Neuromorphic Sensory Substitution with an Asynchronous Tactile Belt for Unsighted People : from Design to Clinical Trials Kevin Arth
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Somatosensory Processes Subserving Perception and Action
BEHAVIORAL AND BRAIN SCIENCES (2007) 30, 189–239 Printed in the United States of America DOI: 10.1017/S0140525X07001392 Somatosensory processes subserving perception and action H. Chris Dijkerman Department of Experimental Psychology, Helmholtz Research Institute, Utrecht University, 3584 CS Utrecht, The Netherlands [email protected] Edward H. F. de Haan Department of Experimental Psychology, Helmholtz Research Institute, Utrecht University, 3584 CS Utrecht, The Netherlands [email protected] Abstract: The functions of the somatosensory system are multiple. We use tactile input to localize and experience the various qualities of touch, and proprioceptive information to determine the position of different parts of the body with respect to each other, which provides fundamental information for action. Further, tactile exploration of the characteristics of external objects can result in conscious perceptual experience and stimulus or object recognition. Neuroanatomical studies suggest parallel processing as well as serial processing within the cerebral somatosensory system that reflect these separate functions, with one processing stream terminating in the posterior parietal cortex (PPC), and the other terminating in the insula. We suggest that, analogously to the organisation of the visual system, somatosensory processing for the guidance of action can be dissociated from the processing that leads to perception and memory. In addition, we find a second division between tactile information processing about external targets in service of object recognition and tactile information processing related to the body itself. We suggest the posterior parietal cortex subserves both perception and action, whereas the insula principally subserves perceptual recognition and learning. Keywords: body image; body schema; crossmodal; insula; parietal; proprioception; tactile object recognition 1. -
SENSORY SUBSTITUTION: LIMITS and PERSPECTIVES Charles Lenay, Olivier Gapenne, Sylvain Hanneton, Catherine Marque, Christelle Genouëlle
SENSORY SUBSTITUTION: LIMITS AND PERSPECTIVES Charles Lenay, Olivier Gapenne, Sylvain Hanneton, Catherine Marque, Christelle Genouëlle To cite this version: Charles Lenay, Olivier Gapenne, Sylvain Hanneton, Catherine Marque, Christelle Genouëlle. SEN- SORY SUBSTITUTION: LIMITS AND PERSPECTIVES. Yvette Hatwell; Arlette Streri; Edouard Gentaz. Touching for Knowing, 53, John Benjamins Publishers, pp.275-292, 2004, Advances in Con- sciousness Research, 9789027251855. 10.1075/aicr.53.22len. hal-02434266 HAL Id: hal-02434266 https://hal.archives-ouvertes.fr/hal-02434266 Submitted on 9 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SENSORY SUBSTITUTION: LIMITS AND PERSPECTIVES Charles Lenay, Olivier Gapenne, Sylvain Hanneton1, Catherine Marque et Christelle Genouëlle 29/08/2003 Université de Technologie de Compiègne COSTECH - BIM Groupe Suppléance Perceptive2 A quarter of a century ago, in the preface to « Brain Mechanisms in Sensory Substitution », Paul Bach y Rita wrote: "This monograph thus risks becoming outdated in a very short time since the development of refined sensory substitution systems should allow many of the question raised here to be answered, and some of the conclusions may appear naive to future readers." (BACH Y RITA, 1972) As it turns out, this prediction is far from having been fulfilled: in spite of their scientific and social interest, their real effectiveness and a certain technological development, prosthetic devices employing the principle of "sensory substitution" are not widely used by the blind persons for whom they were originally destined. -
Neural Dust: Ultrasonic Biological Interface
Neural Dust: Ultrasonic Biological Interface Dongjin (DJ) Seo Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2018-146 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-146.html December 1, 2018 Copyright © 2018, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Neural Dust: Ultrasonic Biological Interface by Dongjin Seo A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Michel M. Maharbiz, Chair Professor Elad Alon Professor John Ngai Fall 2016 Neural Dust: Ultrasonic Biological Interface Copyright 2016 by Dongjin Seo 1 Abstract Neural Dust: Ultrasonic Biological Interface by Dongjin Seo Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences University of California, Berkeley Professor Michel M. Maharbiz, Chair A seamless, high density, chronic interface to the nervous system is essential to enable clinically relevant applications such as electroceuticals or brain-machine interfaces (BMI). Currently, a major hurdle in neurotechnology is the lack of an implantable neural interface system that remains viable for a patient's lifetime due to the development of biological response near the implant. -
Perceiving Invisible Light Through a Somatosensory Cortical Prosthesis
ARTICLE Received 24 Aug 2012 | Accepted 15 Jan 2013 | Published 12 Feb 2013 DOI: 10.1038/ncomms2497 Perceiving invisible light through a somatosensory cortical prosthesis Eric E. Thomson1,2, Rafael Carra1,w & Miguel A.L. Nicolelis1,2,3,4,5 Sensory neuroprostheses show great potential for alleviating major sensory deficits. It is not known, however, whether such devices can augment the subject’s normal perceptual range. Here we show that adult rats can learn to perceive otherwise invisible infrared light through a neuroprosthesis that couples the output of a head-mounted infrared sensor to their soma- tosensory cortex (S1) via intracortical microstimulation. Rats readily learn to use this new information source, and generate active exploratory strategies to discriminate among infrared signals in their environment. S1 neurons in these infrared-perceiving rats respond to both whisker deflection and intracortical microstimulation, suggesting that the infrared repre- sentation does not displace the original tactile representation. Hence, sensory cortical prostheses, in addition to restoring normal neurological functions, may serve to expand natural perceptual capabilities in mammals. 1 Department of Neurobiology, Duke University, Box 3209, 311 Research Drive, Bryan Research, Durham, North Carolina 27710, USA. 2 Edmond and Lily Safra International Institute for Neuroscience of Natal (ELS-IINN), Natal 01257050, Brazil. 3 Department of Biomedical Engineering, Duke University, Durham, North Carolina 27710, USA. 4 Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27710, USA. 5 Center for Neuroengineering, Duke University, Durham, North Carolina 27710, USA. w Present address: University of Sao Paulo School of Medicine, Sao Paulo 01246-000, Brazil. Correspondence and requests for materials should be addressed to M.A.L.N. -
Electrocorticography Evidence of Tactile Responses in Visual Cortices
UvA-DARE (Digital Academic Repository) Electrocorticography Evidence of Tactile Responses in Visual Cortices Gaglianese, A.; Branco, M.P.; Groen, I.I.A.; Benson, N.C.; Vansteensel, M.J.; Murray, M.M.; Petridou, N.; Ramsey, N.F. DOI 10.1007/s10548-020-00783-4 Publication date 2020 Document Version Final published version Published in Brain Topography License CC BY Link to publication Citation for published version (APA): Gaglianese, A., Branco, M. P., Groen, I. I. A., Benson, N. C., Vansteensel, M. J., Murray, M. M., Petridou, N., & Ramsey, N. F. (2020). Electrocorticography Evidence of Tactile Responses in Visual Cortices. Brain Topography, 33(5), 559–570. https://doi.org/10.1007/s10548-020-00783-4 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:03 Oct 2021 Brain Topography (2020) 33:559–570 https://doi.org/10.1007/s10548-020-00783-4 ORIGINAL PAPER Electrocorticography Evidence of Tactile Responses in Visual Cortices Anna Gaglianese1,2,3 · Mariana P. -
Oscillatory Properties of Functional Connections Between Sensory Areas Mediate Cross-Modal Illusory Perception
The Journal of Neuroscience, July 17, 2019 • 39(29):5711–5718 • 5711 Systems/Circuits Oscillatory Properties of Functional Connections Between Sensory Areas Mediate Cross-Modal Illusory Perception Jason Cooke,1 Claudia Poch,2 Helge Gillmeister,1 Marcello Costantini,3,4 and XVincenzo Romei1,5 1Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom, 2Facultad de Lenguas y Educacio´n, Universidad Nebrija, 28015 Madrid, Spain, 3Department of Psychological, Health, and Territorial Sciences, 4Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy, and 5Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Universita’ di Bologna, Campus di Cesena, 47521 Cesena, Italy The presentation of simple auditory stimuli can significantly impact visual processing and even induce visual illusions, such as the auditory-induced double flash illusion (DFI). These cross-modal processes have been shown to be driven by occipital oscillatory activity within the alpha band. Whether this phenomenon is network specific or can be generalized to other sensory interactions remains unknown. The aim of the current study was to test whether cross-modal interactions between somatosensory-to-visual areas leading to the same (but tactile-induced) DFI share similar properties with the auditory DFI. We hypothesized that if the effects are mediated by the oscillatory properties of early visual areas per se, then the two versions of the illusion should be subtended by the same neurophysiolog- ical mechanism (i.e., the speed of the alpha frequency). Alternatively, if the oscillatory activity in visual areas predicting this phenomenon is dependent on the specific neural network involved, then it should reflect network-specific oscillatory properties. -
Optogenetics Controlling Neurons with Photons
Valerie C. Coffey Optogenetics Controlling Neurons with Photons An advancing field of neuroscience uses light to understand how the brain works and to create new tools to treat disease. Wireless optogenetics tools like these tiny implants in live mice are enabling scientists to map the stimulation of certain neurons of the brain to specific responses. J. Rogers/Northwestern Univ. 24 OPTICS & PHOTONICS NEWS APRIL 2018 APRIL 2018 OPTICS & PHOTONICS NEWS 25 In just over a decade, the discovery of numerous opsins with different specializations has allowed scientists and engineers to make rapid progress in mapping brain activity. wo thousand years ago, ancient Egyptians halorhodopsin can silence the neurons in the hypo- knew that the electrical shocks of torpedo thalamus, inducing sleep in living mice. fish, applied to the body, could offer pain In just over a decade, the discovery of numerous relief. Two hundred years ago, physicians opsins with different specializations has allowed scien- understood that electrical stimulation of a tists and engineers to make rapid progress in mapping Tfrog’s spine could control muscle contraction. Today, brain activity, motivated by the hope of solving intrac- electrical therapy underlies many treatments, from table neurological conditions. And it doesn’t hurt that pacemakers to pain control. investment in neuroscience research has grown at the But neuroscience has long awaited a more precise same time. tool for controlling specific types of neurons. Electrical In 2013, the Obama administration announced a stimulation (e-stim) approaches stimulate a large area collaborative public-private effort, the Brain Research without precise spatial control, and can’t distinguish through Advancing Innovative Neurotechnologies between different cell types. -
Computational Neuroscience Meets Optogenetics: Unlocking the Brain’S Secrets
Health & Medicine ︱ Prof Simon Schultz and Dr Konstantin Nikolic Computational neuroscience meets optogenetics: Unlocking the brain’s secrets Working at the interface omposed of billions of specialised responsible for perception, action Simplified models allow researchers to study how the geometry of a neuron’s “dendritic tree” affects its ability to process information. between engineering and nerve cells (called neurons) wired and memory. But this is changing. neuroscience, Professor Simon C together in complex, intricate Schultz and Dr Konstantin webs, the brain is inherently challenging LET THERE BE LIGHT Nikolic at Imperial College to study. Neurons communicate with A powerful new tool (invented by Boyden of Neurotechnology and Director of SHEDDING LIGHT ON THE BRAIN AN INSIGHT INTO NEURONAL GAIN London are developing tools each other by transmitting electrical and and Deisseroth just a little over a decade the Imperial Centre of Excellence in Their innovative approach uses Using two biophysical models of to help us understand the chemical signals along neural circuits: ago) allows researchers to map the brain’s Neurotechnology, Dr Konstantin Nikolic, sophisticated two-photon microscopy, neurons, genetically-modified to include intricate workings of the brain. signals that vary both in space and time. connections, giving unprecedented Associate Professor in the Department optogenetics and electrophysiology two distinct light-sensitive proteins Combining a revolutionary Until now, technical limitations in the access to the workings of the brain. Its of Electrical and Electronic Engineering, to measure (and disturb) patterns of (called opsins): channelrhodopsin-2 technology – optogenetics available research methods to study the impressive resolution enables precise and Dr Sarah Jarvis are taking a unique neuronal activity in vivo (in living tissue). -
Mousecircuits.Org: an Online Repository to Guide the Circuit Era of Disordered Affect
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.16.951608; this version posted February 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. MouseCircuits.org: An online repository to guide the circuit era of disordered affect Kristin R. Anderson ID 1,2 and Dani Dumitriu ID 1,2 1Columbia University, Departments of Pediatrics and Psychiatry, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032 2Columbia University, Zuckerman Institute, 3227 Broadway, New York, NY 10027 Affective disorders rank amongst the most disruptive and tem and the gut microbiome (2,3). However, the mysteries of prevalent psychiatric diseases, resulting in enormous societal the brain, a structure with idiosyncratic and interconnected and economic burden, and immeasurable personal costs. Novel architecture, are unlikely to be revealed solely on the basis of therapies are urgently needed but have remained elusive. The this type of sledgehammer approach. era of circuit-mapping in rodent models of disordered affect, ushered in by recent technological advancements allowing for Enter the era of circuit dissection. In the last precise and specific neural control, has reenergized the hope for decade, groundbreaking technological advances have al- precision psychiatry. Here, we present a novel whole-brain cu- lowed neuroscientists to take control of neural firing with mulative network and critically access the progress made to- impressive precision and specificity (Figure 1) (4–7). -
An Embedded Real-Time Processing Platform for Optogenetic Neuroprosthetic Applications
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 26, NO. 1, JANUARY 2018 233 An Embedded Real-Time Processing Platform for Optogenetic Neuroprosthetic Applications Boyuan Yan and Sheila Nirenberg Abstract— Optogenetics offers a powerful new approach temporal resolution. Since these proteins require bright for controlling neural circuits. It has numerous applica- light [23], [24], standard high resolution devices such as LCD tions in both basic and clinical science. These applications monitors are ineffective. While laser or LED-based illumi- require stimulating devices with small processors that can perform real-time neural signal processing, deliver high- nation systems can meet the requirements of light intensity, intensity light with high spatial and temporal resolution, they are not readily suitable for providing spatially-patterned and do not consume a lot of power. In this paper, we stimuli. Digital light processing (DLP) projectors, however demonstrate the implementation of neuronal models in a can achieve this: the key component, a chip called Digital platform consisting of an embedded system module and Micromirror Device (DMD) [25], consists of an array of a portable digital light processing projector. As a replace- ment for damaged neural circuitry, the embedded module several hundred thousand micromirrors, which can change processes neural signals and then directs the projector to position at kHz frequencies. These offer the most flexibility in optogenetically activate a downstream neural pathway. We terms of the spatial and temporal modulation of the activating present a design in the context of stimulating circuits in the light. visual system, but the approach is feasible for a broad range In addition to an effective stimulator, the other essential of biomedical applications. -
Sensory Substitution and the Human
tavvJ TRENDSin CognitiveScierc€s Vot.7No.l2 D6csmbe.2OO3 Sensorysubstitution and the human- machineinterface Paul Baeh-y-Ritaland Stephen W. Kercelz l?e?.anmglE-9fonhopedics and RehabiritationMedicine, and BiomedicarEngineering, univorsity of wisconsin, MadisonWl 53706.USA 2Endogenous SystemsResearch Group, New EnglandInstitute, University ot New England,Biddeford ME 04005,USA Recent advances in the instrumentation technology ol advances have led to the possibility of new prosthetic sensory substitution presemed have new opportunities devices being potentially accessible at much lower cost to to dsv€lop systems for compsnsation of sansory loss, millions ofpatients. ThiB is Btimulating the interest ofboth ,n sensory substitution {€.g. ot sight or vestibular func. research groups and industry leading to the establish- tion), intormation trom an artificial roceptor is coupled ment of new research and development efrorts in many tho to brain via a human-machine interfaco. The brain countries. Thia recent exploeion of interest in sensorv is able to use this intormation in place of that usually substitution suggest€that now is a good time to review transmitted from an intaqt ssnss organ. Both auditory progress in the area. and tactilo systems show promiss for practical sensory substitution intartace sitos. This research provides Brain plasticity experimental tools tor examining brain plasticity and Brain plasticity can be defined as the adaptiee capacities has implications fot porceptual and cognition studios ofthe central nervous system - its ability to modify its own more gonerally. structural organization and fiuctioning, IlT. It permits atr adaptive (or a maladaptive) responseto functional demand, Persons who become blind do not lose tÄe capacity to Mechanisms of brain plasticity include neurochemical, see. -
Robustness in Neurological Systems 13 - 15 November, 2015 Center for Philosophy of Science
Robustness in Neurological Systems 13 - 15 November, 2015 Center for Philosophy of Science ABSTRACTS Alison BArth, Professor, DepArtment of Biology, AnD HeAD, BArth LAb, CArnegie Mellon University Functional Connectivity is Regulated by SOM Interneurons Spontaneous Activity UnDerstAnDing the DynAmic rAnge for synAptic trAnsmission is A criticAl component of builDing A functionAl circuit DiAgrAm for the mammaliAn brAin. We find that excitAtory synaptic strength between neocortical neurons is markeDly suppresseD During network Activity in mouse somatosensory cortex, with smaller EPSP AmplituDes AnD high fAilure rAtes thAn previously reporteD. This phenomenon is regulAteD by tonic ActivAtion of presynAptic GABAb receptors viA the Activity of somatostAtin-expressing interneurons. Optogenetic suppression of somatostAtin neurAl firing wAs sufficient to enhAnce EPSP AmplituDe AnD reDuce fAilure rAtes, effects thAt were fully reversible AnD Also occluDeD by GABAb AntAgonists. These DAtA inDicAte thAt somatostAtin-expressing interneurons can rapidly and reversibly rewire neocortical networks through synAptic silencing, And suggest A critical role for these neurons in gating perception And plAsticity. Emilio Bizzi, DepArtment of BrAin AnD Cognitive Sciences And McGovern Institute for Brain Research, MIT Muscle Synergies, Concept, Principles, and Potential use in Neurorehabilitation When the centrAl nervous system (CNS) generAtes voluntAry movement, many muscles, eAch comprising thousAnDs of motor units, Are simultAneously ActivAteD AnD coorDinAteD. ComputAtionAlly, this is A DAunting tAsk, AnD investigAtors hAve striveD to unDerstAnD whether AnD how the CNS’s burDen is reDuceD to A much smaller set of vAriAbles. In the lAst few yeArs, we and our collaborators have seArcheD for physiologicAl eviDence of simplifying strAtegies by exploring whether the motor system makes use of motor moDules, to construct A lArge set of movement.