Chapter 15. Periglacial Processes in Glacial Environments

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 15. Periglacial Processes in Glacial Environments CHAPTER PERIGLACIAL PROCESSES IN GLACIAL ENVIRONMENTS 15 W. Pollard McGill University, Montreal, QC, Canada 15.1 INTRODUCTION The geologic record contains evidence of a planetary history that has seen the Earth’s climate fluc- tuate on geological time scales between conditions that were much warmer than present and other periods when it was considerably colder. These fluctuations between ‘greenhouse’ and ‘icehouse’ conditions are the result of complex global and astronomical processes. During an icehouse interval a combination of astronomical, tectonic, and geochemical events lead to global cooling and a subsequent accumulation of ice on land and in the oceans at higher latitudes and altitudes. These factors and their feedback systems exist in a complex cause and effect relationship that remains poorly understood. As highlighted throughout this volume an icehouse Earth is characterized by continental-scale ice sheets, ice caps, valley glaciers, and ice shelves that advance and retreat in cycles known as glacial and interglacial periods. However, during an icehouse regime cold temperatures extend well beyond the geographic limits of glaciation to create a periglacial zone dominated by frost action, frozen ground, snow, and various forms of nonglacial ice. Given that many of the criteria used to define ice house conditions are currently present, such as large ice sheets and widespread glacial activity, together with the fact that the Earth recently experienced full glacial conditions it can be concluded that the Earth is still under the influence of an ice house regime. In addition to glaciers and ice sheets, other conditions that define an icehouse regime such as widespread sea ice, seasonal/perennial snow cover, and frozen ground (permafrost and ground ice) are also currently active. The area of the Earth’s surface where water persists in a frozen state is the called the cryosphere (Barry and Yew Gan, 2011). The cryosphere includes all aspects of Earth’s environment dominated by cold climate (both seasonal and perennial) and include places where snow, lake and river ice, sea ice, glaciers, ice caps, ice sheets, ice shelves, and icebergs as well as the various types of cryotic ground (Fig. 15.1). The cryosphere concept provides a useful perspective because it includes both glacial and periglacial (cold nonglacial) systems. This chapter focuses on geomorphic processes and features that characterize areas dominated by periglacial conditions and their relationship with glacial environments. Fig. 15.1 shows the current extent of the Earth’s cryosphere and highlights relationships between areas dominated by ice sheets/glaciers and periglacial processes linked to permafrost, frost action, and snow cover. The fol- lowing discussion focuses on geomorphic features associated with the periglacial zone with an emphasis on their relationship to past and present glacial systems. Past Glacial Environments. DOI: http://dx.doi.org/10.1016/B978-0-08-100524-8.00016-6 © 2018 Elsevier Ltd. All rights reserved. 537 538 CHAPTER 15 PERIGLACIAL PROCESSES IN GLACIAL ENVIRONMENTS FIGURE 15.1 Map of the global cryosphere showing the distribution of glaciers and ice sheets, ice shelves, sea ice, permafrost, and snow. Based on information from the World Meteorological Organization. 15.2 COLD NONGLACIAL ENVIRONMENTS The cryosphere is not only distinguished by the presence of various forms of ice and snow but also by processes and landforms related to cold subfreezing (cryotic) temperatures. The global pattern of climate tends to reflect a strong zonal bias driven by the latitudinal variation in insolation. The negative radiation balance of the Earth’s higher latitudes helps sustain air temperatures conducive to the freezing of free water (frost action). Since geomorphology is concerned with the study of landforms, landscapes, and their genetic processes, it follows that cryospheric geomorphology can be divided into two broad categories; glacial and periglacial geomorphology. As discussed through- out this volume the geomorphology of glacial and glaciated landscapes reflects the processes and landforms directly related to the action of ice sheets and glaciers. Glacial geomorphology is a com- plex science focusing on the dynamics of flowing ice masses and their ability to erode, transport, and deposit rock and sediments as well as processes and landforms not directly related to the action of glaciers like glacial fluvial and glacial lacustrine activity. Some cryospheric landscapes owe their 15.2 COLD NONGLACIAL ENVIRONMENTS 539 origin to cold nonglacial conditions and processes; for example, frozen ground and frost action linked to cryotic temperatures and freezing soil moisture and groundwater. Under full glacial condi- tions a proglacial belt of cold nonglacial conditions will parallel the limit of active glaciation. In some cases these ice-free areas may be completely surrounded by ice (e.g., Beringia); however, most of the time it forms a broad zone that transitions from intense cold and frozen ground to pro- gressively more temperate environments where frost action and permafrost are replaced by seasonal frost and snow. In addition to subfreezing (cryotic) conditions the ‘periglacial zone’ may also be extremely dry and prone to desert conditions that subsequently influence patterns of vegetation and geomorphic processes. Areas adjacent to large ice sheets experience dry gravity (katabatic) winds flowing off the ice sheet that drive various aeolian processes and erosion. As glacier ice retreats the belt of cold periglacial conditions tends to shift with it. As Laurentide Ice disappeared from conti- nental North America it was replaced by a zone of widespread permafrost. Fresh glacial sediments and drift-covered landscapes are susceptible to rapid change linked to slope process, glacial melt- water, frost action, and wind erosion. As ice sheets retreated from their last maximum position large amounts of glacigenic material were and continue to be reworked and redeposited. This area of accelerated geomorphic activity is termed ‘paraglacial’ (Ryder, 1971a). Paraglacial and progla- cial are complementary terms that refer to areas adjacent to active and retreating glacial ice, whereas the term periglacial refers specifically to cold nonglacial conditions (French, 2007). Hence the presence of glaciers is not a prerequisite for periglacial conditions although periglacial condi- tions occur adjacent to glacial systems due to the pervasive cold that drives both systems. 15.2.1 PERIGLACIAL ENVIRONMENTS The term ‘periglacial’ describes terrain conditions, geomorphic processes and landforms that result from climates subject to prolonged and intense freezing conditions irrespective of proximity to gla- ciers. Periglacial environments are areas where landforms and geomorphic processes reflect the cumulative effects of cold subfreezing temperatures, cyclic freezing and thawing of sediments, and the volumetric expansion of soil moisture as it freezes. The defining criteria for periglacial environ- ments include: (1) intense frost action, and/or (2) the presence of permafrost. Today, periglacial conditions affect up to 35% of the Earth’s land area and have its greatest presence in the northern hemisphere (French, 2007; Williams and Smith, 1989). The term periglacial was proposed by the Polish geologist Walery von Lozinski in 1909 to describe weathering processes responsible for the widespread shattered rock surfaces in the Carpathian Mountains (French, 1996). Lozinski also introduced the concept of a ‘periglacial zone’ to describe climatic and geomorphic regimes peripheral to the Pleistocene ice sheets (Washburn, 1973). The periglacial concept has gone through a series of contextual changes; originally the periglacial concept was firmly rooted in climatic geomorphology and was constrained by geo- graphic proximity to glaciers and ice sheets. Climatic geomorphology was popular in the 1930s and 1940s and equated landscapes with climate. It was predicated on the idea that climate regime, mainly seasonal patterns and extremes in temperature and precipitation, control the geomorphic nature and intensity of process, which in turn control landform development. Even though climate remains a defining variable, the current focus of periglacial geomorphology is on the mechanics of heat flow, ice formation, the properties of ice, freezing and thawing, and the dynamic interaction between these processes and various distinctive landforms. Thorn (1992) unsuccessfully tried to 540 CHAPTER 15 PERIGLACIAL PROCESSES IN GLACIAL ENVIRONMENTS equate the term periglacial with processes and landforms associated specifically with ground ice. However, the periglacial environment remains synonymous with areas characterized by frost action and/or permafrost (French, 2007). Subtle differences in the meaning of the terms frozen (i.e., the solid phase of water) and cryotic (temperatures below 0C) have led to the popular use of the term geocryology (Washburn, 1979; Williams and Smith, 1989; Yershov, 1998). There is considerable conceptual overlap between the terms permafrost and geocryology in that both focus on the frozen and cryotic condition of earth materials. 15.2.2 PARAGLACIAL ENVIRONMENTS Paraglacial geomorphology is ‘the study of earth-surface processes, sediments, landforms, landsys- tems and landscapes that are directly conditioned by former glaciation and deglaciation’ (Ballantyne, 2002, p. 1935).The term paraglacial was formally introduced by Ryder (1971a, 1971b) to characterize the
Recommended publications
  • Sensors and Measurements Discussion
    “Measurements for Assessment of Hydrate Related Geohazards” Report Type: Topical No: 41330R07 Starting March 2002 Ending September 2004 Edited by: R.L. Kleinberg and Emrys Jones September 2004 DOE Award Number: DE-FC26-01NT41330 Submitting Organization: ChevronTexaco Energy Technology Company 2811 Hayes Road Houston, TX 77082 DISCLAIMER “This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.” ii Abstract Natural gas hydrate deposits are found in deep offshore environments. In some cases these deposits overlay conventional oil and gas reservoirs. There are concerns that the presence of hydrates can compromise the safety of exploration and production operations [Hovland and Gudmestad, 2001]. Serious problems related to the instability of wellbores drilled through hydrate formations have been document by Collett and Dallimore, 2002]. A hydrate-related incident in the deep Gulf of Mexico could potentially damage the environment and have significant economic impacts.
    [Show full text]
  • Illus 1 Location of Ice Houses Listed by the RCAHMS in Perth and Kinross and in Fife
    Illus 1 Location of ice houses listed by the RCAHMS in Perth and Kinross and in Fife. (Crown copyright, licence number AL 100034704) Three Perthshire ice houses: selected results of a desk-based assessment and a programme of field investigations Adrian Cox Introduction of building an ice house. Its compiler, Philip Miller, stressed the importance of a dry situation for the build- This paper presents some of the results of a desk-based ing, noting that moisture was prejudicial to the storage assessment of the nature, level of recording and condi- of ice. A raised position, to facilitate drainage, was also tion of surviving ice-houses in Perthshire and Fife, desirable. along with selected results of a small programme of The fishing industry was the largest consumer of ice field investigations undertaken with a view to highlight- in Britain, and the last user of natural ice. The earliest ing site management and conservation issues. The re- large-scale use was in Scotland, where ice collected sults of investigations of three ice houses in Perthshire from lochs was used in the late 18th and 19th centuries are presented in depth here, and discussed in the light for packing salmon for transportation. By around 1820, of an overview of the historical background to ice ice was becoming routinely used in the salmon trade house construction and use. Both the desk-based as- across Britain. sessment and subsequent field investigations were spon- During the late 18th and early 19th centuries, the sored by Historic Scotland. wealth of landowners increased rapidly, leading to in- Although important features in the 17th- to 19th- creased demand for ice in summer to cool drinks and century landscape, many ice houses across Scotland make exotic desserts.
    [Show full text]
  • Ice Flow Impacts the Firn Structure of Greenland's Percolation Zone
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2019 Ice Flow Impacts the Firn Structure of Greenland's Percolation Zone Rosemary C. Leone University of Montana, Missoula Follow this and additional works at: https://scholarworks.umt.edu/etd Part of the Glaciology Commons Let us know how access to this document benefits ou.y Recommended Citation Leone, Rosemary C., "Ice Flow Impacts the Firn Structure of Greenland's Percolation Zone" (2019). Graduate Student Theses, Dissertations, & Professional Papers. 11474. https://scholarworks.umt.edu/etd/11474 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. ICE FLOW IMPACTS THE FIRN STRUCTURE OF GREENLAND’S PERCOLATION ZONE By ROSEMARY CLAIRE LEONE Bachelor of Science, Colorado School of Mines, Golden, CO, 2015 Thesis presented in partial fulfillMent of the requireMents for the degree of Master of Science in Geosciences The University of Montana Missoula, MT DeceMber 2019 Approved by: Scott Whittenburg, Dean of The Graduate School Graduate School Dr. Joel T. Harper, Chair DepartMent of Geosciences Dr. Toby W. Meierbachtol DepartMent of Geosciences Dr. Jesse V. Johnson DepartMent of Computer Science i Leone, RoseMary, M.S, Fall 2019 Geosciences Ice Flow Impacts the Firn Structure of Greenland’s Percolation Zone Chairperson: Dr. Joel T. Harper One diMensional siMulations of firn evolution neglect horizontal transport as the firn column Moves down slope during burial.
    [Show full text]
  • Let's Crank Some Ice Cream
    Let’s Crank Some Ice Cream! The history of ice harvesting, the ice industry, refrigeration, and making ice cream Kathi Elkins 7-29-19 OLLI: Summer 2019 Ice Storage and Ice Houses: 1780 BC --- ice house in northern Mesopotamian 1100 BC --- evidence of ice pits in China By 400 BC --- Persian engineers had mastered techniques of constructing yakhchāl to store ice harvested from nearby mountains. 300 BC --- Alexander the Great (snow pits to hold snow and ice) 200s AD --- Romans (snow shops) Cold springs, root cellars Ice Houses: Yakhchāl (this one at Yazd, Iran) is a Persian ice pit or a type of evaporative cooler. Above ground, the structure had a domed shape, but had a subterranean storage space. It was often used to store ice and food. The subterranean space coupled with the thick heat-resistant construction material insulated the storage space all year. Ice Houses: Ice houses in England/UK. Ice Houses: Croome's thatched ice house, Worcestershire, UK Ice Houses: Botany Bay Icehouse, Edisto Island, SC Ice Houses: Ice house designs usually began as an underground egg-shaped cellar. This ice house, dating from 1780s and designed by architect John Nash, was discovered in 2018 buried under London streets. In 1822, following a very mild winter, William Leftwich chartered a vessel to Norway to collect 300 tons of ice harvested from crystal-clear frozen lakes. Previous imports had been lost at sea, or melted while baffled customs officials dithered over how to tax such unique cargo. John Nash designed the Royal Pavilion at Brighton, as well as Buckingham Palace.
    [Show full text]
  • Surficial Geology Investigations in Wellesley Basin and Nisling Range, Southwest Yukon J.D
    Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon J.D. Bond, P.S. Lipovsky and P. von Gaza Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon Jeffrey D. Bond1 and Panya S. Lipovsky2 Yukon Geological Survey Peter von Gaza3 Geomatics Yukon Bond, J.D., Lipovsky, P.S. and von Gaza, P., 2008. Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon. In: Yukon Exploration and Geology 2007, D.S. Emond, L.R. Blackburn, R.P. Hill and L.H. Weston (eds.), Yukon Geological Survey, p. 125-138. ABSTRACT Results of surficial geology investigations in Wellesley basin and the Nisling Range can be summarized into four main highlights, which have implications for exploration, development and infrastructure in the region: 1) in contrast to previous glacial-limit mapping for the St. Elias Mountains lobe, no evidence for the late Pliocene/early Pleistocene pre-Reid glacial limits was found in the study area; 2) placer potential was identified along the Reid glacial limit where a significant drainage diversion occurred for Grayling Creek; 3) widespread permafrost was encountered in the study area including near-continuous veneers of sheet-wash; and 4) a monitoring program was initiated at a recently active landslide which has potential to develop into a catastrophic failure that could damage the White River bridge on the Alaska Highway. RÉSUMÉ Les résultats d’études géologiques des formations superficielles dans le bassin de Wellesley et la chaîne Nisling peuvent être résumés en quatre principaux faits saillants qui ont des répercussions pour l’exploration, la mise en valeur et l’infrastructure de la région.
    [Show full text]
  • High Arctic Holocene Temperature Record from the Agassiz Ice Cap and Greenland Ice Sheet Evolution
    High Arctic Holocene temperature record from the Agassiz ice cap and Greenland ice sheet evolution Benoit S. Lecavaliera,1, David A. Fisherb, Glenn A. Milneb, Bo M. Vintherc, Lev Tarasova, Philippe Huybrechtsd, Denis Lacellee, Brittany Maine, James Zhengf, Jocelyne Bourgeoisg, and Arthur S. Dykeh,i aDepartment of Physics and Physical Oceanography, Memorial University, St. John’s, Canada, A1B 3X7; bDepartment of Earth and Environmental Sciences, University of Ottawa, Ottawa, Canada, K1N 6N5; cCentre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark, 2100; dEarth System Science and Departement Geografie, Vrije Universiteit Brussel, Brussels, Belgium, 1050; eDepartment of Geography, University of Ottawa, Ottawa, Canada, K1N 6N5; fGeological Survey of Canada, Natural Resources Canada, Ottawa, Canada, K1A 0E8; gConsorminex Inc., Gatineau, Canada, J8R 3Y3; hDepartment of Earth Sciences, Dalhousie University, Halifax, Canada, B3H 4R2; and iDepartment of Anthropology, McGill University, Montreal, Canada, H3A 2T7 Edited by Jeffrey P. Severinghaus, Scripps Institution of Oceanography, La Jolla, CA, and approved April 18, 2017 (received for review October 2, 2016) We present a revised and extended high Arctic air temperature leading the authors to adopt a spatially homogeneous change in reconstruction from a single proxy that spans the past ∼12,000 y air temperature across the region spanned by these two ice caps. 18 (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Elles- By removing the temperature signal from the δ O record of mere Island, Canada) indicates an earlier and warmer Holocene other Greenland ice cores (Fig. 1A), the residual was used to thermal maximum with early Holocene temperatures that are estimate altitude changes of the ice surface through time.
    [Show full text]
  • Contemporary Periglacial Processes in the Swiss Alps: Seasonal, Inter-Annual and Long-Term Variations
    Permafrost, Phillips, Springman & Arenson (eds) © 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Contemporary periglacial processes in the Swiss Alps: seasonal, inter-annual and long-term variations N. Matsuoka & A. Ikeda Institute of Geoscience, University of Tsukuba, Ibaraki, Japan K. Hirakawa & T. Watanabe Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Japan ABSTRACT: Comprehensive monitoring of periglacial weathering and mass wasting has been undertaken near the lower limit of the mountain permafrost belt. Seven years of monitoring highlight both seasonal and inter- annual variations. On the seasonal scale, three types of movements are identified: (A) small magnitude events associated with diurnal freeze-thaw cycles, (B) larger events during early seasonal freezing and (C) sporadic events originating from refreezing of meltwater during seasonal thawing. Type A produces pebbles or smaller fragments from rockwalls and shallow (Ͻ10 cm) frost creep on debris slopes. Types B and C are responsible for larger debris production and deeper (Ͻ50 cm) frost creep/gelifluction. Some of these events contribute to perma- nent opening of rock joints and advance of solifluction lobes. Sporadic large boulder falls enhance inter-annual variation in rockwall retreat rates. On some debris slopes, prolonged snow melting occasionally triggers rapid soil flow, which causes inter-annual variation in rates of soil movement. 1 INTRODUCTION 9º40'E 10º00'E Piz Kesch Real-time monitoring of periglacial slope processes is 3418 Switzerland useful to predict ongoing slope instability problems in Inn alpine regions. Such a prediction, however, needs long- Piz d'Err Piz Ot term variations in slope processes caused by climate 3378 3246 Samedan Italia change to be distinguished from inter-annual scale vari- A 30'E 30'E º St.
    [Show full text]
  • GEOMORPHOLOGIE 4-2008 BIS:Maquette Geomorpho
    Géomorphologie : relief, processus, environnement, 2008, n° 4, p. 223-234 Paraglacial and paraperiglacial landsystems: concepts, temporal scales and spatial distribution Géosystèmes paraglaciaire et parapériglaciaire : concepts, échelles temporelles et distribution spatiale Denis Mercier* Abstract The Pleistocene Earth history has been characterized by major climatic fluctuations. During glacial periods, ice may have covered around 30 per cent of the Earth surface compared to approximately 10 per cent nowadays. With global change, polar environments and other montainous glacial environments of the world are presently undergoing the most important changes since the end of the Last Glacial Maximum and are experiencing paraglacial and paraperiglacial geomorphological readjustments. Paraglacial and para- periglacial landsystems consist of several subsystems including gravitational, fluvial, coastal, aeolian and lacustrine environments. Paraglacial and paraperiglacial landsystems can be analysed as open and complex landsystems characterized by energy, water and sed- iment fluxes and exchange with surrounding environments, especially with glacial and periglacial landsystems as inputs. Those cascading landsystems are likely to react to climate change because they rely on an ice-cold water stock (glacier and permafrost) that developed during a previous cold sequence (glaciation). The response of paraglacial and paraperiglacial systems to climatic forcing takes place over a long time span ranging from an immediate reaction to several millennia. The spatial limits of paraglacial and para- periglacial landsystems are inherently dependant on the time scale over which the system is analyzed. During the Pleistocene, glaciations widely affected the high latitudes and the high altitudes of the Earth and were followed by inherited paraglacial sequences. Glacier forelands in Arctic and alpine areas experience paraglacial processes with the present warming.
    [Show full text]
  • Cold-Climate Landform Patterns in the Sudetes. Effects of Lithology, Relief and Glacial History
    ACTA UNIVERSITATIS CAROLINAE 2000 GEOGRAPHICA, XXXV, SUPPLEMENTUM, PAG. 185–210 Cold-climate landform patterns in the Sudetes. Effects of lithology, relief and glacial history ANDRZEJ TRACZYK, PIOTR MIGOŃ University of Wrocław, Department of Geography, Wrocław, Poland ABSTRACT The Sudetes have the whole range of landforms and deposits, traditionally described as periglacial. These include blockfields and blockslopes, frost-riven cliffs, tors and cryoplanation terraces, solifluction mantles, rock glaciers, talus slopes and patterned ground and loess covers. This paper examines the influence, which lithology and structure, inherited relief and time may have had on their development. It appears that different rock types support different associations of cold climate landforms. Rock glaciers, blockfields and blockstreams develop on massive, well-jointed rocks. Cryogenic terraces, rock steps, patterned ground and heterogenic solifluction mantles are typical for most metamorphic rocks. No distinctive landforms occur on rocks breaking down through microgelivation. The variety of slope form is largely inherited from pre- Pleistocene times and includes convex-concave, stepped, pediment-like, gravitational rectilinear and concave free face-talus slopes. In spite of ubiquitous solifluction and permafrost creep no uniform characteristic ‘periglacial’ slope profile has been created. Mid-Pleistocene trimline has been identified on nunataks in the formerly glaciated part of the Sudetes and in their foreland. Hence it is proposed that rock-cut periglacial relief of the Sudetes is the cumulative effect of many successive cold periods during the Pleistocene and the last glacial period alone was of relatively minor importance. By contrast, slope cover deposits are usually of the Last Glacial age. Key words: cold-climate landforms, the Sudetes 1.
    [Show full text]
  • Cryogenic Displacement and Accumulation of Biogenic Methane in Frozen Soils
    atmosphere Article Cryogenic Displacement and Accumulation of Biogenic Methane in Frozen Soils Gleb Kraev 1,*, Ernst-Detlef Schulze 2, Alla Yurova 3,4, Alexander Kholodov 5,6, Evgeny Chuvilin 7 and Elizaveta Rivkina 6 1 Centre of Forest Ecology and Productivity, Russian Academy of Sciences, Moscow 117997, Russia 2 Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena 07745, Germany; [email protected] 3 Institute of Earth Sciences, Saint Petersburg State University, Saint Petersburg 199034, Russia; [email protected] 4 Nansen Centre, Saint Petersburg 199034, Russia 5 Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK 99775-9320, USA; [email protected] 6 Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino 142290, Russia; [email protected] 7 Faculty of Geology, Lomonosov Moscow State University, Moscow 119992, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-499-743-0026 Received: 28 March 2017; Accepted: 9 June 2017; Published: 15 June 2017 Abstract: Evidences of highly localized methane fluxes are reported from the Arctic shelf, hot spots of methane emissions in thermokarst lakes, and are believed to evolve to features like Yamal crater on land. The origin of large methane outbursts is problematic. Here we show, that the biogenic methane (13C ≤ −71 ) which formed before and during soil freezing is presently held in the permafrost. Field and experimentalh observations show that methane tends to accumulate at the permafrost table or in the coarse-grained lithological pockets surrounded by the sediments less-permeable for gas. Our field observations, radiocarbon dating, laboratory tests and theory all suggest that depending on the soil structure and freezing dynamics, this methane may have been displaced downwards tens of meters during freezing and has accumulated in the lithological pockets.
    [Show full text]
  • Mineral Element Stocks in the Yedoma Domain
    Discussions https://doi.org/10.5194/essd-2020-359 Earth System Preprint. Discussion started: 8 December 2020 Science c Author(s) 2020. CC BY 4.0 License. Open Access Open Data Mineral element stocks in the Yedoma domain: a first assessment in ice-rich permafrost regions Arthur Monhonval1, Sophie Opfergelt1, Elisabeth Mauclet1, Benoît Pereira1, Aubry Vandeuren1, Guido Grosse2,3, Lutz Schirrmeister2, Matthias Fuchs2, Peter Kuhry4, Jens Strauss2 5 1Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium 2Permafrost Research Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany 3Institute of Geosciences, University of Potsdam, Potsdam, Germany 4Department of Physical Geography, Stockholm University, Stockholm, Sweden 10 Correspondence to: Arthur Monhonval ([email protected]) Abstract With permafrost thaw, significant amounts of organic carbon (OC) previously stored in frozen deposits are unlocked and 15 become potentially available for microbial mineralization. This is particularly the case in ice-rich regions such as the Yedoma domain. Excess ground ice degradation exposes deep sediments and their OC stocks, but also mineral elements, to biogeochemical processes. Interactions of mineral elements and OC play a crucial role for OC stabilization and the fate of OC upon thaw, and thus regulate carbon dioxide and methane emissions. In addition, some mineral elements are limiting nutrients for plant growth or microbial metabolic activity. A large ongoing effort is to quantify OC stocks and their lability in permafrost 20 regions, but the influence of mineral elements on the fate of OC or on biogeochemical nutrient cycles has received less attention. The reason is that there is a gap of knowledge on the mineral element content in permafrost regions.
    [Show full text]
  • Managing Winter Injury to Trees and Shrubs
    Publication 426-500 Managing Winter Injury to Trees and Shrubs Diane Relf Extension Specialist, Horticulture, and Bonnie Appleton, Extension Specialist, Horticulture; Virginia Tech Reviewed by David Close, Consumer Horticulture and Master Gardener Specialist, Horticulture, Virginia Tech Introduction evergreen needles or leaves. It is worst on the side facing the wind. This can be particularly serious if plants are It is often necessary to provide extra attention to plants near a white house where the sun’s rays reflect off the in the fall to help them over-winter and start spring in side, causing extra damage. peak condition. Understanding certain principles and cultural practices will significantly reduce winter damage Management: Proper watering can is a critical factor in that can be divided into three categories: desiccation, winterizing. If autumn rains have been insufficient, give freezing, and breakage. plants a deep soaking that will supply water to the entire root system before the ground freezes. This practice is Desiccation especially important for evergreens. Watering when there Desiccation, or drying out, is a significant cause of dam- are warm days during January, February, and March is age, particularly on evergreens. Desiccation occurs when also important. water leaves the plant faster than it is taken up. Several environmental factors can influence desiccation. Needles Also, mulching is an important control for erosion and and leaves of evergreens transpire some moisture even loss of water. A 2-inch layer of mulch will reduce water during the winter months. During severely cold weather, loss and help maintain uniform soil moisture around the ground may freeze to a depth beyond the extent of roots.
    [Show full text]