 213 Sloan WP No. 3190-90 ®1990 T.H. Davenport, J.E. Short Published in Sloan Management Review, Summer 1990, Vol. 31, No. 4. Center for Information Systems Research ^^** ^=^^RfF§ - DP^/i/gy Sloan School of Management ^Ti /IPf?i *''*'rr r .. Milw.i.l. L T*' Massachusetts Institute of Technology j LIBRARJP.'Bh.^RfES M 7 2000 RECBVED The New Industrial Engineering: Information Technology and Business Process Redesign Thomas H. Davenport James E. Shon Emsi and Young MIT Sloan School of Management Abstract At the turn of the century, Frederick Taylor revolutionized the design and improvement of work with his ideas on work organization, task decomposition and job measurement. Taylor's basic aim was to increase organizational productivity by applying to human labor the same engineering principles that had proven so successful in solving technical problems in the workplace. The same approaches that had transformed mechanical activity could also be used to structure jobs performed by people. Taylor, rising from worker to chief engineer at Midvale Iron Works, came to symbolize the ideas and practical realizations in industry that we now call industrial engineering (EE), or the scientific school of management^ In fact, though work design remains a contemporary IE concern, no subsequent concept or tool has rivaled the power of Taylor's mechanizing vision. -
Developing a Total Quality Management Framework for Healthcare Organizations
Proceedings of the 2014 International Conference on Industrial Engineering and Operations Management Bali, Indonesia, January 7 – 9, 2014 Developing a Total Quality Management Framework for Healthcare Organizations Abdulsattar Mohammad Al-Ali Department of Management Faculty of Finance and Business The World Islamic University for Sciences & Education Amman – Jordan Abstract Quality management has become an important issue in healthcare organizations (hospitals) during the last couple of decades. The increased attention to quality is due to governmental regulations, influence of customers, and hospital management initiatives. So, the role of government as the main provider of healthcare (HC) services has changed. Additionally, the healthcare market is changing from a producer-oriented to a customer-oriented market due to the increasing influence of customers and public pressures. As a consequence, the patient is becoming a customer for the healthcare organizations, or more likely a direct strategic partner who participates in a decision- making process. The changes in environment, society, and political policies have significant impacts on management in hospitals as well. There are many difficulties in managing healthcare organizations in a competitive marketplace with a little support from official bodies especially in a small country like Jordan. The purpose of this paper is to provide a framework for implementing the total quality management concept that is compatible with the local culture of Jordan. Keywords Total quality management, healthcare system, quality of care. Theoretical Background Total quality management is a system that makes quality the responsibility of all clinicians and administrators throughout the health care organization. In TQM, systems are established to prevent clinical and administrative problems, increase patient satisfaction, continuously improve the organization’s processes, and provide healthcare services as good, or better, then those of the competitors. -
A Checklist for Inherently Safer Chemical Reaction Process Design and Operation
A Checklist for Inherently Safer Chemical Reaction Process Design and Operation Introduction Chemical reaction hazard identification • Reaction process design considerations Ž Where to get more help March 1, 2004 This Safety Alert can also be found on the CCPS Web site at http://www.aiche.org/ccps/safetyalert Copyright 2004 American Institute of Chemical Engineers The Center for Chemical Process Safety was established by the American Institute of Chemical Engineers in 1985 to focus on the engineering and management practices to prevent and mitigate major incidents involving the release of hazardous chemicals and hydrocarbons. CCPS is active worldwide through its comprehensive publishing program, annual technical conference, research, and instructional material for undergraduate engineering education. For more information about CCPS, please call 212-591-7319, e-mail [email protected], or visit www.aiche.org/ccps Copyright 2004 American Institute of Chemical Engineers 3 Park Avenue New York, New York 10016 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior permission of the copyright owner. It is sincerely hoped that the information presented in this document will lead to an even more impressive record for the entire industry; however, the American Institute of Chemical Engineers, its consultants, CCPS Subcommittee members, their employers, and their employers’ officers and directors disclaim making or giving any warranties, expressed or implied, including with respect to fitness, intended purpose, use or merchantability and/or correctness or accuracy of the content of the information presented in this document. -
Introduction to Industrial Engineering
INTRODUCTION TO INDUSTRIAL ENGINEEING Industrial Engineering Definition Industrial Engineers plan, design, implement and manage integrated production and service delivery systems that assure performance, reliability, maintainability, schedule adherence and cost control Development of I. E. from Turner, Mize and Case, “Introduction to Industrial and Systems Engineering” I. E. History from Turner, Mize and Case, “Introduction to Industrial and Systems Engineering” U.S. Engineering Jobs from 2003 BLS % of Eng. Jobs % Growth (2012) • Electrical 19.8% 3-9% • Civil and Environmental 18.6% 3 -9% • Mechanical 14.5% 3-9% • Industrial 13.1% 10-20% •All Others <5.0% IE Prospects • Industrial engineers are expected to have employment growth of 14 percent over the projections decade, faster than the average for all occupations. As firms look for new ways to reduce costs and raise productivity, they increasingly will turn to industrial engineers to develop more efficient processes and reduce costs, delays, and waste. This focus should lead to job growth for these engineers, even in some manufacturing industries with declining employment overall. Because their work is similar to that done in management occupations, many industrial engineers leave the occupation to become managers. Numerous openings will be created by the need to replace industrial engineers who transfer to other occupations or leave the labor force. US Engineering Employment 2008 Civil engineers 278,400 Mechanical engineers 238,700 Industrial engineers 214,800 Electrical engineers 157,800