The Long-Term Nuclear Explosives Predicament

Total Page:16

File Type:pdf, Size:1020Kb

The Long-Term Nuclear Explosives Predicament DOI:10.13140/2.1.2757.9683 THE LONG-TERM NUCLEAR EXPLOSIVES PREDICAMENT THE FINAL DISPOSAL OF MILITARILY USABLE FISSILE MATERIAL IN NUCLEAR WASTE FROM NUCLEAR POWER AND FROM THE ELIMINATION OF NUCLEAR WEAPONS Johan Swahn Technical Peace Research Group Institute of Physical Resource Theory Göteborg 1992 [Blank Page] THE LONG-TERM NUCLEAR EXPLOSIVES PREDICAMENT THE FINAL DISPOSAL OF MILITARILY USABLE FISSILE MATERIAL IN NUCLEAR WASTE FROM NUCLEAR POWER AND FROM THE ELIMINATION OF NUCLEAR WEAPONS Johan Swahn Technical Peace Research Group Institute of Physical Resource Theory Göteborg 1992 ISBN 91-7032-689-4 Chalmers Tekniska Högskola Bibliotekets Reproservice Göteborg 1992 UTAN TVIVEL ÄR MAN INTE KLOK Tage Danielsson (1928-1985) [Blank Page] THE LONG-TERM NUCLEAR EXPLOSIVES PREDICAMENT THE FINAL DISPOSAL OF MILITARILY USABLE FISSILE MATERIAL IN NUCLEAR WASTE FROM NUCLEAR POWER AND FROM THE ELIMINATION OF NUCLEAR WEAPONS Johan Swahn Technical Peace Research Group Institute of Physical Resource Theory Chalmers University of Technology S-412 96 Göteborg, Sweden ABSTRACT It is possible that the long-term global energy future does not turn out to be a breeder-reactor-based plutonium economy, but that a sustainable energy future based on renewable energy sources develops instead, i.e., a post-nuclear world. The thesis is based on a scenario where this is the case. Then large amounts of fissile material, that would otherwise to be consumed in the plutonium economy, will have to be disposed of as long-lived nuclear waste. This material is usable for the construction of nuclear explosives and consists of weapons-grade uranium and weapons-grade plutonium from nuclear weapons dismantled as a result of reductions of the nuclear arsenals, and reactor-grade plutonium produced in civil nuclear reactors, but not recycled. Regarding the possibilities of using reactor-grade plutonium for the construction of nuclear explosives, it is found that reactor-grade plutonium is an entirely credible fissile material for nuclear explosives, but that the increased spontaneous fission neutron background inherent in such material does provide an incentive for a nuclear explosives program to produce weapons-grade plutonium. On the other hand, laser isotope separation technology can be used to convert reactor- grade plutonium into weapons-grade plutonium. Present planning for the final disposal of spent nuclear reactor fuel that contains reactor-grade plutonium calls for the deposition of the material in mined geologic repositories. This disposal solution does, however, not make the fissile material “practicably irrecoverable” and safeguards would have to be put on the material for an indefinite time-period. Thus our generations, who utilize nuclear power, will leave a burden on future generations that do not. This is the long-term nuclear explosives predicament. In this thesis the predicament is examined. A scenario is described where the production of new military fissile material is halted and where civil nuclear power is phased out in a “no-new orders” case. It is found that approximately 1 100 tonnes of weapons-grade uranium, 233 tonnes of weapons-grade plutonium and 3 795 tonnes of reactor-grade plutonium has to be finally disposed of as nuclear waste, as the use of large-scale nuclear technology is phased out. This material could be used for the construction of over 1 million nuclear explosives and will be available for such purposes for a very long time. Reactor-grade plutonium is found to be easier to extract from spent nuclear fuel with time and some physical characteristics important for the construction of nuclear explosives are improved. However, the biggest problem, the large spontaneous neutron background, does not decrease. Alternative methods for disposal of the fissile material that will avoid the long- term nuclear explosives predicament are examined. Among these methods are dilution, denaturing or transmutation of the fissile material and options for practicably irrecoverable disposal in deep boreholes, on the sea-bed, and in space. Weighing in costs, environmental safety and public acceptance it is found that the deep boreholes method for disposal should be the primary alternative to be examined further. This method, which may make the fissile material more difficult to retrieve than from a mined repository, can be combined with an effort to “forget” where the material was put. This would, however, be a reversal of the present considerations where an attempt is planned to transfer as much information about the nuclear waste as possible into the future. Included in the thesis is also an evaluation of the possibilities of controlling the limited civil nuclear activities in a post-nuclear world. It is found that the opportunities for an effective safeguard regime are very favourable. Some surveillance technologies that might find widespread use in a post-nuclear world are described, including satellite surveillance. In a review part of the thesis, methods for the production of fissile material usable for the construction of nuclear explosives are described; the technological basis for the construction of nuclear weapons is examined, including the possibilities for using reactor-grade plutonium produced in civil nuclear power reactors for such purposes; also the present planning for the disposal of spent fuel from civil nuclear power reactors and for the handling of the fissile material from dismantled nuclear warheads is described. The Swedish plan for the handling and disposal of spent nuclear fuel is selected as a reference example of a spent fuel disposal system and is described in detail. Keywords: nuclear explosives, nuclear weapons, construction, destruction, high- level nuclear waste, spent nuclear fuel, disposal, long-term, ethics, Swedish, fissile material, plutonium, production, transmutation, nuclear fuel cycle, military, laser isotope separation, sustainable energy future, sustainability, plutonium economy PREFACE This thesis is the first presented within the research field of technical peace research at the Chalmers University of Technology. The research field was established in 1987, on a trial basis, under the auspices of the Technical Faculty at Chalmers. The thesis is, of course, my personal responsibility, but it does owe its existence also to many persons who have directly or indirectly been supportive in the process of its creation. I would like to especially acknowledge the following individuals or groups: • Victor Weisskopf, who led a seminar on the threat of the nuclear arms race at the 1982 CERN Summer School, and who awoke my interest in the subject. • The founders of the Swedish Society of Engineers for the Prevention of Nuclear War [Föreningen Svenska Ingenjörer mot Kärnvapen] for their indirect role in the early 1980’s in creating an openness to proposals for the academic study of the technical aspects of armaments and disarmament at the Chalmers. • Professor Karl-Erik Eriksson who made the original proposal that technical peace research should be carried out at Chalmers, and professor Tor Kihlman who helped realize the proposal. • The Ministry of Foreign Affairs who came up with the original seed funding. • The Steering Group for Technical Peace Research [Ledningsgruppen för teknisk fredsforskning] who guided me throughout the process. • The Swedish Council for Planning and Coordination of Research [Forsknings- rådsnämnden] for their funding. • My colleagues at the Institute of Physical Resource Theory, who have created a unique research atmosphere that gave me support in an otherwise sometimes lonely endeavour. • Karl-Erik Eriksson, my supervisor, for the time and support he gave. • Josie Stein and Stellan Welin who made an effort to finally get me started. • Those who found time to read and comment drafts to the thesis, and especially Karl-Erik, Gudmar Grosshög and Stellan Welin. • The library staff, and especially Sickan, who never tired in their efforts to help me with difficult requests. • Linus and Patrik for their help with the image processing of the satellite imagery. • The Ministry of Foreign Affairs for the funding of the satellite images. • Ulf Heikki at Satellitbild for his helpfulness and kind hospitality. • Apple Computer for bringing us System 7 and the Powerbook. • And, all those others, none named, none forgotten, who supported me throughout the years with inspiration, help and advice. For those readers that do not master the Swedish language, let me say a few words about the citation at the front of the thesis. The meaning of the quote is twofold. It can be translated as “Without scepticism, one is not wise“, but also as “One is, without doubt, insane“. Tage Danielsson was a brilliant humoristic humanist whose subtle but biting reflections ceased at a moment in history when perhaps they are needed most. I want to thank my parents and family and friends for their support and finally, I want to extend my deep love and gratitude to my wife, Eva Eiderström, whose patience was unending, to my eldest son Linus who could understand and sometimes PREFACE ii PREFACE accept that his father had a “book“ to write, and to my youngest son Hampus, who was steadfast company in the final stages of the writing. Göteborg, April 12th, 1992, Johan Swahn COMMENTS TO THE SECOND PRINTING Corrections of errors that I have found in the first printing have been made. The only correction that I feel important enough to mention specifically is the previously incorrect use of the fissile plutonium production instead
Recommended publications
  • Richard Lieu
    Richard Lieu E-mail address: [email protected] Academic Qualifications: Oct., 1975 - June, 1978: BSc (1st class honors), Imperial College London, Major in Physics. Oct., 1978 - June, 1981: DIC, PhD, Imperial College London. Thesis title: Radiation Transport within the source of Hard Cosmic X-ray Photons. Career Record 21 June, 2008 - present: 10th Distinguished Professor and Chair of the Department of Physics, University of Alabama in Huntsville. 14 Sept., 2013 - 21 Jan., 2015, Chair of the Department of Physics, Univer- sity of Alabama in Huntsville. 20 Aug., 2004 - 20 June, 2008: Professor at the Department of Physics, University of Alabama, Huntsville. 16 Aug., 1999 - present: Associate Professor at the Department of Physics, University of Alabama, Huntsville. 16 Aug., 1995 - 15 Aug., 1999: Assistant Professor at the Department of Physics, University of Alabama, Huntsville. 1 1 Nov., 1991 - 15 Aug., 1995: Assistant Research Astronomer at the Center for EUV Astrophysics, University of California, Berkeley. 1 Aug., 1985 - 31 Oct., 1991: Research Assistant at the Astrophysics Group, Blackett Laboratory, Imperial College, London, England. 1 Aug., 1981 - 30 June, 1985: Postdoctoral Research Fellow and Sessional Instructor at the Dept. of Physics and Astronomy, and at the Dept. of Electrical Engineering, University of Calgary, Alberta, Canada. Awards and Prizes UAH Foundation Researcher of the year award, April 2007. Sigma Xi Huntsville chapter `researcher of the year' award, with Lloyd W. Hillman, April 2005. Three times `Discovery of the year award', 1995, 1994, and 1993, Center for EUV Astrophysics, UC Berkeley. `Outstanding software development of the year award 1993', with James W. Lewis, Center for EUV Astrophysics, UC Berkeley.
    [Show full text]
  • Annual Report 2004
    ANNUAL REPORT 2004 HELSINKI UNIVERSITY OF TECHNOLOGY Low Temperature Laboratory Brain Research Unit and Low Temperature Physics Research http://boojum.hut.fi - 2 - PREFACE...............................................................................................................5 SCIENTIFIC ADVISORY BOARD .......................................................................7 PERSONNEL .........................................................................................................7 SENIOR RESEARCHERS..................................................................................7 ADMINISTRATION AND TECHNICAL PERSONNEL...................................8 GRADUATE STUDENTS (SUPERVISOR).......................................................8 UNDERGRADUATE STUDENTS.....................................................................9 VISITORS FOR EU PROJECTS ......................................................................10 OTHER VISITORS ..........................................................................................11 GROUP VISITS................................................................................................13 OLLI V. LOUNASMAA MEMORIAL PRIZE 2004 ............................................15 INTERNATIONAL COLLABORATIONS ..........................................................16 CERN COLLABORATION (COMPASS) ........................................................16 COSLAB (COSMOLOGY IN THE LABORATORY)......................................16 ULTI III - ULTRA LOW TEMPERATURE INSTALLATION
    [Show full text]
  • Nobelprisen I Fysikk 2013
    Nr. 4 – 2013 75. årgang Fra Utgiver: Norsk Fysisk Selskap Redaktører: Øyvind Grøn Emil J. Samuelsen Fysik ke ns Redaksjonssekretær: Karl Måseide Innhold Ould-Saada, Raklev og Read: Nobelprisen i fysikk 2013 . 101 Verden Øyvind Grøn: Romelven og treg draeffekt . 104 Emil J. Samuelsen: Friksjon og gli . 111 Frå Redaktørane . 98 In Memoriam . 98 Øystein H. Fischer FFV Gratulerer . 100 Per Chr. Hemmer 80 år Hva skjer . 116 Birkelandforelesningen 2013 Yaras Birkelandpris 2014 Konferanse om kvinner i fysikk Bokomtale . 118 Arnt Inge Vistnes: Svingninger og bølger Trim i FFV . 118 Nye Doktorer . 119 PhD Marit Sandstad Nobelprisvinnerne i fysikk 2013: François Englert (t.v.) og Peter Higgs (Se artikkel om Nobelprisen i fysikk) ISSN-0015-9247 SIDE 98 FRA FYSIKKENS VERDEN 4/13 S ve n O lu f S ør en se n FRA FYSIKKENS VERDEN 4/13 SIDE 99 supraledning, hvor han og hans team gjorde flere fysikkmiljøet i Geneve til Trondheim. Øystein banebrytende oppdagelser av nye fenomen og egen­ takket jevnlig ja til å delta på vitenskapelige kon­ skaper som har bidratt til å øke vår forståelse av feranser, workshops og seminar her i Norge, der han disse komplekse materialene. Han er særlig kjent alltid bidro til så vel høy kvalitet som god stemning. for sine studier av magnetiske ternære supraledere På den forskningpolitiske arena ledet han i 1986 den og komplekse oksid supraledere med høy "kri­ første fysikkevalueringen i regi av det daværende tisk" temperatur (dvs. høy-T c supraledere). Av Norges almenvitenskapelige forskningsråd (NAVF), hans arbeider kan nevnes påvisningen av koeksis­ den såkalte Fischer-komiteen.
    [Show full text]
  • Master of Science PHYSICS PROGRAM
    Master of Science PHYSICS PROGRAM STRUCTURE AND SYLLABUS 2019-20 ADMISSION ONWARDS (UNDER MAHATMA GANDHI UNIVERSITY PGCSS REGULATIONS 2019) BOARD OF STUDIES IN PHYSICS (PG) MAHATMA GANDHI UNIVERSITY 2019 MAHATMA GANDHI UNIVERSITY, KOTTAYAM Board of Studies in Physics (P G) 1. Dr.Ambika .K, Associate Professor,Department of Physics, Devaswom Board college, Thalayolaparambu (CHAIRPERSON) 2. Dr. G.Vinod ,Associate Professor,Department of Physics, SreeSankara College, Kalady 3. Sri .Jacob George .Associate Professor,Department of Physics, Government College,Nattakom, Kottayam 4. Dr.Anila.E.I., Associate Professor, Department of Physics, Union Christian College, Aluva. 5. Dr.Jeeju.P.P. Associate Professor, Department of Physics, S.N.M.College Maliankara 6. Sri.Santhosh Jacob, Associate Professor, Department of Physics, Marthoma College Thiruvalla 7. Prof. Mary Jelthruth.K.V, Associate Professor, Department of Physics, St.Pauls College,Kalamassery 8. Dr. Vinu.T.P, Assistant Professor, Department of Physics,,N.S.S. Hindu College ,Changanassery . 9. Dr.Raneesh. B, Assistant Professor, Department of Physics,Catholicate College , Pathanamthitta . 10. Sri.Anand .A , Associate Professor, Department of Physics, M.G. College Thiruvananathapuram. 11. Sri.Prince P.R., Associate Professor, Department of Physics, University CollegeThiruvananathapuram. ACKNOWLEDGEMENT The P.G. Board of studies expresses our sincere thanks to the honorable Vice Chancellor of Mahatma Gandhi University, Dr. Sabu Thomas, for the guidance and help extended to us during the restructuring of M.Sc Physics syllabus to suit the Credit and Semester System. The vision and experience in the realm of higher education that he shared with us on various occasions have been helpful and encouraging. We thank Dr.R.Pragash,(Syndicate Member), for the wholehearted support and for the constant monitoring of the process.
    [Show full text]
  • Going Massive Have Frequently Been One of Them
    excitement — then gives an accurate primer on the standard model of particle physics. He enumerates the forces and particles, and discusses the role of quantum fields and symmetries, as well as the accelerators and detectors that provide the evidence to keep C. MARCELLONI/CERN the crazy concepts rooted in reality. Towards the end of the book, Carroll touches on the discovery’s impact. I could have done without the Winnie the Pooh-style subtitles to each chapter, such as “In which we suggest that everything in the universe is made out of fields”. But this is a minor flaw and, elsewhere, he discusses the issues and events with passion and clarity. An example is the moment, nine days after the LHC was switched on in 2008, when one-eighth of it suffered a catastrophic leak of liquid helium. Or, as Carroll accurately puts it, “it exploded”. The disappointment, the challenges of explaining the event to the public and of dealing with the alleged risks of turning on the machine — ‘Black holes will eat you!’ — are beautifully done. Josef Kristofoletti’s massive mural of the ATLAS particle detector adorns a building at CERN. Carroll gives a sense of the intensity (and the international nature) of the effort of PARTICLE PHYSICS building and running the LHC. I was not surprised by his report that 1 in 16 of the passengers passing through Geneva airport are in some way associated with CERN. I Going massive have frequently been one of them. And that is just the tip of an iceberg of teleconferences, Jonathan Butterworth enjoys the latest chronicle e-mails, night shifts and a general shortage of the hunt for the ‘most wanted’ particle.
    [Show full text]
  • COSMIC STRINGS and BEADS by Mark Bernard Hindmarsh a Thesis Presented for the Degree of Doctor of Philosophy of the University O
    1 COSMIC STRINGS AND BEADS by Mark Bernard Hindmarsh A thesis presented for the degree of Doctor of Philosophy of the University of London and the Diploma of Membership of Imperial College Department of Physics The Blackett Laboratory Imperial College London SW7 2BZ September 1986 2 ABSTRACT Spontaneously broken gauge theories are now thought to be the first step in a fully unified theory of fundamantal processes. The occurrence of topologically stable solutions to the classical field equations in a large class of these theories, such as domain walls, strings, and monopoles, is of great interest to cosmologists because these objects will appear after phase transitions in the early universe. Of particular interest are strings, for they provide a promising way of seeding galaxy formation. Just after the phase transition at which they are formed, the motion of strings is strongly affected by friction with the surrounding medium. This period is investigated, and a mechanism for the generation of baryon asymmetry by the decay of small loops of string into heavy bosons is examined. A lower bound on the scale of the phase transition is derived. A new type of stable solution to the field equations of the Yang-Mills-Higgs system is presented, the 'bead', which can be thought of as a monopole on a string. Such beads are shown to exist in a large class of Grand Unified Theories, and their properties and a few of their cosmological implications discussed. When we take fermions into account, it is well known that there exist solutions to the Dirac equation localised around the string, corresponding to bound fermions moving along it at the speed of light.
    [Show full text]
  • Nuclear Radiation Health Effects
    (C) Safety In Engineering Ltd Radiation health effects and nuclear accident consequences – an overview Jim Thomson www.safetyinengineering.com 1 Radiation doses and radiological hazards (C) Safety In Engineering Ltd • Other issue - Doserate effects - uncertain Dose/risk• Normal cancer risk ~ 30% Additional Cancer Risk 5% Region where data are available, e.g. from Hiroshima-Nagasaki Gradient = 5%/Sv survivors Delayed health effects (cancers) – the linear dose -risk hypothesis Region of interest for societal risk in nuclear Effective dose (Sv) reactor accidents 1 Sv 100% Risk due to radiation sickness Acute effects (radiation sickness) Effective dose (Sv) 3 4 5 2 Radiation doses and radiological hazards (C) Safety In Engineering Ltd • The Emergency Reference Level (ERL) = 300mSv effective dose • Very small fractionsRadiological of a reactor core’s inventory wouldhazards yield a major radiological hazard to the public if released off-site, e.g. typically a release of about one-millionth of the I-131 inventory in a reactor would equate to the Emergency Reference Level (ERL) for someone at the site boundary. Isotopes Characteristics Iodine - 131 Volatile. Beta/gamma thyroid-seeker. Short half life (8d). Effects can be mitigated by swallowing iodate tablets. Caesium - 137 Volatile. Permeates whole body (mimics sodium). Actinides May be air-borne by fine (e.g. Plutonium, Curium, particles of U 3O8 in accidents. Americium isotopes) Alpha lung and bone seeker. Very long half lives. 3 Radiation doses and radiological hazards (C) Safety In Engineering Ltd 4 different terms used:Radiological hazards DOSE is measured in Grays (Gy). 1 Gy = 1 Joule of radiation energy absorbed per kg of organ tissue DOSE-EQUIVALENT is measured in Sieverts (Sv).
    [Show full text]
  • Chernobyl: Worst but Not First
    (reprinted with permission from Bulletin of the Atomic Scientists, August/September 1986, www.thebulletin.org) Chernobyl: worst but not first Until Chernobyl, only two nuclear reactor accidents had spread significant amounts of ionizing radiation beyond the site of the mishap: a fire at the Windscale No. 1 plutonium production pile in northwest England in 1957, and a 1961 accident at an experimental prototype reactor in Idaho which killed three servicemen. Both the Stationary Low-Power reactor (SL-1) involved in the Idaho accident and the Windscale reactor were of novel and inadequate design; in a sense they were accidents waiting to happen. For that reason the Western nuclear industry now - perhaps too hastily - discounts those two accidents as minimally relevant to nuclear safety in the 1980s. It could make a similar mistake about Chernobyl. The Windscale No. 1 pile was the first large-scale reactor built in Britain; a second was built beside it. Each was cooled by blowing air through the fuel channels in the graphite core and discharging the air directly back to the atmosphere through a tall stack. This primitive system was dictated by the political urgency of Britain's bomb program, but it made the responsible scientists and engineers acutely nervous. While Sir John Cockcroft, head of Britain's Harwell nuclear center, was on a visit to Oak Ridge National Laboratory in the late 1940s, the reactor malfunctioned, sending radioactivity up the stack to settle on the site. Cockcroft returned to Britain insisting that a way be found to ensure that fuel damage in a Windscale reactor would not release uncontrolled radioactivity into the surroundings.
    [Show full text]
  • Richard Batten1 University of Exeter a Significant Moment in The
    Richard Batten Ex Historia 79 Richard Batten 1 University of Exeter A Significant Moment in the Development of Nuclear Liability and Compensation: Dealing With the Consequences of the Windscale Fire 1957. Introduction The fire at the Windscale Nuclear plant in October 1957 transformed an installation which was once a grand symbol of technological pride into a ‘dirty relic of an early nuclear age’. 2 Nuclear power became associated with destruction, accidents and unimaginable apocalyptic images which reinforced human fallibility and the erratic nature of nuclear material. 3 However, Britain’s post- war society was oblivious to the threat of a nuclear reactor experiencing a meltdown. In fact, during the fifties, politicians, scientists and the general public hoped that Britain’s ambitious atomic energy programme would offer an escape from its dependence on coal for the country’s energy requirements and restore the nation’s industrial prestige. David Edgerton pointed out in Warfare State that techno-nationalism had become a powerful ideology within the realities of ‘austerity Britain’. 4 By investing in nuclear technology, Britain was not only creating the right conditions for the country’s scientific growth but was also supporting its engineering and power- generating development. Hence, nuclear power was a key facet of Britain’s post-war future.5 1 Richard Batten's ( [email protected] ) academic interests include the development of nuclear power in the United Kingdom, the experiences of British agriculture in the twentieth century, and the social history of Britain during the First World War. He holds a BA (Hons.) in English and History (2007) and an MA in History (2008).
    [Show full text]
  • Higgs Physics
    Higgs Physics Why the Higgs boson? What can the Higgs boson tell us? John Ellis Fundamental Particle Interactions • Strong, weak and electromagnetic • Three separate gauge group factors: – SU(3) × SU(2) × U(1) • Three different gauge couplings: – g3, g2, g ́ • Similar structures, important difference • The carrier particles of the weak interactions are massive: mW ~ 80 GeV, mZ ~ 91 GeV • What is the origin of these masses (also electron, …) Is the Higgs Boson the answer? To Higgs or not to Higgs? • Need to discriminate between different types of particles: – Some have masses, some do not – Masses of different particles are different • In mathematical jargon, symmetry must be broken: how? – Break symmetry in equations? Inconsistencies … – Or in solutions to symmetric equations? • Latter is the route proposed by Higgs (et al.) – Is there any other way? Where to Break the Symmetry? • Throughout all space? – Route proposed by Higgs et al – Universal scalar field breaks symmetry • Or at the edge of space? – Break symmetry at the boundary? • Not possible in 3-dimensional space – No boundaries – Postulate extra dimensions of space • Different particles behave differently in the extra dimension(s) 1964 The (G)AEBHGHKMP’tH Mechanism The only one who mentioned a massive scalar boson 1964 The Founding Fathers Tom Kibble Gerry Guralnik Carl Hagen François Englert Robert Brout Peter Higgs But the Higgs Boson Englert & Higgs Guralnik, Hagen & Kibble Brout Also Goldstone in global case? The Englert-Brout-Higgs Mechanism • Vacuum expectation value of scalar field • Englert & Brout: June 26th 1964 • First Higgs paper: July 27th 1964 • Pointed out loophole in argument of Gilbert if gauge theory described in Coulomb gauge • Accepted by Physics Letters • Second Higgs paper with explicit example sent on July 31st 1964 to Physics Letters, rejected! • Revised version (Aug.
    [Show full text]
  • UK Physicist Who Worked on Higgs Boson Dies: University 2 June 2016
    UK physicist who worked on Higgs boson dies: university 2 June 2016 Tom Kibble, a leading British physicist whose work death. helped lead to the discovery of the Higgs boson, died Thursday aged 83, his university in London © 2016 AFP said. In 1964, Kibble worked on one of the three earliest research papers theorising the existence of the Higgs Boson, a sub-atomic particle believed to explain how matter acquires mass. In 2012, the European Organisation for Nuclear Research (CERN) announced it had discovered a particle commensurate with the boson. This led to Peter Higgs and Francois Englert, who had worked on the two other papers in 1964, being jointly awarded the Nobel Prize for Physics in 2013. Kibble told the Guardian that year that it had felt "quite surreal" to watch a webcast of the results from the CERN experiments. "To find that something we'd done that long ago was again the focus of attention is certainly not a normal experience, even in physics," Kibble said. "It was rather peculiar." In a statement, Professor Jerome Gauntlett, head of theoretical physics at Imperial College London, said Kibble had been a man of "extraordinary modesty and humility". "Professor Sir Tom Kibble was distinguished for his ground-breaking research in theoretical physics and his work has contributed to our deepest understanding of the fundamental forces of nature," Gauntlett said. "He was held in the highest esteem by his colleagues and students alike. He will be very sadly missed". Imperial College did not give details of the cause of 1 / 2 APA citation: UK physicist who worked on Higgs boson dies: university (2016, June 2) retrieved 27 September 2021 from https://phys.org/news/2016-06-uk-physicist-higgs-boson-dies.html This document is subject to copyright.
    [Show full text]
  • John Womersley Appointed Director of ESS Waves by LIGO (Laser Interferometer Gravitational-Wave Observatory), Which Was Announced in February This Year, The
    CERN Courier July/August 2016 CERN Courier July/August 2016 Faces & Places Faces & Places Prizes galore for LIGO discovery A PPOINTMENTS Left to right: Gruber Foundation, Caltech, Bryce Vickmark Following the discovery of gravitational John Womersley appointed director of ESS waves by LIGO (Laser Interferometer Gravitational-Wave Observatory), which was announced in February this year, the The European Spallation Source (ESS) under ESS John Womersley at the Foundation Stone breakthrough has been recognized by three construction in Lund, Sweden, has named Ceremony in 2014, which marked the major awards. John Womersley as its next director general. beginning of the construction of the ESS. On 2 May, the selection committee of Womersley, who is chief executive of the UK’s the new $3 million Special Breakthrough Science and Technology Facilities Council Scientists, staff, partner institutions and Prize in Fundamental Physics announced (STFC), will take over from current ESS countries across Europe have come together that LIGO founders Ronald Drever and director general Jim Yeck on 1 November. to build what will be the world's leading Kip Thorne of Caltech and Rainer Weiss More than 40 institutions from 15 neutron source for research on materials of MIT would share one third of the award, countries are participating in the €1.84bn and life sciences,” says Womersley. “The with the remaining amount being shared ESS, which will be the world’s most impressive progress at ESS can be seen in the equally between LIGO’s 1005 authors and powerful source of neutrons when it enters construction site in Lund and I am determined seven members of LIGO’s sister experiment full operation in 2025.
    [Show full text]